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Abstract

We prove that a planar set which meets each line in exactly three points cannot contain a continuum
and cannot be anFσ -set. We also present some results on extending and splittingn-point sets. Our
results imply that there is a four-point set which contains an arc. 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Let κ � 2 be a cardinal number less than or equal to the continuum 2ℵ0. A planar set is
called aκ-point set if every line intersects the set in exactlyκ points. Obviously, the plane
is a continuum-point set. So this concept is of interest for cardinals smaller than the contin-
uum only. Sierpínski [13, p. 447] gave the following explicit example of anℵ0-point set:
the union of all circlesx2 + y2 = n2 wheren = 1,2, . . . . For finiteκ it is not this easy to
construct aκ-point set. In fact, no explicit constructions are known. Using a well-ordering
argument, Mazurkiewicz [10] proved that two-point sets exist. The same argument shows
thatn-point sets exist for everyn (see, e.g., Bagemihl [1] and Sierpiński [12]). It is un-
known whether there is ann-point set which is a Borel subset of the plane. This has proved
to be quite a difficult and interesting problem (see, e.g., Mauldin [9] for more details).
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Larman [7] presented the claim that no two-point set can be anFσ -subset of the plane.
His proof is in two steps. He argues that any two-pointFσ -subset of the plane contains an
arc and that no two-point set contains an arc. Unfortunately, the proof of his first statement
is incorrect, as was pointed out and corrected by Baston and Bostock [2]. It was shown by
Miller [11] that in the constructible universe there is a two-point set which is coanalytic.
So far these seem to be the only results on the descriptive complexity ofn-point sets. It
is even unknown whether a two-point set can be aGδ-subset of the plane. Observe that
Sierpínski’sℵ0-point set is closed and hence isGδ as well asFσ .

Kulesza [6] proved that a two-point set is zero-dimensional. The Sierpiński example
from above shows that forℵ0-point sets this need not hold.

The aim of this paper is to try to generalize the above results for two-point sets ton-
point sets forn larger than 2. We show that no three-point set is anFσ -subset of the
plane. This is done by following Larman’s program, although the technicalities are much
more complicated. Much to our surprise, the situation forn > 3 is totally different. We
do not know whether a four-point set can be anFσ -subset of the plane, but we construct
an example of a four-point set which contains an arc. So, Larman’s program cannot be
followed forn > 3.

Three-point sets turn out to be much more complicated to deal with than two-point sets.
We do not know whether every three-point set is zero-dimensional but we will show that
so-called strong three-point sets are zero-dimensional.

2. Notation

An arc is any space which is homeomorphic to the closed interval[0,1] and a spaceC is
calledarcwise connected if for every pairx1, x2 of distinct points ofC there exists a home-
omorphic embeddingh : [0,1] → C satisfyingh(0) = x1 andh(1) = x2. A continuum is a
nonempty, compact, connected metric space. A topological space isrim-finite if there ex-
ists a base for the topology of the space which consists of sets having finite boundaries. It is
easily seen that ann-point set, and obviously, each subspace of ann-point set is rim-finite.

The line through two distinct pointsx �= y in the plane shall be denoted byL(x, y). If
� is an arbitrary line in the plane then a side of� is a component of the complement of�,
e.g.,x andy are on the same side of� meansx andy are elements of the same component
of R2 \ �.

Let ε be a fixed positive number,A an arbitrary set inR2, andn ∈ N. Let

Pε
n (A) = {

x ∈ R:
∣∣({x} × R

) ∩A
∣∣ = n and

if (x, a), (x, b)∈ A anda �= b then|a − b| � ε
}
.

We let the functions

yi :Pε
n (A) → R, 1� i � n,

be defined by the properties:(P ε
n (A) × R) ∩ A is the union of the graphs of theyi ’s and

for eachx ∈ Pε
n (A), y1(x) < y2(x) < · · · < yn(x). Observe that in this case by definition

of Pε
n (A), we haveyi(x) � yi−1(x)+ ε for i = 2, . . . , n.
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A planar set is called apartial n-point set if every line intersects the set inat most n
points. It is an easy exercise to show that the circlex2 + y2 = 1 is an example of a partial
two-point set that is not a subset of any two-point set. We say that it cannot beextended to
a two-point set. As will be shown in Section 4, it also cannot be extended to a three-point
set. Interestingly, itcan be extended to a four-point set, see Section 5 for details.

