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Abstract

Eilenberg proved that if a compact spaceX admits a zero-dimensional mapf :X→ Y , where
Y is m-dimensional, then there exists a maph :X→ Im+1 such thatf × h :X→ Y × Im+1 is an
embedding. In this paper we prove generalizations of this result forσ -compact subsets of arbitrary
spaces. An example of a compact spaceX and of a zero-dimensionalσ -compact subsetA ⊂ X is
given such that for any continuous functionf :X→ R which is one-to-one on the setA and any
Gδ-subsetB of X with B ⊃ A the restrictionf |B :B→ R has infinite fibers. This example is used
to demonstrate that our results are sharp. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In 1935 Eilenberg [3] proved thatif a compact metrizable spaceX admits a zero-
dimensional mapf :X→ Y , whereY is m-dimensional and metrizable, then there exists
a maph :X→ Im+1 such that

f × h :X→ Y × Im+1
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is an embedding.(HereI denotes the unit interval[0,1].) This theorem was generalized
later for perfect mappings of general metrizable spacesX andY by Pasynkov [11]. The
arguments of Eilenberg and Pasynkov used different ideas but they were both based on the
following classical result due to Urysohn [13]:everyn-dimensional metrizable space is the
union ofn+1 zero-dimensional subspaces. In [1] an infinite version of Urysohn’s Theorem
was proved that allows us here to obtain a stronger version of the Eilenberg theorem (we
restrict our considerations to compact spaces here although the Pasynkov theorem can
be generalized in the same manner). In addition, we present counterexamples to various
natural problems that arise in our investigations and that deal with possible generalizations
of Lavrentieff’s Theorem on extending homeomorphisms overGδ-sets.

All spaces under discussion are separable and metrizable, and all maps are continuous.

2. Function spaces

We begin with some simple observations on function spaces that will be used later in
this paper.

For spacesX andY , whereX is compact, we letC(X,Y ) denote the collection of all
maps fromX to Y . We endow it with the topology of uniform convergence. If% is an
admissible metric forY then

%̂(f1, f2)=max
x∈X

{
%(f1(x), f2(x))

}
is an admissible metric forC(X,Y ). It is well known and easy to prove that%̂ is complete
if and only if % is complete.

For a closed subsetA⊆X, we letφA :C(X,Y )→ C(A,Y ) be the restriction map. If no
confusion can arise we sometimes suppress the indexA in φA.

Lemma 1. LetX andY be spaces, whereX is compact. In addition, letA⊆X be closed.
(a) If H is aGδ-set inC(A,Y ), thenφ−1(H) is aGδ-set inC(X,Y ).
(b) If Y ∈ ANR andH is dense inC(A,Y ), thenφ−1(H) is dense inC(X,Y ).

Proof. For (a) it suffices to observe thatφ is continuous.
For (b), letf :X→ Y be a map andε > 0. LetU be the cover ofY consisting of all

open sets of diameter less thanε. SinceH is dense inC(A,Y ), A is compact, andY is an
ANR, there is an elementh ∈H such thatf |A andh areU -homotopic. An application of
the controlled Borsuk Homotopy Theorem 5.1.3 in [10] shows thath can be extended to a
mapĥ :X→ Y such that̂h andf areU -close. As a consequence,f is ε-close to a function
whose restriction toA belongs toH. 2

If we endow a product of two spaces with its max-metric, then the next assertion holds.

Lemma 2. For a compactumX and metric spaces(Y1, %1) and (Y2, %2), the space
C(X,Y1× Y2) is isometric to the productC(X,Y1)× C(X,Y2).
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3. Regularly branched maps

We shall follow the terminology of the article [2]. For everyk > 0 and every map
f :X→ Z let

Bk(f )=
{
z ∈Z: |f−1(z)|> k}.

Let X andZ be finite-dimensional. Thenf :X→ Z is calledregularly branchedif for
everyk > 0,

dimBk(f )6 k · dimX− (k − 1) · dimZ.

