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Abstract

Eilenberg proved that if a compact spakeadmits a zero-dimensional maf:X — Y, where
Y is m-dimensional, then there exists a mapX — I"*1 such thatf x h:X — ¥ x 1"t is an
embedding. In this paper we prove generalizations of this resuttftwmpact subsets of arbitrary
spaces. An example of a compact spacand of a zero-dimensional-compact subset C X is
given such that for any continuous functighX — R which is one-to-one on the sét and any
Gs-subsetB of X with B D A the restrictionf|B :B — R has infinite fibers. This example is used
to demonstrate that our results are shar2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In 1935 Eilenberg [3] proved that a compact metrizable spacE admits a zero-
dimensional magf : X — Y, whereY is m-dimensional and metrizable, then there exists
amaph: X — I"*! such that

fxh:X—Yx["1
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is an embeddingHere I denotes the unit interv40, 1].) This theorem was generalized
later for perfect mappings of general metrizable spatemdY by Pasynkov [11]. The
arguments of Eilenberg and Pasynkov used different ideas but they were both based on the
following classical result due to Urysohn [1&eryn-dimensional metrizable space is the
union ofn + 1 zero-dimensional subspacés [1] an infinite version of Urysohn’s Theorem
was proved that allows us here to obtain a stronger version of the Eilenberg theorem (we
restrict our considerations to compact spaces here although the Pasynkov theorem can
be generalized in the same manner). In addition, we present counterexamples to various
natural problems that arise in our investigations and that deal with possible generalizations
of Lavrentieff's Theorem on extending homeomorphisms avgisets.

All spaces under discussion are separable and metrizable, and all maps are continuous.

2. Function spaces

We begin with some simple observations on function spaces that will be used later in
this paper.

For spacest andY, whereX is compact, we le€ (X, Y) denote the collection of all
maps fromX to Y. We endow it with the topology of uniform convergencepylis an
admissible metric fol’ then

o(f1, f2) = Ecnea}(x{@(fl(x)» f20)}

is an admissible metric faf(X, ). It is well known and easy to prove thatis complete
if and only if ¢ is complete.

For a closed subset C X, we letg4 :C(X,Y) — C(A, Y) be the restriction map. If no
confusion can arise we sometimes suppress the iddaxp, .

Lemma 1. Let X andY be spaces, wher® is compact. In addition, lett C X be closed.
(@) If HisaGs-setinC(A,Y), thenp 1(H)is aGs-setinC(X,Y).
(b) If Y € ANR andH is dense irC(A, Y), theng—1(H) is dense irC(X, Y).

Proof. For (a) it suffices to observe thatis continuous.

For (b), letf: X — Y be a map and > 0. Let!/ be the cover ot consisting of all
open sets of diameter less tharSince is dense irC(A, Y), A is compact, and is an
ANR there is an elemerit € H such thatf|A andhi arel/-homotopic. An application of
the controlled Borsuk Homotopy Theorem 5.1.3 in [10] shows khedn be extended to a
maph: X — Y such that and f arel{-close. As a consequencgjs e-close to a function
whose restriction tol belongs toH. O

If we endow a product of two spaces with its max-metric, then the next assertion holds.

Lemma 2. For a compactumX and metric spacesY1, 01) and (Y2, 02), the space
C(X, Y1 x Y») is isometric to the produat (X, Y1) x C(X, Y2).
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3. Regularly branched maps

We shall follow the terminology of the article [2]. For eveky> 0 and every map
f:X— Zlet

Bi(f)={zeZ If @)=k}

Let X and Z be finite-dimensional. Theif : X — Z is calledregularly branchedf for
everyk > 0,

dimBi(f) <k-dmX — (k—1)-dimZ.

A regularly branched map is very special. We will demonstrate this by the following
(trivial) observations. If f: X — Z is regularly branched then it does not increase
dimension. This follows easily becausg (f) = f(X) and so dimf(X) < dimX.
Secondly, if dimX < %dimz and f: X — Z is regularly branched thefi is one-to-one.
Also, if dimX < m — 1 then every regularly branched mgp X — Z, where dimZ =m

is < m-to-one because

dim By 41(f) < (m+1)(m — 1) —m? = -1

and soBy,,+1(f) = ¥. We remark finally that if dink > dim Z then every mag : X — Z
is regularly branched. For |&t> 0 be arbitrary. Then

k-dmX —(k—1)-dimZ=k-(dimX —dimZ) +dimZ
>dimZ > dimBi(f).

