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Abstract

We prove that a planar set which meets each line in exactly three points cannot contain a continuum
and cannot be af,; -set. We also present some results on extending and splittpaint sets. Our
results imply that there is a four-point set which contains an@r2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Let « > 2 be a cardinal number less than or equal to the contindt¥m®planar set is
called ax-point set if every line intersects the set in exactlypoints. Obviously, the plane
is a continuum-point set. So this concept is of interest for cardinals smaller than the contin-
uum only. Sierpiski [13, p. 447] gave the following explicit example of &p-point set:
the union of all circlesc? 4+ y2 = n? wheren = 1, 2, ... For finitex it is not this easy to
construct ac-point set. In fact, no explicit constructions are known. Using a well-ordering
argument, Mazurkiewicz [10] proved that two-point sets exist. The same argument shows
thatn-point sets exist for every (see, e.g., Bagemihl [1] and Siengki [12]). It is un-
known whether there is anrpoint set which is a Borel subset of the plane. This has proved
to be quite a difficult and interesting problem (see, e.g., Mauldin [9] for more detalils).
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Larman [7] presented the claim that no two-point set can bE,agubset of the plane.
His proof is in two steps. He argues that any two-pdintsubset of the plane contains an
arc and that no two-point set contains an arc. Unfortunately, the proof of his first statement
is incorrect, as was pointed out and corrected by Baston and Bostock [2]. It was shown by
Miller [11] that in the constructible universe there is a two-point set which is coanalytic.
So far these seem to be the only results on the descriptive complexitypoint sets. It
is even unknown whether a two-point set can b@&;sasubset of the plane. Observe that
Sierpiski’s Rg-point set is closed and hencels as well asF, .

Kulesza [6] proved that a two-point set is zero-dimensional. The Sigkpexample
from above shows that fatg-point sets this need not hold.

The aim of this paper is to try to generalize the above results for two-point sets to
point sets forn larger than 2. We show that no three-point set isgasubset of the
plane. This is done by following Larman’s program, although the technicalities are much
more complicated. Much to our surprise, the situation#or 3 is totally different. We
do not know whether a four-point set can be&nsubset of the plane, but we construct
an example of a four-point set which contains an arc. So, Larman’s program cannot be
followed forn > 3.

Three-point sets turn out to be much more complicated to deal with than two-point sets.
We do not know whether every three-point set is zero-dimensional but we will show that
so-called strong three-point sets are zero-dimensional.

2. Notation

An arcis any space which is homeomorphic to the closed intg¢fydl] and a spac€ is
calledarcwise connected if for every pairx1, x2 of distinct points ofC there exists a home-
omorphic embedding: [0, 1] — C satisfyingh(0) = x1 andi(1) = x2. A continuumis a
nonempty, compact, connected metric space. A topological spaie-fiite if there ex-
ists a base for the topology of the space which consists of sets having finite boundaries. Itis
easily seen that am-point set, and obviously, each subspace ot guoint set is rim-finite.

The line through two distinct points £ y in the plane shall be denoted lay(x, y). If
¢ is an arbitrary line in the plane then a sidefds a component of the complement&f
e.g..x andy are on the same side 6fmeansc andy are elements of the same component
of R2\ ¢.

Let e be a fixed positive numbea, an arbitrary set ifR2, andn € N. Let

Pi(A) = {x eR: |({x} x R)NA| =n and
if (x,a), (x,b) € Aanda # b thenla — b| > ¢}.
We let the functions
yi:PI(A) >R, 1<i<n,

be defined by the propertiegP; (A) x R) N A is the union of the graphs of the’s and
for eachx € P (A), y1(x) < y2(x) < --- < y,(x). Observe that in this case by definition
of PZ(A), we havey;(x) > yi—1(x) +efori=2,...,n.
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A planar set is called partial n-point set if every line intersects the set &t most n
points. It is an easy exercise to show that the cik@e- y2 = 1 is an example of a partial
two-point set that is not a subset of any two-point set. We say that it canmestdneed to
a two-point set. As will be shown in Section 4, it also cannot be extended to a three-point
set. Interestingly, itan be extended to a four-point set, see Section 5 for details.