A regularly branched map is very special. We will demonstrate this by the following
(trivial) observations. Iff :X → Z is regularly branched then it does not increase
dimension. This follows easily becauseB1(f ) = f (X) and so dimf (X) 6 dimX.
Secondly, if dimX < 1

2 dimZ andf :X→ Z is regularly branched thenf is one-to-one.
Also, if dimX 6m− 1 then every regularly branched mapf :X→ Z, where dimZ =m
is6m-to-one because

dimBm+1(f )6 (m+ 1)(m− 1)−m2=−1

and soBm+1(f )= ∅. We remark finally that if dimX > dimZ then every mapf :X→Z

is regularly branched. For letk > 0 be arbitrary. Then

k · dimX− (k − 1) · dimZ= k · (dimX− dimZ)+ dimZ

> dimZ > dimBk(f ).

We therefore change the definition of a regularly branched map in this special case. Indeed,
if m = dimZ and dimX > dimZ then a mapf :X→ Z is called regularly branched
provided that

dimf = dimX−m,
where dimf =max{dimf−1(y): y ∈ Z}.

We now state the following result due to Hurewicz [6], [8, §45, Statement IX], which is
the basis for our considerations.

Hurewicz’s Theorem. Letm > 1 and letX be a finite-dimensional compact space. The
setH(X,Rm) of all regularly branched maps fromX into Rm is a denseGδ-set in the
spaceC(X,Rm) of all mapsf :X→Rm.

Observe that this theorem implies that ifX is compact andm-dimensional then there are
many zero-dimensional maps fromX intoRm.

Our first result in this section is the following “infinite” Hurewicz Theorem. IfN ⊆ ω
thenpN : Iω→ IN denotes the projection.

Theorem 1. LetA= {Aj } be a countable family of closed finite-dimensional subspaces of
a compactumX. LetH be the set of all mapsf :X→ Iω with the following property: for
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every finiteN ⊂ ω and everyA ∈A the map(pN ◦ f )|A :A→ IN is regularly branched.
ThenH is a denseGδ-subset ofC(X, Iω).

Proof. For a finite setN ⊂ ω, let

Hj ;N ⊂ C(X, Iω)
be the set of all mapsf :X→ Iω such thatpN ◦ f |Aj :Aj → IN is regularly branched.
SinceC(X, Iω) is homeomorphic to the productC(X, IN)× C(X, Iω\N) (Lemma 2), the
setHj ;N is a denseGδ-subset ofC(X, Iω) in view of Hurewicz’s Theorem and Lemma 1.
But

H=
⋂
j,N

Hj ;N.

So it remains to apply the Baire Theorem to the complete spaceC(X, Iω). 2
Corollary 1. For every separable metrizable spaceX of finite dimensionn, there exist
family {h1, h2, . . .} of maps fromX to I such that for all pairwise distinctj1, . . . , j2n+1 in
N the map

hj1 × · · · × hj2n+1 :X→ I2n+1

is an embedding.

Proof. According to a result of Hurewicz, [4, Theorem 1.7.2], the spaceX has ann-
dimensional compactificationcX. An application of Theorem 1 finishes the proof.2
Corollary 2. For everyn-dimensionalσ -compact subsetB ⊆ X of a compact spaceX
there exits a maph :X→ I2n+1 which is one-to-one onB. Moreover, the set of all these
mapsh is a denseGδ-subset ofC(X, I2n+1).