We therefore change the definition of a regularly branched map in this special case. Indeed,
if m =dimZ and dimX > dimZ then a mapf: X — Z is called regularly branched
provided that

dimf =dimX —m,

where dimf = max{dim f~1(y): y € Z}.
We now state the following result due to Hurewicz [6], [8, §45, Statement IX], which is
the basis for our considerations.

Hurewicz’'s Theorem. Letm > 1 and let X be a finite-dimensional compact space. The
setH(X,R™) of all regularly branched maps fronX into R™ is a denseG;-set in the
spaceC (X, R™) of all mapsf: X — R™.

Observe that this theorem implies thakifis compact and:-dimensional then there are
many zero-dimensional maps frakhinto R”.

Our first result in this section is the following “infinite” Hurewicz TheoremMfC w
thenpy : 12 — IV denotes the projection.

Theorem 1. Let. A = {A;} be a countable family of closed finite-dimensional subspaces of
a compactunX. Let’H be the set of all mapg : X — I with the following propertyfor
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every finiteN C w and everyA e A the map(py o f)|A: A — IV is regularly branched.
ThenH is a densed5s-subset of (X, I¢).

Proof. For a finite setV C o, let
Hj.n CC(X,I?)

be the set of all mapg : X — I such thatpy o f|A;:A; — IV is regularly branched.
SinceC(X, I) is homeomorphic to the produ€t X, IV) x C(X, I°\V) (Lemma 2), the
setH;.y is a densérs-subset o (X, 1) in view of Hurewicz's Theorem and Lemma 1.
But

H=(\Hjn-
J.N

So it remains to apply the Baire Theorem to the complete spaxe/?). O

Corollary 1. For every separable metrizable spa&eof finite dimensiom, there exist
family {h1, ko, ...} of maps fromX to I such that for all pairwise distincfy, ..., jo,+1 in
N the map

. o 2n+1
hjy X=X hj, i X—>1

is an embedding.

Proof. According to a result of Hurewicz, [4, Theorem 1.7.2], the sp&clas ann-
dimensional compactificatiarX . An application of Theorem 1 finishes the proofa

Corollary 2. For everyn-dimensional-compact subseB C X of a compact spac&
there exits a magp : X — 12"*1 which is one-to-one o®. Moreover, the set of all these
mapsh is a denses s-subset of (X, 121,

Proof. Let B = Ufil B;, where eachB; is compact. We may assume without loss of
generality thatB; C B;,1. By the proof of Theorem 1 the set of all mapsX — 12*+1
which are regularly branched on eadh is a denseGs-subset ofC(X, 12ty Since
dimB; < %(2}1 + 1), it follows every such: has the property thdt| B; is one-to-one for
everyi. This is clearly as required.O

In view of the classical Nobeling—Pontryagin Theorem that ewedymensional space
can be embedded 21, the question naturally arises whether Corollary 2 can be
improved to the effect that the functionsin Corollary 2 restrict to embeddings ab.

If & is such that:|B is an embedding then the Lavrentieff Theorem below implies that
h|S is an embedding for som@;-subsetS € X which containsB. So the non-existence
of such aG;-set has as trivial corollary that the maps not an embedding. This leads
us to another natural question. If the miags such as in Corollary 2, does there exist a
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Gs-subsetS of X which containg and on which: is also one-to-one? Both our questions
will be answered in the negative in the remaining part of this section.

Lavrentieff's Theorem. Let Xo C X andYg C Y be subsets of complete metric spaces,
and let f: Xog — Yo be a homeomorphism. Thghcan be extended to a homeomorphism
f:Xo— Yo betweerGs-subsets ok andY.

Let us recall that a spack is called aBaire spaceif for each sequenc#, of open
dense inX subsets its intersectign), U, is dense inX. Clearly, a space is not Baire if it
has a non-empty open subset of the first category.