For more information on sets that can or cannot be extended to two-point sets, see
Dijkstra, Kunen and van Mill [4].

The cardinality of a setX is denoted by|X| and, as usual, we letc abbreviate 2ℵ0.

3. Arcs in n-point sets

As we stated in the introduction, the flaw in Larman’s proof was first pointed out and
corrected by Baston and Bostock. However, it is also possible to do this by an unpublished
method communicated to us by Mauldin [8]. Since it will be used by us later, we will
present it in detail here. None of the results in this section is due to the authors of the
present paper.

Lemma 3.1. Let ε > 0, n ∈ N, and let F be a compact subset of R2 such that every vertical
line intersects F in at most n points. Then Pε

n (F ) is compact and for each i ∈ {1, . . . , n},
yi is continuous on Pε

n (F ).

Proof. We shall use induction with respect ton. For n = 1, let (xm)m be a sequence
in Pε

1 (F ) converging tox ∈ R. By compactness ofF , lim supm→∞ y1(xm) = a and
lim infm→∞ y1(xm) = b exist. And so,(x, a) and(x, b) are points ofF which givesa = b.
Hence,Pε

1 (F ) is compact andy1 is continuous onPε
1 (F ).

Suppose now that the statement of the lemma is true for somen � 1. LetF be a compact
subset in the plane that intersects every vertical line in at mostn + 1 points. Let(xm)m be
a sequence inG = Pε

n+1(F ) converging tox ∈ R. Let lim infm→∞ yn+1(xm) = b and note
that(x, b) ∈ F . There exists a subsequence(xmj )j of (xm)m such that for eachj ∈ N,

∣∣yn+1(xmj )− b
∣∣< ε/2

and

lim
j→∞yn+1(xmj ) = b.

Define the compact set

F ′ = F ∩ (({x} ∪ {xmj : j ∈ N}) × (−∞, b − ε/2]).
Since

b − ε/2< yn+1(xmj ) < b + ε/2,

we have, by definition ofF ′, that (xmj , yn+1(xmj )) /∈ F ′ and that(xmj , yn(xmj )) ∈ F ′.
It follows that for eachxmj , |({xmj } × R) ∩ F ′| = n which implies thatxmj ∈ Pε

n (F
′).
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Observe now that(x, b) ∈ F \ F ′ and that|({x} × R) ∩ F ′| � n, and so for eachz ∈ R,
|({z} × R) ∩ F ′| � n. So, it follows by our inductive hypothesis thatPε

n (F
′) is compact

and hencex ∈ Pε
n (F

′). We have now

lim
j→∞yn+1(xmj ) = b

and

yn+1(xmj )− yn(xmj ) � ε.

If we apply the induction hypothesis toF ′ andn we obtain

lim
j→∞yn(xmj ) = yn(x)

and hence

b − yn(x) � ε.

This fact and the fact thatx ∈ Pε
n (F

′) givex ∈ G. We may conclude thatG is compact. Let
now lim supm→∞ yn+1(xm) = a and suppose thata > b. Then(x, a) ∈ F , (x, b) ∈ F , and
a > b > yn(x) > · · · > y1(x) which contradicts the fact that there are onlyn + 1 points in
({x} × R)∩ F . Hence,a = b andyn+1 is continuous onG follow immediately.

Define the compact set

F ′′ = {
(x, y) ∈ (G× R)∩ F : y � yn+1(x)− ε

}
,

and observe that the setF ′′ satisfies the conditions of the lemma forn. So, by induction,
y1, . . . , yn are continuous functions onPε

n (F
′′) = G. ✷

Proposition 3.2. Let X be an Fσ -set in R2 and let n ∈ N such that for each x ∈ R,
|({x} × R) ∩ X| = n. Then there exist a nondegenerate interval [a, b] and continuous
functions f1 < f2 < · · · < fn from [a, b] into R such that X contains the graph of every
fi . In particular, X contains arcs.

Proof. Let X = ⋃∞
i=1Fi with F1 ⊂ F2 ⊂ · · · and for eachi ∈ N, Fi is compact. Let for

eachi ∈ N,

Hi = {
x ∈ R:

∣∣({x} × R
) ∩ Fi

∣∣ = n and

if (x, a), (x, b)∈ Fi anda �= b then|a − b| � 1/i
}
.