Proof. Let B = ⋃∞i=1Bi , where eachBi is compact. We may assume without loss of
generality thatBi ⊆ Bi+1. By the proof of Theorem 1 the set of all mapsh :X→ I2n+1

which are regularly branched on eachBi is a denseGδ-subset ofC(X, I2n+1). Since
dimBi < 1

2(2n+ 1), it follows every suchh has the property thath|Bi is one-to-one for
everyi. This is clearly as required.2

In view of the classical Nöbeling–Pontryagin Theorem that everyn-dimensional space
can be embedded inI2n+1, the question naturally arises whether Corollary 2 can be
improved to the effect that the functionsh in Corollary 2 restrict to embeddings onB.
If h is such thath|B is an embedding then the Lavrentieff Theorem below implies that
h|S is an embedding for someGδ-subsetS ⊆ X which containsB. So the non-existence
of such aGδ-set has as trivial corollary that the maph is not an embedding. This leads
us to another natural question. If the maph is such as in Corollary 2, does there exist a
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Gδ-subsetS of X which containsB and on whichh is also one-to-one? Both our questions
will be answered in the negative in the remaining part of this section.

Lavrentieff’s Theorem. LetX0 ⊂ X andY0 ⊂ Y be subsets of complete metric spaces,
and letf :X0→ Y0 be a homeomorphism. Thenf can be extended to a homeomorphism
f̄ :X0→ Y 0 betweenGδ-subsets ofX andY .

Let us recall that a spaceX is called aBaire space, if for each sequenceUn of open
dense inX subsets its intersection

⋂
n Un is dense inX. Clearly, a space is not Baire if it

has a non-empty open subset of the first category.

Levi’s Theorem [9]. Letf be a map from a complete spaceX onto a Baire spaceY . Then
there exists aGδ-setX0 ⊂ X such thatf |X0 is a homeomorphism andf (X0) is a dense
Gδ-subset ofY .

By an intervalwe mean a non-degenerate subinterval ofR.

Theorem 2 (Example 1).There exist a one-dimensional compactumX and a zero-
dimensionalFσ -setA⊂X, such that for an arbitrary mapf :X→R and aGδ-setB ⊂X
containingA, the mapf |B is not one-to-one. Moreover, the mapf |B has an infinite
preimage.

Proof. ForX we take the productC × I , whereC is the familiar Cantor subset ofI . Let
A= C ×Q, whereQ is the set of all rationals inI . Striving for a contradiction. assume
that there are aGδ-setB ⊃ A and a mapf :X→R such thatf |B is one-to-one. Forc ∈ C,
let

Ic = {c} × I, Bc = B ∩ Ic, fc = f |Ic, Kc = fc(Ic)= f (Ic).
Clearly,Bc is a denseGδ-subset ofIc . Sincef |Bc is one-to-one, we have

Claim 1. fc(J ) is an interval for every intervalJ ⊆ Ic .

Claim 2. LetF be a closed subset ofKc. ThendimF = dimf−1
c (F ).

Proof. If dim F = 0 then dimf−1
c (F ) = 0 according to Claim 1. Now assume thatF

is an interval, butf−1
c (F ) is zero-dimensional. LetL be the perfect kernel off−1

c (F ).
In other words,L consists of all condensation points off−1

c (F ). ThenL is compact
andf−1

c (F ) \ L is countable. Hencef (L) = F , becauseF is connected. The setL is
clearly a nowhere dense subset ofIc . There consequently is an interval(a, b)⊂ Ic such
that (a, b)∩ L= ∅ while moreover eitherfc(a) or fc(b) is an interior point ofF . Hence
by Claim 1,F ∩ fc((a, b)) is an uncountable set. Butf−1

c (F ) ∩ (a, b)⊆ f−1
c (F ) \L is a

countable set. We arrived at a contradiction.2
Claim 3. The setDc = fc(Bc) is a Baire space.
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Proof. Assume that there is a subintervalF ⊆ Kc such thatDc ∩ F ⊆ ⋃G, whereG
is a countable family nowhere dense subsets ofKc . By Claim 2 there is an interval
J ⊆ f−1

c (F ). Then

Bc ∩ J ⊆
⋃
G∈G

f−1
c (G).

By another application of Claim 2 it follows that the setsf−1
c (G) are nowhere dense inIc .