Levi's Theorem [9]. Let f be a map from a complete spa&eonto a Baire spac&. Then
there exists as-setXp C X such thatf|Xo is a homeomorphism anfl(Xo) is a dense
Gs-subset ofr.

By anintervalwe mean a non-degenerate subintervakof

Theorem 2 (Example 1).There exist a one-dimensional compactimand a zero-
dimensionalF, -setA C X, such that for an arbitrary mag : X — R and aGs-setB Cc X
containing A, the map f|B is not one-to-one. Moreover, the mgfiB has an infinite
preimage.

Proof. For X we take the produaf x 7, whereC is the familiar Cantor subset @t Let

A =C x Q, where( is the set of all rationals id. Striving for a contradiction. assume
that there are &s-setB D A and a mapy : X — R such thatf|B is one-to-one. Far € C,
let

Io={c}x1I, Be=BNI., fe=[fl., Kc=/fU)=fU).

Clearly, B, is a dens&5s-subset ofl.. Sincef| B, is one-to-one, we have
Claim 1. f.(J) is aninterval for every interval C I..
Claim 2. Let F be a closed subset &f.. Thendim F = dim f;l(F).

Proof. If dim F = 0 then dimf,"*(F) = 0 according to Claim 1. Now assume that
is an interval, butf~1(F) is zero-dimensional. LeL be the perfect kernel of ~1(F).

In other words,L consists of all condensation points ¢f(F). Then L is compact
and f~1(F) \ L is countable. Henceg (L) = F, becauseF is connected. The set is

clearly a nowhere dense subset/pf There consequently is an interval, b) C I, such
that (a, b) N L = ¢ while moreover eithelf,(a) or f.(b) is an interior point ofF’. Hence
by Claim 1,F N f.((a, b)) is an uncountable set. Byt *(F) N (a,b) € f71(F)\ Lis a
countable set. We arrived at a contradictiom

Claim 3. The setD. = f.(B.) is a Baire space.
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Proof. Assume that there is a subinternv@lC K, such thatD. N F C | JG, wheregG
is a countable family nowhere dense subsetskpf By Claim 2 there is an interval
J C f7Y(F). Then

B.nJc 7o
GeG
By another application of Claim 2 it follows that the sgfs'(G) are nowhere dense if.
SoB.NJ is afirst category subset df But on the other handi. N J is a dens& s-subset
of J. This violates the Baire Category Theorenm

Since a family of pairwise disjoint intervals &is countable, there are two intervals,
andK,, with ¢1 # ¢ such thatk = K., N K., is an interval. LetD; = K N f, (B,), i =
1, 2. In view of Claim 3 the set®; are Baire spaces. By Levi's Theorem, consequently
contains a dense absoluig-subset (the role of the mafyfrom Levi’'s Theorem is played
by the mapf., | B, N f;l(K)). This is a contradiction since by assumptionN Do = @.

So, we proved thaf'| B is not a one-to-one map using only that an intersection of two
sets of typeK. is an interval. But, in fact, there is a s€p C C of the cardinalityc such
that L = ({K.: ¢ € Cp} is an interval. Repeating the previous argument we can find a
denseGs-subsetD of L such that £|B)~1(z) is infinite for anyr € D (D is contained in
the intersection of a countably infinite collectigh(B.)’'s). O

Remark 1. It is easy to see that assumiiylA +—CH) we can findr € I such that
(f1B)~1(1) is uncountable and being an absoluig-set has cardinality. The next
example gives us a similar result with no additional set-theoretic assumption.

Theorem 3 (Example 2) There exist a seX ¢ 12 homeomorphic to the rationa® and
a one-to-one mayf : X — Y onto the set’ of all rationals points ofl with the following
property.
If Z is a Gs-subset off 2 containingX such that there is an extensigh Z — I of
f then there exists a pointe / such that f ~1(r)| =c.

Proof. Let p: 1% — I be the projection onto the first factor. There exists a countable dense
setX c I? suchthap|X : X — Y is a one-to-one correspondence. We claim that p| X
is the desired map. Observe thatis homeomorphic td) being a countable space with
no isolated points. Lef : Z — I be an extension of over aGs-setZ C I2. Then clearly
f=rlZ.