For more information on sets that can or cannot be extended to two-point sets, see
Dijkstra, Kunen and van Mill [4].

The cardinality of a seX is denoted byX| and, as usual, we letabbreviate 0.

3. Arcsin n-point sets

As we stated in the introduction, the flaw in Larman’s proof was first pointed out and
corrected by Baston and Bostock. However, it is also possible to do this by an unpublished
method communicated to us by Mauldin [8]. Since it will be used by us later, we will
present it in detail here. None of the results in this section is due to the authors of the
present paper.

Lemma3.l. Lete > 0,n € N, andlet F beacompact subset of R? such that every vertical
lineintersects F in at most n points. Then P} (F) is compact and for eachi € {1, ..., n},
y; iscontinuouson P¢ (F).

Proof. We shall use induction with respect to Forn = 1, let (x,,),, be a sequence
in P{(F) converging tox € R. By compactness of, limsup,_. ., y1(x») = a and
liminf,,— « y1(x,) = b exist. And so(x, a) and(x, b) are points ofF’ which givesa = b.
Hence,P; (F) is compact and is continuous orP; (F).

Suppose now that the statement of the lemmais true for aomg. Let F be a compact
subset in the plane that intersects every vertical line in at mast points. Let(x,,),, be
a sequence ie = Py, (F) converging tax € R. Let liminf,,— o0 yu+1(xm) = b and note
that(x, b) € F. There exists a subsequer(@ﬁj)j of (x,)m such that for each € N,

| Yn1(xm;) —b| <€/2
and
j"_>moo Yn+1(Xm;) =b.
Define the compact set
F'=F N (({x}U{xm,: j €N}) x (=00, b — £/2]).
Since
b—¢/2<ypi1(xm;) <b+¢/2,

we have, by definition of’, that (m s Yn+1(Xm;)) ¢ F’ and that (e, yn (xm;)) € F'.
It follows that for eachyy,;, [({xn,} x R) N F'| = n which implies thatx,,; € P; (F’).
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Observe now thatx, b) € F \ F’' and that|/({x} x R) N F’| < n, and so for each € R,
|({z} x R) N F'| < n. So, it follows by our inductive hypothesis th&f (F’) is compact
and hence € Pf(F’). We have now

_Iim yn+1(xmj) =b
J—>00
and
Yn+l(xmj) - Yn(xmj) = €.
If we apply the induction hypothesis #©' andr we obtain
_Iim yn(xmj) = yn(x)
j—oo
and hence
b—yn(x) 2 e

This fact and the fact thate P/ (F’) givex € G. We may conclude tha¥ is compact. Let
now limsupg,_, o, Yn+1(xm) = a and suppose that> b. Then(x,a) € F, (x,b) € F, and
a>b>y,(x)>---> y1(x) which contradicts the fact that there are only- 1 points in
({x} x R)yN F. Henceg = b andy, 1 is continuous orG follow immediately.

Define the compact set

F'={(x,y) € (GXxR)NF: y < ypy1(x) — ¢},

and observe that the sét’ satisfies the conditions of the lemma farSo, by induction,
Y1, ..., ys are continuous functions apf (F”) =G. 0O

Proposition 3.2. Let X be an F,-set in R? and let n € N such that for each x € R,
|({x} x R) N X| = n. Then there exist a nondegenerate interval [a, b] and continuous
functions f1 < fo < --- < f, from [a, b] into R such that X contains the graph of every
fi- Inparticular, X containsarcs.

Proof. Let X = J2; F; with F1 C F> C --- and for each € N, F; is compact. Let for
eachi e N,

H; = {xeR: |({x}xR)ﬂFi|=nand
if (x,a), (x,b) € F; anda # b then|a — b| > 1/i}.