SoBc∩J is a first category subset ofJ . But on the other hand,Bc∩J is a denseGδ-subset
of J . This violates the Baire Category Theorem.2

Since a family of pairwise disjoint intervals inR is countable, there are two intervalsKc1
andKc2 with c1 6= c2 such thatK =Kc1 ∩Kc2 is an interval. LetDi =K ∩ fci (Bci ), i =
1,2. In view of Claim 3 the setsDi are Baire spaces. By Levi’s Theorem,Di consequently
contains a dense absoluteGδ-subset (the role of the mapf from Levi’s Theorem is played
by the mapfci |Bci ∩ f−1

ci
(K)). This is a contradiction since by assumptionD1 ∩D2= ∅.

So, we proved thatf |B is not a one-to-one map using only that an intersection of two
sets of typeKc is an interval. But, in fact, there is a setC0 ⊆ C of the cardinalityc such
thatL =⋂{Kc: c ∈ C0} is an interval. Repeating the previous argument we can find a
denseGδ-subsetD of L such that(f |B)−1(t) is infinite for anyt ∈D (D is contained in
the intersection of a countably infinite collectionfc(Bc)’s). 2
Remark 1. It is easy to see that assuming(MA +¬CH) we can findt ∈ I such that
(f |B)−1(t) is uncountable and being an absoluteGδ-set has cardinalityc. The next
example gives us a similar result with no additional set-theoretic assumption.

Theorem 3 (Example 2).There exist a setX ⊂ I2 homeomorphic to the rationalsQ and
a one-to-one mapf :X→ Y onto the setY of all rationals points ofI with the following
property:

If Z is aGδ-subset ofI2 containingX such that there is an extension̄f :Z→ I of
f then there exists a pointt ∈ I such that|f̄−1(t)| = c.

Proof. Letp : I2→ I be the projection onto the first factor. There exists a countable dense
setX ⊂ I2 such thatp|X :X→ Y is a one-to-one correspondence. We claim thatf = p|X
is the desired map. Observe thatX is homeomorphic toQ being a countable space with
no isolated points. Let̄f :Z→ I be an extension off over aGδ-setZ ⊆ I2. Then clearly
f̄ = p|Z.

LetW = I2 \Z and letJ ⊆ I be some non-empty open interval.

Claim 1. The setT J = {t ∈ I : {t} × J ⊆W } is of the first category inI .

Proof. There exists a countable familyF of closed subsets ofI2 such thatW =⋃F . Let
E be the collection of all closed subintervals ofJ with rational endpoints. Ift ∈ T J then
{t} × J ⊂⋃F and hence the Baire Category Theorem implies that for someE ∈ E and
for someF ∈F we have{t} ×E ⊂ F .
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ForE ∈ E andF ∈F put

A(E,F)= {t ∈ I : {t} ×E ⊂ F}.
SinceE and F are closed, it is clear thatA(E,F) is closed. In addition, ifA(E,F)
contains an interval thenF contains a product of two intervals, which is a contradiction
since dimF 6 1. SoA =⋃{A(E,F): E ∈ E,F ∈ F} is of the first category inI . But
sinceT J ⊂A, the same applies toT J . 2

LetJ be the family of all non-empty open intervals inI with rational endpoints.

Claim 2. The setT =⋃{T J : J ∈ J } is of the first category inI .

Proof. This is clear from Claim 1. 2
Now let t ∈ I \ T . ThenZ ∩ ({t} × I) is a denseGδ-set in{t} × I . It consequently has

cardinalityc. ButZ ∩ ({t} × I)= f̄−1(t), and so we are done.2
Corollary 3. There exist a zero-dimensionalσ -compact subsetA ⊂ C × I and a dense
Gδ-subsetH⊂ C(C× I, I) such that for eachf ∈H the mapf |A :A→ I is a one-to-one
map. But there does not exist a mapg :C × I→ I such thatg|A is an embedding.