Let W =72\ Z and letJ C I be some non-empty open interval.

Claim 1. Thesetl'’ ={t € I: {t} x J € W} is of the first category i

Proof. There exists a countable famif§ of closed subsets df such thatv = | J F. Let
£ be the collection of all closed subintervals.bfwith rational endpoints. If € 77 then
{t} x J c |JF and hence the Baire Category Theorem implies that for sBrae€ and
for someF € F we have{r} x E C F.
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ForE € £ andF € F put
A(E,F)={tel: {t} x ECF}.

Since E and F are closed, it is clear thad (E, F) is closed. In addition, ifA(E, F)
contains an interval theR contains a product of two intervals, which is a contradiction
since dimF < 1. SoA = J{A(E, F): E € £, F € F} is of the first category inf. But
sinceT”’ C A, the same applies t6/. O

Let J be the family of all non-empty open intervals frwith rational endpoints.
Claim 2. The setl =|J{T”/: J € J} is of the first category i.
Proof. This is clear from Claim 1. O

Now letr € I\ T. ThenZ N ({¢t} x I) is a dens&ss-setin{t} x I. It consequently has
cardinalityc. But Z N ({r} x I) = f~1(¢), and so we are done.C

Corollary 3. There exist a zero-dimensionatcompact subset c C x I and a dense
Gs-subset{ C C(C x I, I) such that for eaclf € H the mapf|A:A — I is a one-to-one
map. But there does not exist a mapC x I — I such thatg|A is an embedding.

Proof. We let A be the set found in Theorem 2. The first part of the assertion follows
from Corollary 2 (forn = 0). The second part follows from Theorem 2 and Lavrentieff's
Theorem. O

Corollary 4. There exists a one-to-one mgp X — I of a countable subséf c 72 such
that any extensiorf : P — I of f over a Polish spacé containingX has a point whose
preimage has cardinality.

Proof. Let X and f be such as in Theorem 3. Assume that there exist an embedding
i:X — P into some Polish spac® and a mapf:P — I such thatf oi = f. By
Lavrentieff’s Theorem there exist &;-set Z C I? containingX and an embedding
i:Z — P extending. Thenf oi is an extension of over aGs-subset off 2 and therefore

has a fibre of cardinality. Sincei is an embedding, this implies thgt has a fibre of
cardinalityc as well. O

Remark 2. Both setsA from Theorem 2 an& from Theorem 3 are zero-dimensional. So
they admit many embeddings info But none of those can be extended ogex / and
I2, respectively.

Let us remark that Lavrentieff's Theorem not only works for homeomorphisms but also
for continuous maps. That is, any continuous map into a Polish space can be extended over
someG;-set.
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4. A strong version of the Eilenberg Theorem
In this section we will prove our announced strong version of the Eilenberg Theorem.

Theorem 4. For every zero-dimensional map: X — Y from ac-compact spac& into
a spaceY with dim B2(f) < m < 0o, there exists a familyhq, ho, ...} of maps fromX to
I such that for all pairwise distincfy, ..., jm+1 in N the map

FxXhjyx--xhj :X—YxI"?

.jm+1

is one-to-one.
The proof of this result is based on the following lemma.

Lemma 3. Let f: X — Y be a map from ar-compact spac& into a spaceY, and let
B C Y be a zero-dimensiondl, -set withdimf‘l(y) < Oforanyy € B. Then there exist
amaph:X — I and aGs-subsetA of Y with A D B suchthatthemag xh: X — Y x I
is one-to-one ory ~1(A).

Proof. Let X =(J;2; X;, with X; compact for every. The mapf|X; : X; — Y is closed.
Hence, the set

FYNBY N X = (f1X:) TH(B)

is o -compact being ai, -subset ofX;, and zero-dimensional by Hurewicz’s Theorem [4,
Theorem 1.12.4] on dimension-lowering mappings. Then in view of the countable sum
theorem [4, Theorem 1.3.1], the set(B) is also zero-dimensional. By Corollary 2 there
exists a magh : X — I which is one-to-one orf ~1(B).