Then, by Lemma 3.1, we have for eaich N, that H; is compact. Observe thaﬂfil H; =
R so that by the Baire Category Theorem, there exists@aiN such thatH; contains an
interval[a, bl witha < bin R. By Lemma 3.1 again, for eaéh< n, yk[[4,»] iS @ cOntinuous
function, and so the graph of[},,5 is an arc. We conclude that is as required. O

4. A three-point set cannot be F,,

In this section we will prove the main result in this paper that a three-point set is not an
F,-subset of the plane.
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Lemma 4.1. Let A be an arc in the plane with end points p and ¢ and let m be a
line parallel to L(p, g) that intersects A and with maximum distance towards L(p, q).
If |[ANm| > 2, thenfor someline ¢, |AN¢| > 4.

Proof. If L(p,q) =m thenA Nm is infinite and we are finished. So, we may assume that
L(p, ¢q) andm are distinct.

Letw: [0, 1] - A be ahomeomorphism with(0) = p anda (1) = ¢. Since|]ANm| > 2
there are points andc with 0 < a < ¢ < 1 anda(a) anda(c) in m. If a((a, ¢)) C m then
A N m is infinite so we may assume that there is a (a, ¢) with a(b) ¢ m. Sincem has
maximal distance towards(p, ¢) the pointx () lies in the half plane ofz that contains
L(p, q) and sincex(b) can be chosen arbitrarily close dga) we may assume that(b)
lies betweenn andL(p, ¢q). Select a line’ that is parallel ton and lies betweem and
a(b). Thenp, a(b), andg lie on one side of andua(a) anda(c) on the other side. So,
£ cuts the arce ([0, a]), a([a, b]), a([b, c]), anda([c, 1]) and hence intersectsA in at
least four points.

Lemma4.2. Let A beanarcintheplanewith end points p and ¢. If someline ¢ intersects
A in three points such that p and ¢ are on the same side of ¢ then thereis a line ¢’ that
intersects A in at least four points.

Proof. Let «:[0,1] - A be a homeomorphism witlk(0) = p and «(1) = ¢. By
assumption we hav& N A| = 3, which means that there are poinrtsb, and ¢ with
O<a<b<c<landsuchthat(a), a(b), andu(c) are all on the lind. Selecte € (a, b)
andf € (b, ¢) and note thai(e) anda(f) are inR?\ £.

To prove that there is a lin€ that intersectsA in at least four points, we distinguish

three cases:

(1) «(e), p, andg are on the same side 6fLet ¢’ be a line that is parallel td and that
separateg from p, ¢, anda(e). Thenp, a(e), andg are on one side of anda(a)
andua(b) are on the other side. S6cuts the arce ([0, a]), a([a, e]), a([e, b]), and
a([c, 1]) and hencé’ intersectsA in at least four points.

(2) If a(f), p, andg are on the same side 6fwe argue as in (1).

(3) ¢ separatep andg from a(e) anda(f). Select a linet’ that is parallel to¢ and
that separates(e) anda(f) from £. Then,a(a), a(b), anda(c) are on one side
of ¢/ anda(e) anda(f) on the other side. sé cuts the arce([a, ¢]), a([e, b]),
a([b, f1), anda([ f, c]) and hencé’ intersectsA in at least four points.

The proof is complete. O

Lemma 4.3. No three-point set containsarcs.

Proof. Let X be a three-point set, let be an arc, and suppogec X. We may assume
without loss of generality that the end points &fare represented by = (0,0) and
g = (1,0) and thatA \ {p,q} C R x (0,00). Let m be a line parallel ta.(p, ¢) that
intersectsA and with maximum distance towards the lihép, ¢). Then eithetANm| =1
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or[ANm|=2or|ANm|=3.1f2<|ANm| <3, then by Lemma 4.1, for some lirte
there will be at least four points of intersection withand hence wittX, contradicting the
three-point property oK. So we may assume thgt Nm| = 1.