Proof. We letA be the set found in Theorem 2. The first part of the assertion follows
from Corollary 2 (forn = 0). The second part follows from Theorem 2 and Lavrentieff’s
Theorem. 2
Corollary 4. There exists a one-to-one mapf :X→ I of a countable subsetX ⊂ I2 such
that any extension̄f :P → I of f over a Polish spaceP containingX has a point whose
preimage has cardinalityc.

Proof. Let X and f be such as in Theorem 3. Assume that there exist an embedding
i :X → P into some Polish spaceP and a mapf̄ :P → I such thatf̄ ◦ i = f . By
Lavrentieff’s Theorem there exist aGδ-set Z ⊂ I2 containingX and an embedding
ī :Z→ P extendingi. Thenf̄ ◦ ī is an extension off over aGδ-subset ofI2 and therefore
has a fibre of cardinalityc. Since ī is an embedding, this implies that̄f has a fibre of
cardinalityc as well. 2
Remark 2. Both setsA from Theorem 2 andX from Theorem 3 are zero-dimensional. So
they admit many embeddings intoI . But none of those can be extended overC × I and
I2, respectively.

Let us remark that Lavrentieff’s Theorem not only works for homeomorphisms but also
for continuous maps. That is, any continuous map into a Polish space can be extended over
someGδ-set.
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4. A strong version of the Eilenberg Theorem

In this section we will prove our announced strong version of the Eilenberg Theorem.

Theorem 4. For every zero-dimensional mapf :X→ Y from aσ -compact spaceX into
a spaceY with dimB2(f )6m<∞, there exists a family{h1, h2, . . .} of maps fromX to
I such that for all pairwise distinctj1, . . . , jm+1 in N the map

f × hj1 × · · · × hjm+1 :X→ Y × Im+1

is one-to-one.

The proof of this result is based on the following lemma.

Lemma 3. Let f :X→ Y be a map from aσ -compact spaceX into a spaceY , and let
B ⊆ Y be a zero-dimensionalFσ -set withdimf−1(y)6 0 for anyy ∈ B. Then there exist
a maph :X→ I and aGδ-subsetA ofY withA⊇ B such that the mapf ×h :X→ Y × I
is one-to-one onf−1(A).

Proof. LetX =⋃∞i=1Xi , withXi compact for everyi. The mapf |Xi :Xi→ Y is closed.
Hence, the set

f−1(B) ∩Xi =
(
f |Xi

)−1
(B)

is σ -compact being anFσ -subset ofXi , and zero-dimensional by Hurewicz’s Theorem [4,
Theorem 1.12.4] on dimension-lowering mappings. Then in view of the countable sum
theorem [4, Theorem 1.3.1], the setf−1(B) is also zero-dimensional. By Corollary 2 there
exists a maph :X→ I which is one-to-one onf−1(B).

The setB2(f ×h)⊆ Y × I is anFσ -set in(f ×h)(X) [4, Lemma 4.3.7]. Consequently,
B2(f × h) is σ -compact because(f × h)(X) is. Sinceh|f−1(B) is a one-to-one map, we
have

p1
(
B2(f × h)

)∩B = ∅,
wherep1 :Y ×I → Y is the projection. Then the setA= Y \p1(B2(f ×h)) is the required
Gδ-set. 2

We are now in a position to present the proof of Theorem 4.

Proof of Theorem 4. In [1] it was shown that there exists a familyA = {A1,A2, . . .} of
zero-dimensionalGδ-subsets ofB2(f ) such that for everyF ⊂N of cardinalitym+ 1 we
haveB2(f )=⋃j∈F Aj .