The setBa(f x h) C Y x IisanF,-setin(f x h)(X) [4, Lemma 4.3.7]. Consequently,
Bo(f x h) is o-compact becausgf x h)(X) is. Sincek| f ~1(B) is a one-to-one map, we
have

p1(B2(f x h)) N B =40,

wherep1:Y x I — Y isthe projection. Then the sat= Y \ p1(B2(f x h)) is the required
Gs-set. O

We are now in a position to present the proof of Theorem 4.

Proof of Theorem 4. In [1] it was shown that there exists a family = {A1, Ao, ...} of
zero-dimensional; s-subsets ofB2( f) such that for every” c N of cardinalitym + 1 we
haveBa(f)=U cr Aj-

By induction on; we shall construct a malp; : X — 1. For every subselt C N\ {1} of
cardinalitym put

H(F)=B2()\ | A;.

JEF
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SinceBa(f) is anF,-subset off (X) [4, Lemma 4.3.7], it follows thak! (F) is o -compact,
and is clearly contained iA1. The set

B=U{H(F): FCN,|F|=m)}

consequently is a zero-dimensionatompact subset of1. So by Lemma 3 there exists a
maphi: X — I and aGs-setA 2 B such that the map x h1: X — Y x I is one-to-one
on the setf ~1(A).

Let A7 = A1 N A. Itis clear that the collectiotd’ = {A], A2, A3, ...} has the same
property as the original collectiaA. So now we replacgl by A’ and consider the seit; in
the second step of the construction. By a similar argument we find é&ipnap— 7 which
is one-to-one orf—l(A/z), whereA,, C Azis aGs-setsuchthatl” = {A), A}, A3, Ag, ...}
still has the same property as the original collectibrEtc.

We claim that the maps; are as required. For let, ..., ju4+1 be pairwise distinct
elements ofN. Take arbitrary distinct elementy, x1 € X. If f(xg) # f(x1) then there
is nothing to prove. So assume thétxg) = f(x1). SinceBa(f) = U?":llA’/.i, for some
i <m+1we havethaf (xg) = f(x1) € A’ji. Butthen sincé ;; is one-to-onelonf—l(A’ji),
it follows that# j; (xo) # & j, (x1), which is clearly as required.O

We let AN denote an arbitraryv-dimensional simplex. Its-dimensional skeleton will
be denoted byt

Corollary 5. Letn <m <2n+1andletf: Aﬁ”*z — I be a zero-dimensional map.
Then

dimB2(f) > 2n —m.

Proof. Assume dimB,(f) < 2n—m — 1 for some zero-dimensional mgp A2"+2 — [,
Then by Theorem 4, there exists an embeddingh : A2'2 — [n+21—m=1+1 _ 121 gyt
in view of the classical theorem by van Kampen—Flores [7,5], the polyheﬂiﬁ)ﬁ2 is not
embeddable iR, O

Let us note that for < m < 22 + 1 any regularly branched map: A2'+2 — ™ is
zero-dimensional and so the equality d¥a( /) = 2n — m holds.

5. Further remarks

Maps f with Bi11(f) = ¢, i.e., maps of multiplicity< k, are of special interest.
Suppose thak is anr-dimensional compactum and that we are interested in maps from
X into R™. If there is an integet such thak + 1 < (m — n)k then we are in an especially
nice situation. First observe that< m. So if f: X — R™ is regularly branched then

dimBii1(f) < (k+Dn—km < -1,
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i.e., f is < k-to-one. So Hurewicz’s Theorem implies the following

Hurewicz’s Corollary. If n, m, andk are integers such that
n+1<(m—n)k

then for anyr-dimensional compactuix the set
{f eC(X,R™): f has multiplicity at most }

is a densdGs-subset o€ (X, R™).

This corollary suggests the rather vague question of whether it is possible to “transform”
a given map into a map with small fibres. What we mean is described in the hypotheses
below of which we remark that so far we were unable to prove nor to disprove them.

Hypothesis 1. For everyg-dimensional mag : X — Y from a compact spack into m-
dimensional compact spadethere exists a map: X — I"*24 such thatf x h: X —
Y x I is a 2—1 map.