Let A Nm = {x} with x = (x1, x2) and note thain = R x {x2}. Leta andb be the
other distinct points ofn N X. We take that: = (a1, x2), b = (b1, x2) andai < b1. We
distinguish two cases:

(1) x is not betweem andb on the linem. Without loss of generality, we may assume
thatby < x1. Letc be a point in(a1, b1) x {x2} and{, be a line through: that is
parallel toL(a, ¢). Then, by Lemma 4.2, the lin&. intersectsA in at most two
points and so there is a poibt= (11, A2) in (£ N X) \ A. We study three subcases:
(a) A2 < x2. Thenx lies to the right ofL (a, A) andp andgq lie to the left of L(a, 1)

S0 L(a, A) intersectsA in two points. Sincer anda are two points ofX \ A we

haveL(a, A) N X contains at least four points, a contradiction. See Fig. 1.
(b) A2 = x2. Theni = ¢ and hencen N X contains at least four points; A, b, x.
(c) A2 > x2. Nowx lies to the right ofL (), ) andp andg lie to the left of L(A, b).

So, we have that (A, b) intersectsA in two points. Since. andb are two points

of X \ A we haveL (i, b) N X contains at least four points, a contradiction. See

Fig. 2.
(2) a1 < x1 < b1. The point of intersection of the lings(a, g) and L(b, p), saya, is
between thec-axis L(p, g) andm. Letm’ be a line strictly betweem ando, and
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parallel tom. Then by Lemma 4.2 the lina’ intersectsA in at most two points
and hence there is a poifitin m’ N (X \ A). We note that the sides @f(p, b) and
L(q, a) that containx coverm’. See Fig. 3.
By symmetry we may assume thétand x are on the same side of, sdy(p, b).
ThenL(b, B) separates both andg from x so|L(b, 8) N X| > 4, a contradiction.
By (1) and (2), the fact that contains an arc leads to a contradiction. We conclude that a
three-point set contains no arcs

Theorem 4.4. No three-point set contains nontrivial continua.

Proof. Let C be a nontrivial continuum that is contained Iy a three-point set. It is
obvious thatC is a rim-finite continuum and so by [14, Lemma 1] it is arcwise connected.
By Lemma 4.3,C cannot be contained iX since X contains no arcs. Hence the sét
contains no continuum. O

We now come to the main result in this section.
Theorem 4.5. A three-point set cannot be an F,-set in the plane.
Proof. If we apply Proposition 3.2 for = 3 and Lemma 4.3 we are donel

It will be shown in the next section that there &rpoint sets that contain arcs for every
k > 4. So the method used here to show that three-point sets caniigtbets does not
work for k > 3. As was mentioned in the introduction, it is easy to give an example of a
closed sef in R? that intersects every line g points.

5. Extending and splitting n-point sets

We now present results on extending and splittingoint sets. Our first result is very
simple.
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Theorem 5.1. No n-point set is contained in an (n + 1)-point set.

Proof. Let X be ann-point set,Y an(n + 1)-point set, and supposeéC Y. ThenY \ X is
a “one-point set” which clearly does not exist.

The following result is more interesting.

Theorem 5.2. For eachn > 2, for each k > n + 2, and for each partial n-point set X there
existsa k-pointset Y suchthat X C Y.

Proof. Let X be a partialn-point set withn > 2 and letk > n + 2. Let {£y: o« < ¢}
enumerate all lines in the plane. We shall construct by transfinite induction a nondecreasing
sequencéE,: o < c} of subsets oR? \ X with induction hypotheses:

(1) |Eq| < la] + Ro,

(2) X U E, is a partialk-point set,

(3) (XU Eqt1) NLy| =k.
PutEo = and if A < cis a limit ordinal thenE, = J,,_; E. Observe that for limits (2)
is trivially satisfied because the sequenceEgfs is nondecreasing. Assume thég has
been constructed and consider the lige

Definei = [(X U E,) N £,| and note that & i < k. Put

L={L(a,b): a,be Ey,a#b}\{la}.