Then, by Lemma 3.1, we have for eachi ∈ N, thatHi is compact. Observe that
⋃∞

i=1Hi =
R so that by the Baire Category Theorem, there exists ani ∈ N such thatHi contains an
interval[a, b] with a < b in R. By Lemma 3.1 again, for eachk � n, yk�[a,b] is a continuous
function, and so the graph ofyk�[a,b] is an arc. We conclude thatX is as required. ✷

4. A three-point set cannot be Fσ

In this section we will prove the main result in this paper that a three-point set is not an
Fσ -subset of the plane.
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Lemma 4.1. Let A be an arc in the plane with end points p and q and let m be a
line parallel to L(p,q) that intersects A and with maximum distance towards L(p,q).
If |A∩m| � 2, then for some line �, |A∩ �| � 4.

Proof. If L(p,q) = m thenA∩m is infinite and we are finished. So, we may assume that
L(p,q) andm are distinct.

Letα : [0,1] → A be a homeomorphism withα(0) = p andα(1) = q . Since|A∩m| � 2
there are pointsa andc with 0< a < c < 1 andα(a) andα(c) in m. If α((a, c)) ⊂ m then
A ∩ m is infinite so we may assume that there is ab ∈ (a, c) with α(b) /∈ m. Sincem has
maximal distance towardsL(p,q) the pointα(b) lies in the half plane ofm that contains
L(p,q) and sinceα(b) can be chosen arbitrarily close toα(a) we may assume thatα(b)
lies betweenm andL(p,q). Select a line� that is parallel tom and lies betweenm and
α(b). Thenp, α(b), andq lie on one side of� andα(a) andα(c) on the other side. So,
� cuts the arcsα([0, a]), α([a, b]), α([b, c]), andα([c,1]) and hence� intersectsA in at
least four points.

Lemma 4.2. Let A be an arc in the plane with end points p and q . If some line � intersects
A in three points such that p and q are on the same side of � then there is a line �′ that
intersects A in at least four points.

Proof. Let α : [0,1] → A be a homeomorphism withα(0) = p and α(1) = q . By
assumption we have|� ∩ A| = 3, which means that there are pointsa, b, and c with
0< a < b < c < 1 and such thatα(a), α(b), andα(c) are all on the line�. Selecte ∈ (a, b)

andf ∈ (b, c) and note thatα(e) andα(f ) are inR
2 \ �.

To prove that there is a line�′ that intersectsA in at least four points, we distinguish
three cases:

(1) α(e), p, andq are on the same side of�. Let �′ be a line that is parallel to� and that
separates� from p, q , andα(e). Thenp, α(e), andq are on one side of�′ andα(a)
andα(b) are on the other side. So�′ cuts the arcsα([0, a]), α([a, e]), α([e, b]), and
α([c,1]) and hence�′ intersectsA in at least four points.

(2) If α(f ), p, andq are on the same side of�, we argue as in (1).
(3) � separatesp andq from α(e) andα(f ). Select a line�′ that is parallel to� and

that separatesα(e) andα(f ) from �. Then,α(a), α(b), andα(c) are on one side
of �′ andα(e) andα(f ) on the other side. so�′ cuts the arcsα([a, e]), α([e, b]),
α([b,f ]), andα([f, c]) and hence�′ intersectsA in at least four points.

The proof is complete. ✷
Lemma 4.3. No three-point set contains arcs.

Proof. Let X be a three-point set, letA be an arc, and supposeA ⊂ X. We may assume
without loss of generality that the end points ofA are represented byp = (0,0) and
q = (1,0) and thatA \ {p,q} ⊂ R × (0,∞). Let m be a line parallel toL(p,q) that
intersectsA and with maximum distance towards the lineL(p,q). Then either|A∩m| = 1
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Fig. 1.

Fig. 2.

or |A ∩ m| = 2 or |A ∩ m| = 3. If 2 � |A ∩ m| � 3, then by Lemma 4.1, for some line�
there will be at least four points of intersection withA and hence withX, contradicting the
three-point property ofX. So we may assume that|A∩m| = 1.