Hypothesis 2. For everyg-dimensional magf : X — Y from a compact spack into m-
dimensional compact spadethere exists a map: X — I"+4+1 such thatf x h: X —
Y x I"t4+lis a(g + 1)-1 map.

In the remaining part of this section we will describe a natural approach to a possible
proof of both hypotheses, and conclude that it leads nowhere. To begin with, let us first
prove the following result.

Theorem 5. Let B be ao-compact subset of a spa&e andletf : X — Y beamapinto a
spaceY such thadim f(B) < m < oo anddim f~1(y) N B < 0for all pointsy € ¥. Then
there exists a map: X — I"+1 such that the mag x h:X — Y x I"*1 is one-to-one
onaB.

Proof. Let B = Ufil B;, where theB; are compact. Thelf|B; is zero-dimensional and
closed. Hence, by Hurewicz's Theorem [4, Theorem 1.12.4],

dimB; <dim f(B;) +dim f|B; < m.

So dimB < m in view of the countable sum theorem. We will now prove our assertion by
induction on dimf (B).

If dim f(B) =0, then it suffices to apply Corollary 2 (far=0).

So let dimf(B) = m > 1 and assume that we have what we want#or 1. By
Urysohn’s Decomposition Theorem (see the proof of [4, Theorem 1.5.7]) there is an
F,-subsetYp C f(B) C Y such that dintp =m — 1 and dimf(B) \ Yo = 0. The set
Bo= BN f~1(Yy) is an F,-set. According to our inductive hypothesis there is a map
ho: X — [9Mf(Bo)+l e pm gych thatf x hg: X — Y x I™ is one-to-one orbo.
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The setB2((f x ho)|B) is an F,-subset of ar-compact spacéf x ho)(B). Hence,
B1 = (f x ho) X(B2((f x hg)|B)) is ac-compact subset aB. By the choice ofi,

p1(B2((f x ho)|B)) N Yo =0,

herep1:Y x I'" — Y is the projection, i.e.,

p1(B2((f x ho)|B)) = f(B1) € f(B) \ Yo.

The last inclusion means that difiiB1) < 0. Hence by Corollary 2 there is a map
h1:X — I suchthatthe map x hj is one-to-one omB;. Thus,h =hgx h1: X — I x I
is the required map. O

Remark 3. The formulation and the proof of Theorem 5 are similar to those of Theorem 4
and Lemma 3. But it is rather difficult to find a general assertion of which these results are
all special cases. So we have preferred to present them separately.

We now quote an interesting result which suggests an approach to a proof of our
hypotheses.

Torunhczyk’s Theorem [12]. Let f: X — Y be ag-dimensional map from a compact
spaceX into a finite-dimensional compact spa&e and let0 </ < ¢ — 1. Then there
is ao-compact set; C X suchthadimC; </ anddim f|X\ C; <¢qg—1—1.

So let us now try to prove our hypotheses and see where we get into troubles. Indeed, let
X andY be compact spaces with dim=m and letf: X — Y be g-dimensional. From
Torunczyk's Theorem we get a-compact setC,_1 C X such that dinC,_; <¢g —1
and dimf|X \ C,—1 < 0. From Tumarkin’s Theorem [4, Theorem 1.5.11] we géisaset
D,;_12 Cy_1 suchthatdinD,_1 =dimC,_1 < ¢ — 1. We could apply Theorem 5 to the
setB = X \ D,_1. Butthen in order to complete the proof we need a version of Hurewicz’s
Theorem (Corollary 2) for the sd?,_1 which is noto-compact. So we run into troubles
here. We could apply Corollary 2 to the set= C,_1. But then in order to complete the
proof we need a version of Theorem 5 for the ¥etC,_1 which is noto -compact. So we
run into troubles here too.

It seems that there are only two possibilities. Either to enlage to an appropriaté s
orto enlargeX \ D,_1 to an appropriat& ;. But the Examples 1 and 2 show that enlarging
F,-sets toGs-sets may increase the sizes of fibres from 1 to infinite, or fromc1$m our
approach indeed leads nowhere.
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