Note that

‘(XUEO,UUL)HEO,

and hence we may selecpointsxy, ..., x; from

Zo,\(XUEO,UU£>.

We defineEy+1 = Eq U{x1, ..., xk—i}.

Itis obvious thatF, ;1 satisfies hypotheses (1) and (3). We verify (2): Assume that some
line ¢ intersectsX U E, 11 in at leastk + 1 points. Thert, # £ so|£, N¢] < 1 and hencé
contains at most one of thg’s. So,|(X U E,) N£| > k. Sincek > n+2 and|£N X| <n
we havelt N E,| > 2. Sol € £ and hence contains nox;. So

<k+|Eq? <ol +Ro <,

|((XUEqq1) NE|=|(XUEy) NeE| <k,

which contradicts our assumption.
Now if we letY = X U E. we are done. O

Observe that a two-dimensional subset of the plane has nonempty interior by [5,
Theorem 1.8.11] and so it cannot berapoint set. Ann-point set is therefore either zero-
or one-dimensional. (This also follows from the trivial observation that-gooint set is
rim-finite.) As we stated in the introduction, two-point sets are zero-dimensional and we
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Fig. 4.

do not know whether three-point sets share this property. To our surprise, four-point sets
can be one-dimensional, as the following result shows.

Corollary 5.3. Thereexistsfor every k > 4 a k-point set that contains a circle (and hence
it isone-dimensional).

Proof. A circle is a partial two-point set. Now apply Theorem 5.23

Theorem 5.2 gives us many exampleskgboint sets that are unions efpoint sets
for n < k. This observation leads immediately to the question whether é+pgint set
(k = 4) can be “split” in this way. This question is answered in the negative in Dijkstra [3]
where a four-point set is constructed that does not contain any two-point sets. Here we
present a more general counterexample. We first need a technical lemma.

Lemma 5.4. Given ann > 4, distinct points p and ¢ in the plane, and a partial n-point
set X with p,g € X and | X| < ¢, there exists a finite planar set Y suchthat X UY isa
partial n-point set and for every partition (A, B) of X U Y such that for some k the set A
isa partial k-point set and B isa partial (n — k)-point set, we have that both p and ¢ are
in the same partition element.

Proof. Since|X| < ¢ we can find distinct lineés, . . ., £,_1 that all contairp and intersect
no other point ofX. Consider the set

z=|J{tinL(a.b):i<n—1 a.beX, anda #b}.

Note that| Z| < (n — 1)|X |2 < ¢ so we can find distinct lineg1, . .., m,_1 that all contain
¢ and contain no point of . In addition, we may assume that none of thes is parallel
to any of the¢;’s. Let Y consist of the(n — 1)2 points of intersection of the;’s with the
m;'s. Note thatY andL(p, g) are disjoint and see Fig. 4.



224 K. Bouhjar et al. / Topology and its Applications 112 (2001) 215-227

In order to show thaX U Y is a partialz-point set lett be a line that intersect§ U Y
in at leastz + 1 points. If|¢ N X| > 2 then¢; N & C Z for eachi and hencé NY =@. So
then we haveé N X| > n + 1, a contradiction. We conclude thgtn X| < 1 and hence
|ENY| > n. SinceY is contained in the s@j’;ll ¢; we have with the pigeonhole principle
thaté has two points in common with sondeand hencé = ¢;. But ¢; contains precisely
n points of X UY: p € X and the intersections with the— 1 linesm .

Now let (A, B) be a partition ofX U Y such thatA is a partialk-point set andB is a
partial (n — k)-point set. Assume that this partition separgtefsom ¢. By symmetry we
may assume that € A andg € B. Note that everyn; intersectsX U Y in preciselyn
points so precisely of these points must be i. Sinceq € B we have

n—1
miNACY and |AﬂY|=Z|m.,-ﬂA|=(n—1)k.
j=1
These(n — 1)k points are distributed over— 1 ¢;'s so by the pigeonhole principle some
¢; contains at least points of AN Y. Sincep € A we have that; contains at least + 1
points of A, a contradiction. O

This lemma allows us to construct examples of ‘peculiapoint sets.