By induction onj we shall construct a maphj :X→ I . For every subsetF ⊂ N \ {1} of
cardinalitym put

H(F)= B2(f ) \
⋃
j∈F

Aj .
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SinceB2(f ) is anFσ -subset off (X) [4, Lemma 4.3.7], it follows thatH(F) isσ -compact,
and is clearly contained inA1. The set

B =
⋃{

H(F): F ⊂N, |F | =m}
consequently is a zero-dimensionalσ -compact subset ofA1. So by Lemma 3 there exists a
maph1 :X→ I and aGδ-setA⊇ B such that the mapf × h1 :X→ Y × I is one-to-one
on the setf−1(A).

Let A′1 = A1 ∩ A. It is clear that the collectionA′ = {A′1,A2,A3, . . .} has the same
property as the original collectionA. So now we replaceA byA′ and consider the setA2 in
the second step of the construction. By a similar argument we find a maph2 :X→ I which
is one-to-one onf−1(A′2), whereA′2⊂A2 is aGδ-set such thatA′′ = {A′1,A′2,A3,A4, . . .}
still has the same property as the original collectionA. Etc.

We claim that the mapshj are as required. For letj1, . . . , jm+1 be pairwise distinct
elements ofN. Take arbitrary distinct elementsx0, x1 ∈ X. If f (x0) 6= f (x1) then there
is nothing to prove. So assume thatf (x0) = f (x1). SinceB2(f ) =⋃m+1

i=1 A
′
ji

, for some

i 6m+1 we have thatf (x0)= f (x1) ∈A′ji . But then sincehji is one-to-one onf−1(A′ji ),
it follows thathji (x0) 6= hji (x1), which is clearly as required.2

We let∆N denote an arbitraryN -dimensional simplex. Itsn-dimensional skeleton will
be denoted by∆Nn .

Corollary 5. Let n 6 m 6 2n + 1 and letf :∆2n+2
n → Im be a zero-dimensional map.

Then

dimB2(f )> 2n−m.

Proof. Assume dimB2(f )6 2n−m−1 for some zero-dimensional mapf :∆2n+2
n → Im.

Then by Theorem 4, there exists an embeddingf ×h :∆2n+2
n → Im+2n−m−1+1= I2n. But

in view of the classical theorem by van Kampen–Flores [7,5], the polyhedron∆2n+2
n is not

embeddable inR2n. 2
Let us note that forn 6 m 6 2n + 1 any regularly branched mapf :∆2n+2

n → Im is
zero-dimensional and so the equality dimB2(f )= 2n−m holds.

5. Further remarks

Maps f with Bk+1(f ) = ∅, i.e., maps of multiplicity6 k, are of special interest.
Suppose thatX is ann-dimensional compactum and that we are interested in maps from
X intoRm. If there is an integerk such thatn+ 16 (m− n)k then we are in an especially
nice situation. First observe thatn6m. So if f :X→Rm is regularly branched then

dimBk+1(f )6 (k + 1)n− km6−1,
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i.e.,f is6 k-to-one. So Hurewicz’s Theorem implies the following

Hurewicz’s Corollary. If n, m, andk are integers such that

n+ 16 (m− n)k
then for anyn-dimensional compactumX the set{

f ∈ C(X,Rm): f has multiplicity at mostk
}

is a denseGδ-subset ofC(X,Rm).

This corollary suggests the rather vague question of whether it is possible to “transform”
a given map into a map with small fibres. What we mean is described in the hypotheses
below of which we remark that so far we were unable to prove nor to disprove them.

Hypothesis 1. For everyq-dimensional mapf :X→ Y from a compact spaceX intom-
dimensional compact spaceY there exists a maph :X→ Im+2q such thatf × h :X→
Y × Im+2q is a 2–1 map.

Hypothesis 2. For everyq-dimensional mapf :X→ Y from a compact spaceX intom-
dimensional compact spaceY there exists a maph :X→ Im+q+1 such thatf × h :X→
Y × Im+q+1 is a(q + 1)–1 map.

In the remaining part of this section we will describe a natural approach to a possible
proof of both hypotheses, and conclude that it leads nowhere. To begin with, let us first
prove the following result.