Let A ∩ m = {x} with x = (x1, x2) and note thatm = R × {x2}. Let a and b be the
other distinct points ofm ∩ X. We take thata = (a1, x2), b = (b1, x2) anda1 < b1. We
distinguish two cases:

(1) x is not betweena andb on the linem. Without loss of generality, we may assume
that b1 < x1. Let c be a point in(a1, b1) × {x2} and�c be a line throughc that is
parallel toL(a, q). Then, by Lemma 4.2, the line�c intersectsA in at most two
points and so there is a pointλ = (λ1, λ2) in (�c ∩X) \A. We study three subcases:
(a) λ2 < x2. Thenx lies to the right ofL(a,λ) andp andq lie to the left ofL(a,λ)

soL(a,λ) intersectsA in two points. Sincea andλ are two points ofX \A we
haveL(a,λ)∩X contains at least four points, a contradiction. See Fig. 1.

(b) λ2 = x2. Thenλ = c and hencem∩ X contains at least four points;a, λ, b, x.
(c) λ2 > x2. Nowx lies to the right ofL(λ,b) andp andq lie to the left ofL(λ,b).

So, we have thatL(λ,b) intersectsA in two points. Sinceλ andb are two points
of X \A we haveL(λ,b)∩X contains at least four points, a contradiction. See
Fig. 2.

(2) a1 < x1 < b1. The point of intersection of the linesL(a, q) andL(b,p), sayα, is
between thex-axisL(p,q) andm. Let m′ be a line strictly betweenm andα, and
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Fig. 3.

parallel tom. Then by Lemma 4.2 the linem′ intersectsA in at most two points
and hence there is a pointβ in m′ ∩ (X \ A). We note that the sides ofL(p,b) and
L(q, a) that containx coverm′. See Fig. 3.
By symmetry we may assume thatβ andx are on the same side of, say,L(p,b).
ThenL(b,β) separates bothp andq from x so |L(b,β)∩X| � 4, a contradiction.

By (1) and (2), the fact thatX contains an arc leads to a contradiction. We conclude that a
three-point set contains no arcs.✷
Theorem 4.4. No three-point set contains nontrivial continua.

Proof. Let C be a nontrivial continuum that is contained inX, a three-point set. It is
obvious thatC is a rim-finite continuum and so by [14, Lemma 1] it is arcwise connected.
By Lemma 4.3,C cannot be contained inX sinceX contains no arcs. Hence the setX

contains no continuum.✷
We now come to the main result in this section.

Theorem 4.5. A three-point set cannot be an Fσ -set in the plane.

Proof. If we apply Proposition 3.2 forn = 3 and Lemma 4.3 we are done.✷
It will be shown in the next section that there arek-point sets that contain arcs for every

k � 4. So the method used here to show that three-point sets cannot beFσ -sets does not
work for k > 3. As was mentioned in the introduction, it is easy to give an example of a
closed setF in R

2 that intersects every line inℵ0 points.

5. Extending and splitting n-point sets

We now present results on extending and splittingn-point sets. Our first result is very
simple.
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Theorem 5.1. No n-point set is contained in an (n+ 1)-point set.

Proof. LetX be ann-point set,Y an(n+ 1)-point set, and supposeX ⊂ Y . ThenY \X is
a “one-point set” which clearly does not exist.

The following result is more interesting.

Theorem 5.2. For each n � 2, for each k � n+2, and for each partial n-point set X there
exists a k-point set Y such that X ⊂ Y .

Proof. Let X be a partialn-point set withn � 2 and letk � n + 2. Let {�α: α < c}
enumerate all lines in the plane. We shall construct by transfinite induction a nondecreasing
sequence{Eα : α < c} of subsets ofR2 \X with induction hypotheses:

(1) |Eα| < |α| + ℵ0,
(2) X ∪Eα is a partialk-point set,
(3) |(X ∪ Eα+1)∩ �α| = k.

PutE0 = ∅ and if λ � c is a limit ordinal thenEλ = ⋃
α<λ Eα . Observe that for limits (2)

is trivially satisfied because the sequence ofEα ’s is nondecreasing. Assume thatEα has
been constructed and consider the line�α .