Theorem 5.5. For each n > 4 there exists an n-point set that fails to contain a k-point set
for any k < n.

Proof. Let X1 consist of the points,2,...,n on thex-axis. Use Lemma 5.4 to find a
Y1 for the points(1, 0) and (2, 0) in X; and putX, = X1 U Y;. We proceed inductively
to find aY;_1 for (i —1,0) and(i,0) in X;_1. PutX; = X;_1 UY;_1. We consider the
finite partialn-point setX,,. It is implicit in Mazurkiewicz’ proof of the existence of two-
point sets that every partial-point set with cardinality less thanis extendable to an
n-point set. LetX be such an extension df,. Let A be a subset ok such thatA is a
k-point set withk < n. It is obvious thatB = X \ A is then an(n — k)-point set and hence
2<k<n—-2. Letl<i<n-—1andnotethat’ = AN X;,1 andB’= BN X; ;1 forma
partition of X; 1 = X; UY; into a partiak-point set respectively a partiél — k)-point set.
Consequently, bott¥, 0) and(i + 1, 0) belong to the same partition element. Since this is
true for everyi we haveX1 C A or X1 C B, a contradiction. O

6. Strongthree-point sets

As we said before, we do not know whether three-point sets are zero-dimensional. In
this section we introduce the so-callstdong three-point sets which turn out to be zero-
dimensional.

If a, b, andc are three distinct points iR?2, then the uniquely determined circle or line
that containga, b, ¢} is denoted byC(a, b, ¢). A setX c R? is called astrong three-point
set if it meets each line and each circle in exactly three points. Every strong three-point set
is obviously a three-point set.
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The one-point compactification of the plane is the two-spBér&very line in the plane
corresponds to a circle i§%. So a strong three-point set is a set which meets every circle
in S2 in precisely three points. So strong three-point sets are a natural generalization of
two-point sets, more so than ordinary three-point sets.

The following result follows from a theorem of Bagemihl [1]. For completeness sake we
include a direct proof.

Theorem 6.1. There exists a strong three-point set.

Proof. Let the set of all circles and lines B be enumerated by
C={Cq: a <c}.

We shall construct by transfinite induction a nondecreasing sequéihgg<. of subsets
of R? with induction hypotheses:

(1) |Eq| < la] + Ro,

(2) |[E,NC| <3, foreachC €C,

() [Ca N Eg41| =3.
PutEg =9 and if 2 < cis a limit ordinal thenk) = J,, _, E«. Observe that for limits (2)
is automatically satisfied since the sequencggs is nondecreasing. Let < ¢ be a fixed
ordinal and considek, andC,. To defineE, 1, we will find three appropriate poinig,
y2, andys in C, that can be added 8, without violating the partial three-point property.

() LetE,(0)=E,, let

L(Eq)={C(a,b,c): a,b,c,€ Eq,a#b,a#c,b#c}\{Cy},
and let

Ho(0) = (| £(E) N Co)) U Ea ().
Since for eaclC € L(E,), |C N Cy| < 2 we have

|Ho(0)| < 2|L(Ea)| + |Eal < 2|Eq|® + | Eo| < oo +Ro < ¢

we can find a poing1 in Cy \ Hy (0).

(b) LetEy(1) = E4 U{y1} andHy (1) = (JL(E« (1)) NCy) U Ey(1). Asin (a) we find
that|H, (1)| < |a| + 8o < ¢ and so there is a poing in Cy, \ Hy(1).

(c) With the same procedure as under (b), if we deflig2) = E, (1) U {y»} and
Hy(2) = (JL(E4(2) N Cy) U E4(2), we can find a poinyz in Cy, \ Hy(2) SO
let E4(3) = Eq(2) U {ys}.