Theorem 5. LetB be aσ -compact subset of a spaceX, and letf :X→ Y be a map into a
spaceY such thatdimf (B)6m<∞ anddimf−1(y)∩B 6 0 for all pointsy ∈ Y . Then
there exists a maph :X→ Im+1 such that the mapf × h :X→ Y × Im+1 is one-to-one
onB.

Proof. Let B =⋃∞i=1Bi , where theBi are compact. Thenf |Bi is zero-dimensional and
closed. Hence, by Hurewicz’s Theorem [4, Theorem 1.12.4],

dimBi 6 dimf (Bi)+ dimf |Bi 6m.
So dimB 6m in view of the countable sum theorem. We will now prove our assertion by
induction on dimf (B).

If dim f (B)= 0, then it suffices to apply Corollary 2 (forn= 0).
So let dimf (B) = m > 1 and assume that we have what we want form − 1. By

Urysohn’s Decomposition Theorem (see the proof of [4, Theorem 1.5.7]) there is an
Fσ -subsetY0 ⊂ f (B) ⊂ Y such that dimY0 = m − 1 and dimf (B) \ Y0 = 0. The set
B0 = B ∩ f−1(Y0) is anFσ -set. According to our inductive hypothesis there is a map
h0 :X→ Idimf (B0)+1 ↪→ Im such thatf × h0 :X→ Y × Im is one-to-one onB0.
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The setB2((f × h0)|B) is anFσ -subset of aσ -compact space(f × h0)(B). Hence,
B1= (f × h0)

−1(B2((f × h0)|B)) is aσ -compact subset ofB. By the choice ofh0,

p1
(
B2((f × h0)|B)

)∩ Y0= ∅,
herep1 :Y × Im→ Y is the projection, i.e.,

p1
(
B2((f × h0)|B)

)= f (B1)⊆ f (B) \ Y0.

The last inclusion means that dimf (B1) 6 0. Hence by Corollary 2 there is a map
h1 :X→ I such that the mapf ×h1 is one-to-one onB1. Thus,h= h0×h1 :X→ Im× I
is the required map.2
Remark 3. The formulation and the proof of Theorem 5 are similar to those of Theorem 4
and Lemma 3. But it is rather difficult to find a general assertion of which these results are
all special cases. So we have preferred to present them separately.

We now quote an interesting result which suggests an approach to a proof of our
hypotheses.

Toruńczyk’s Theorem [12]. Let f :X→ Y be a q-dimensional map from a compact
spaceX into a finite-dimensional compact spaceY , and let06 l 6 q − 1. Then there
is aσ -compact setCl ⊂X such thatdimCl 6 l anddimf |X \Cl 6 q − l − 1.

So let us now try to prove our hypotheses and see where we get into troubles. Indeed, let
X andY be compact spaces with dimY = m and letf :X→ Y beq-dimensional. From
Toruńczyk’s Theorem we get aσ -compact setCq−1 ⊂ X such that dimCq−1 6 q − 1
and dimf |X \Cq−16 0. From Tumarkin’s Theorem [4, Theorem 1.5.11] we get aGδ-set
Dq−1⊇ Cq−1 such that dimDq−1= dimCq−16 q − 1. We could apply Theorem 5 to the
setB =X \Dq−1. But then in order to complete the proof we need a version of Hurewicz’s
Theorem (Corollary 2) for the setDq−1 which is notσ -compact. So we run into troubles
here. We could apply Corollary 2 to the setB = Cq−1. But then in order to complete the
proof we need a version of Theorem 5 for the setX \Cq−1 which is notσ -compact. So we
run into troubles here too.

It seems that there are only two possibilities. Either to enlargeCq−1 to an appropriateGδ
or to enlargeX \Dq−1 to an appropriateGδ. But the Examples 1 and 2 show that enlarging
Fσ -sets toGδ-sets may increase the sizes of fibres from 1 to infinite, or from 1 toc. So our
approach indeed leads nowhere.
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