Definei = |(X ∪Eα)∩ �α| and note that 0� i � k. Put

L= {
L(a, b): a, b ∈ Eα,a �= b

} \ {�α}.
Note that∣∣∣

(
X ∪Eα ∪

⋃
L

)
∩ �α

∣∣∣ � k + |Eα|2 � |α| + ℵ0 < c,

and hence we may selectk pointsx1, . . . , xk from

�α \
(
X ∪Eα ∪

⋃
L

)
.

We defineEα+1 = Eα ∪ {x1, . . . , xk−i}.
It is obvious thatEα+1 satisfies hypotheses (1) and (3). We verify (2): Assume that some

line � intersectsX∪Eα+1 in at leastk + 1 points. Then�α �= � so|�α ∩ �| � 1 and hence�
contains at most one of thexj ’s. So,|(X ∪Eα) ∩ �| � k. Sincek � n+ 2 and|�∩X| � n

we have|�∩Eα| � 2. So� ∈L and hence� contains noxi . So
∣∣(X ∪Eα+1)∩ �

∣∣ = ∣∣(X ∪Eα)∩ �
∣∣ � k,

which contradicts our assumption.
Now if we letY = X ∪Ec we are done. ✷
Observe that a two-dimensional subset of the plane has nonempty interior by [5,

Theorem 1.8.11] and so it cannot be ann-point set. Ann-point set is therefore either zero-
or one-dimensional. (This also follows from the trivial observation that ann-point set is
rim-finite.) As we stated in the introduction, two-point sets are zero-dimensional and we
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Fig. 4.

do not know whether three-point sets share this property. To our surprise, four-point sets
can be one-dimensional, as the following result shows.

Corollary 5.3. There exists for every k � 4 a k-point set that contains a circle (and hence
it is one-dimensional).

Proof. A circle is a partial two-point set. Now apply Theorem 5.2.✷
Theorem 5.2 gives us many examples ofk-point sets that are unions ofn-point sets

for n < k. This observation leads immediately to the question whether everyk-point set
(k � 4) can be “split” in this way. This question is answered in the negative in Dijkstra [3]
where a four-point set is constructed that does not contain any two-point sets. Here we
present a more general counterexample. We first need a technical lemma.

Lemma 5.4. Given an n � 4, distinct points p and q in the plane, and a partial n-point
set X with p,q ∈ X and |X| < c, there exists a finite planar set Y such that X ∪ Y is a
partial n-point set and for every partition (A,B) of X ∪ Y such that for some k the set A
is a partial k-point set and B is a partial (n− k)-point set, we have that both p and q are
in the same partition element.

Proof. Since|X| < c we can find distinct lines�1, . . . , �n−1 that all containp and intersect
no other point ofX. Consider the set

Z =
⋃{

�i ∩L(a, b): i � n− 1, a, b ∈ X, anda �= b
}
.

Note that|Z| � (n− 1)|X|2 < c so we can find distinct linesm1, . . . ,mn−1 that all contain
q and contain no point ofZ. In addition, we may assume that none of themi ’s is parallel
to any of the�j ’s. Let Y consist of the(n − 1)2 points of intersection of the�j ’s with the
mi ’s. Note thatY andL(p,q) are disjoint and see Fig. 4.
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In order to show thatX ∪ Y is a partialn-point set letξ be a line that intersectsX ∪ Y

in at leastn + 1 points. If|ξ ∩X| � 2 then�i ∩ ξ ⊂ Z for eachi and henceξ ∩ Y = ∅. So
then we have|ξ ∩ X| � n + 1, a contradiction. We conclude that|ξ ∩ X| � 1 and hence
|ξ ∩Y | � n. SinceY is contained in the set

⋃n−1
i=1 �i we have with the pigeonhole principle

thatξ has two points in common with some�i and henceξ = �i . But �i contains precisely
n points ofX ∪ Y : p ∈ X and the intersections with then− 1 linesmj .

Now let (A,B) be a partition ofX ∪ Y such thatA is a partialk-point set andB is a
partial(n − k)-point set. Assume that this partition separatesp from q . By symmetry we
may assume thatp ∈ A andq ∈ B. Note that everymj intersectsX ∪ Y in preciselyn
points so preciselyk of these points must be inA. Sinceq ∈ B we have

mj ∩ A ⊂ Y and |A∩ Y | =
n−1∑
j=1

|mj ∩A| = (n− 1)k.