We now let

Egt1= Ea(|Ea N Coz|)-

It is obvious thatE, 11 satisfies (1) and (3). To prove (2) assume that thereds=aC with
|Eq+1NC| > 4. Letk =min{i: |E,(i) N C| > 4}. Then sinceE, (0) = E, we havek > 1.
SinceE, (k) \ Eq4(k — 1) = {yr} we havey, € C and|Ey(k — 1) N C| > 3. This fact implies
thatC € L(Ey(k — 1)) and contradicts the choice @f. The induction is complete.

We conclude thaE. is a strong three-point set.0
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We will now present some properties of strong three-point sets. Using the Mazurkiewicz
technique, it is easy to construcipoint sets which miss a given bounded open ball in the
plane. Hence-point sets need not be dense. But strong three-point sets are clearly dense.

Theorem 6.2. Any strong three-point set is densein R2.

Our next aim is to prove that strong three-point sets are zero-dimensional. We need a
technical lemma first.

Lemma6.3. Let 7 = {(a, b, ¢) € (R?3: a,b,and c arenot colinear}. Let M, r: T — R?
be the functions that assign to every (a, b, ¢) € T the centre respectively the radius of
C(a,b,c). Then M and r are continuous functions.

Proof. Let (a,b,c) € T and letM = M (a, b, c) be the center o€ (a, b, ¢). It is easily
seen that is the unique solution of the linear equations

2 2 2 2
_ izl . lall and M- (b—c) = 5] . lell ’
where we used the dot product and length for vectors in the plane. Note that the two
components of\ are rational functions of the componentsafb, andc¢, and hence
continuous. The functionis the distance betwee¥l anda and so also continuous.Oo

M- (b—a)

Theorem 6.4. Every strong three-point set is zero-dimensional.

Proof. Let X be a strong three point set. Letbe an arbitrary point ok. Without loss
of generality we may assume thatis the origin. Let¢, be thex-axis. Since¢, N X
contains only two points other thanwe may select aa > 0, arbitrarily small, such that
([—2¢, 2¢] x {0}) N X = {z}. Consider the circle-? + y2 = ¢2 which we may represent
asC((e,0),(0,¢), (—&,0) =C((¢,0), (0, —¢), (—e&,0)). By Theorem 6.2 and Lemma 6.3
there exista, b, andc in R x (0, co) close enough tage, 0), (O, ¢), and(—e, 0) such that
the radius ofC(a, b, ¢) is between 8/4 and /4 and the center f' (a, b, ¢) is withine /4
of z.

In the same way we can find points, »’, andc’ in R x (—oo, 0) close enough to
(g,0), (0, —¢), and(—e¢, 0) such that the radius af (¢’, b’, ¢’) is between 8/4 and /4
and the center of (d/, b’, ¢’) is within ¢/4 of z. Observe thatC(a, b, c) andC(a’, b’, ¢’)
are in{u: ||u|]| < 2¢} and thatz is on the inside of botlC (a, b, ¢) andC(a’, b’, ¢’). Let
C(a,b,c)N (R x {0) ={(p,0), (g, 0)} with p <0< g and letC(a’, »’,c) N (R x {0}) =
{(s,0), (¢, 0)} with s < 0 < ¢. Let nowS be the union of the interval fromto s, the interval
from ¢ to ¢ (on thex-axis),C(a, b,c) N (R x (—o0,0)) andC(d’,b’, ") N (R x (0, 00)),
see Fig. 5.

It is easily seen thaf separates from {u: |lu| > 2¢} in R? and thatS and X are
disjoint. Sinces was chosen arbitrarily small we conclude that for each ope@stiat
containsx there exists an open-and-closed seKirthat is contained ir0. We conclude
thatX is zero-dimensional. O
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Fig. 5.

Note Added in Proof. Bouhjar, Dykstra and Mauldin recently showed thatnpoint set
(n > 2) in the plane isF,;. This generalizes Theorem 4.5 in the present paper.
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