These(n − 1)k points are distributed overn − 1 �i ’s so by the pigeonhole principle some
�i contains at leastk points ofA ∩ Y . Sincep ∈ A we have that�i contains at leastk + 1
points ofA, a contradiction. ✷

This lemma allows us to construct examples of ‘peculiar’n-point sets.

Theorem 5.5. For each n � 4 there exists an n-point set that fails to contain a k-point set
for any k < n.

Proof. Let X1 consist of the points 1,2, . . . , n on thex-axis. Use Lemma 5.4 to find a
Y1 for the points(1,0) and(2,0) in X1 and putX2 = X1 ∪ Y1. We proceed inductively
to find aYi−1 for (i − 1,0) and (i,0) in Xi−1. PutXi = Xi−1 ∪ Yi−1. We consider the
finite partialn-point setXn. It is implicit in Mazurkiewicz’ proof of the existence of two-
point sets that every partialn-point set with cardinality less thanc is extendable to an
n-point set. LetX be such an extension ofXn. Let A be a subset ofX such thatA is a
k-point set withk < n. It is obvious thatB = X \A is then an(n − k)-point set and hence
2 � k � n − 2. Let 1� i � n − 1 and note thatA′ = A∩Xi+1 andB ′ = B ∩Xi+1 form a
partition ofXi+1 = Xi ∪Yi into a partialk-point set respectively a partial(n−k)-point set.
Consequently, both(i,0) and(i + 1,0) belong to the same partition element. Since this is
true for everyi we haveX1 ⊂ A or X1 ⊂ B, a contradiction. ✷

6. Strong three-point sets

As we said before, we do not know whether three-point sets are zero-dimensional. In
this section we introduce the so-calledstrong three-point sets which turn out to be zero-
dimensional.

If a, b, andc are three distinct points inR2, then the uniquely determined circle or line
that contains{a, b, c} is denoted byC(a, b, c). A setX ⊂ R

2 is called astrong three-point
set if it meets each line and each circle in exactly three points. Every strong three-point set
is obviously a three-point set.
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The one-point compactification of the plane is the two-sphereS2. Every line in the plane
corresponds to a circle inS2. So a strong three-point set is a set which meets every circle
in S2 in precisely three points. So strong three-point sets are a natural generalization of
two-point sets, more so than ordinary three-point sets.

The following result follows from a theorem of Bagemihl [1]. For completeness sake we
include a direct proof.

Theorem 6.1. There exists a strong three-point set.

Proof. Let the set of all circles and lines ofR
2 be enumerated by

C = {Cα: α < c}.
We shall construct by transfinite induction a nondecreasing sequence(Eα)α�c of subsets
of R2 with induction hypotheses:

(1) |Eα| � |α| + ℵ0,
(2) |Eα ∩C| � 3, for eachC ∈ C,
(3) |Cα ∩Eα+1| = 3.

PutE0 = ∅ and if λ � c is a limit ordinal thenEλ = ⋃
α<λ Eα . Observe that for limits (2)

is automatically satisfied since the sequence ofEα ’s is nondecreasing. Letα < c be a fixed
ordinal and considerEα andCα . To defineEα+1, we will find three appropriate pointsy1,
y2, andy3 in Cα that can be added toEα without violating the partial three-point property.

(a) LetEα(0)= Eα , let

L(Eα) = {
C(a, b, c): a, b, c,∈Eα,a �= b, a �= c, b �= c

} \ {Cα},
and let

Hα(0) =
(⋃

L(Eα)∩Cα

)
∪Eα(0).

Since for eachC ∈L(Eα), |C ∩Cα| � 2 we have
∣∣Hα(0)

∣∣ � 2
∣∣L(Eα)

∣∣ + |Eα| � 2|Eα|3 + |Eα| � |α| + ℵ0 < c

we can find a pointy1 in Cα \ Hα(0).
(b) LetEα(1) = Eα ∪{y1} andHα(1) = (

⋃
L(Eα(1))∩Cα)∪Eα(1). As in (a) we find

that|Hα(1)| � |α| + ℵ0 < c and so there is a pointy2 in Cα \ Hα(1).
(c) With the same procedure as under (b), if we defineEα(2) = Eα(1) ∪ {y2} and

Hα(2) = (
⋃

L(Eα(2)) ∩ Cα) ∪ Eα(2), we can find a pointy3 in Cα \ Hα(2) so
let Eα(3) = Eα(2)∪ {y3}.

We now let

Eα+1 = Eα

(|Eα ∩Cα|).
It is obvious thatEα+1 satisfies (1) and (3). To prove (2) assume that there is aC ∈ C with
|Eα+1 ∩C| � 4. Letk = min{i: |Eα(i)∩C| � 4}. Then sinceEα(0) = Eα we havek � 1.
SinceEα(k)\Eα(k−1)= {yk} we haveyk ∈ C and|Eα(k−1)∩C| � 3. This fact implies
thatC ∈ L(Eα(k − 1)) and contradicts the choice ofyk . The induction is complete.

We conclude thatEc is a strong three-point set.✷
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We will now present some properties of strong three-point sets. Using the Mazurkiewicz
technique, it is easy to constructn-point sets which miss a given bounded open ball in the
plane. Hencen-point sets need not be dense. But strong three-point sets are clearly dense.

Theorem 6.2. Any strong three-point set is dense in R2.

Our next aim is to prove that strong three-point sets are zero-dimensional. We need a
technical lemma first.

Lemma 6.3. Let T = {(a, b, c) ∈ (R2)3: a, b, and c are not colinear}. Let M,r :T → R2

be the functions that assign to every (a, b, c) ∈ T the centre respectively the radius of
C(a, b, c). Then M and r are continuous functions.

Proof. Let (a, b, c) ∈ T and letM = M(a,b, c) be the center ofC(a, b, c). It is easily
seen thatM is the unique solution of the linear equations

M · (b − a) = ‖b‖2 − ‖a‖2

2
and M · (b − c) = ‖b‖2 − ‖c‖2

2
,

where we used the dot product and length for vectors in the plane. Note that the two
components ofM are rational functions of the components ofa, b, and c, and hence
continuous. The functionr is the distance betweenM anda and so also continuous.✷
Theorem 6.4. Every strong three-point set is zero-dimensional.

Proof. Let X be a strong three point set. Letz be an arbitrary point ofX. Without loss
of generality we may assume thatz is the origin. Let�z be thex-axis. Since�z ∩ X

contains only two points other thanz we may select anε > 0, arbitrarily small, such that
([−2ε,2ε] × {0}) ∩ X = {z}. Consider the circlex2 + y2 = ε2 which we may represent
asC((ε,0), (0, ε), (−ε,0))= C((ε,0), (0,−ε), (−ε,0)). By Theorem 6.2 and Lemma 6.3
there exista, b, andc in R × (0,∞) close enough to(ε,0), (0, ε), and(−ε,0) such that
the radius ofC(a, b, c) is between 3ε/4 and 5ε/4 and the center ofC(a, b, c) is within ε/4
of z.

In the same way we can find pointsa′, b′, and c′ in R × (−∞,0) close enough to
(ε,0), (0,−ε), and(−ε,0) such that the radius ofC(a′, b′, c′) is between 3ε/4 and 5ε/4
and the center ofC(a′, b′, c′) is within ε/4 of z. Observe thatC(a, b, c) andC(a′, b′, c′)
are in {u: ‖u‖ < 2ε} and thatz is on the inside of bothC(a, b, c) andC(a′, b′, c′). Let
C(a, b, c)∩ (R × {0})= {(p,0), (q,0)} with p < 0< q and letC(a′, b′, c′)∩ (R × {0}) =
{(s,0), (t,0)} with s < 0< t . Let nowS be the union of the interval fromp to s, the interval
from q to t (on thex-axis),C(a, b, c)∩ (R × (−∞,0)) andC(a′, b′, c′) ∩ (R × (0,∞)),
see Fig. 5.

It is easily seen thatS separatesz from {u: ‖u‖ � 2ε} in R2 and thatS andX are
disjoint. Sinceε was chosen arbitrarily small we conclude that for each open setO that
containsx there exists an open-and-closed set inX that is contained inO . We conclude
thatX is zero-dimensional. ✷
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Fig. 5.

Note Added in Proof. Bouhjar, Dykstra and Mauldin recently showed that non-point set
(n � 2) in the plane isFσ . This generalizes Theorem 4.5 in the present paper.
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