
BY THEIR FRUITS YE SHALL KNOW THEM:
SOME REMARKS ON THE INTERACTION OF GENERAL
TOPOLOGY WITH OTHER AREAS OF MATHEMATICS

TEUN KOETSIER AND JAN VAN MILL

1. Introduction

In his letter of invitation to contribute to this “Handbook of the History of Topology”,
Professor James asked us to discuss the role of general topology in other areas of topology.
So this paper is not a paper on the history of general topology, it is a paper on the history
of its interactions with other fields of mathematics. Of the many possibilities, we decided
to report on the one hand on the genesis of general topology and on the other hand on
infinite-dimensional topology and set theoretic topology.1 For a much more comprehensive
desciption of (parts of) the history of general topology, we refer the reader to [15].

The primary goal in general topology, also sometimes called point set topology, is the
investigation and comparison of different classes of topological spaces. This primary goal
continues to yield interesting problems and results, which derive their significance from
their relevance with respect to this primary goal and from the need of applications. In the
history of general topology we distinguish three periods. The first period is the prehistory
of the subject. It led to the work of Hausdorff, Brouwer, Urysohn, Menger and
Alexandroff. The prehistory resulted in a definition of general topology, but it left
many questions unanswered. The second period, roughly from the 1920s until the 1960s
was general topology’s golden age. Many fundamental theorems were proved. Many of the
results from that period can be viewed as a necessary consequence of the genesis of the
subject. However, much work from the golden age was also an investment in the future,
an investment that started to yield fruit in the third period lasting from the 1960s until
the present. That is why we will call this period the period of harvesting.

In this paper we concentrate on the first and the last period: the prehistory and on
the period of harvesting. In §2, which deals with the prehistory, we describe in particular
the historical background of the concept of an abstract topological space. We discuss the
contributions of Georg Cantor, Maurice Fréchet and Felix Hausdorff. That
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discussion is rather informal; it reflects the informal style of that particular period in his-
tory. Because a complete description of that work is out of the question, we concentrate in
particular on the background and the genesis of some crucial topological notions. Although
we repeatedly went back to the original texts, we also relied heavily on secondary sources.
We would like to mention Purkert and Ilgauds [141] and Dauben [50] with respect
to Cantor, Taylor [166] for information on Fréchet, and Scholz [152] concerning
Hausdorff. We also used Moore [132] and Monna [131] with appreciation.2

Sections 4 and 5 of the paper are devoted to the period of harvesting. In that period
general topology rather unexpectedly succeeded in solving several difficult problems outside
its own area of research, in functional analysis and in geometric and algebraic topology.
Also here a survey of all significant results is impossible. There were in that period at least
two major developments in general topology that revolutionized the field: the creations of
infinite-dimensional topology and set theoretic topology3. It was mainly due to the efforts of
Dick Anderson and Mary Ellen Rudin that these fields have played such a dominant
role in general topology ever since.

There is a well-known pattern that occurs often in mathematics. An established part of
mathematics generates non-trivial questions and possible ways to answer these questions
that are new, but of little immediate significance. Research in the area is essentially pursued
for its own sake. However, if the mathematics is good, after a longer or shorter period, the
theories involved significantly contribute to solve external problems. Hilbert [85] wrote:

“The final test of every new mathematical theory is its success in answering
pre-existent questions that the theory was not designed to answer. By their
fruits ye shall know them — that applies also to theories”.4

And indeed, there is no doubt that the most convincing test for the value of a theory
is its external significance.5 We will show that the genesis and further development of
general topology offer many examples that illustrate this pattern. We believe, frankly,
that research in general topology is almost exclusively driven by two things: the existence
of difficult, challenging problems, and the beauty of many of the results. Of course, not
everything that was and is done in general topology is equally important, as is the case in
any other field of mathematics. It is, for example, relatively easy to define variations of
the axiomatic bases of the various types of spaces and, as in other fields, it is not always

2Manheim wrote [118] the first book on the history of general topology and certainly at the time it was
a useful contribution. He restricted himself to what we call the prehistory of the field.

3Also shape theory was created by Borsuk, see e.g. [31], but this field was much more motivated from
algebraic and geometric topology than infinite-dimensional and set theoretic topology.

4“Wherefore by their fruits ye shall know them”, St. Matthew 7:20.
5Hallett [79]: It may take a long time before the external significance of a theory becoms clear. For

example, when the Greeks were pursuing mathematics entirely for its own sake, independent of applications,
they developed an elaborate theory of conic sections. Only many centuries later Kepler applied this theory
to describe the orbits of the planets. External significance is a sufficient condition for quality, it proves
the value of a theory afterwards. Obviously, a theory may generate and solve such interesting problems
that even without definite proof through external significance, the theory should be considered valuable
(Koetsier [103, p. 171]).
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easy to say in advance whether certain lines of research are worth pursueing. Yet, most of
the areas of research in general topology represent good mathematics. The two examples
of infinite-dimensional topology and set theoretic topology illustrate this.

2. The Prehistory of General Topology

2.1. Developments in 19th century analysis.

2.1.1. Weierstrassian analysis. Cauchy played a major role in the first revolution of
rigour, that had turned eighteenth century calculus from a collection of formal methods to
solve problems, into a coherent deductive theory based upon definitions of the fundamental
concepts of convergence, continuity, the derivative and the integral in terms of the notion
of limit (Grabiner [78]). Yet, after Cauchy, a further development and refinement of
concepts was inevitable. Cauchy primarily used his new conceptual apparatus to give
a solid foundation of existing analysis and in his mathematics a function is still always
associated with a formula. In the second half of the nineteenth century the conceptual
apparatus itself became the object of investigation. This happened in combination with
a much more general concept of function: a function became, in principle, a completely
arbitrary correspondence between numbers. In particular the discovery that discontinu-
ous functions can be expressed by means of Fourier series – dating from the beginning
of the 19th century – contributed considerably to this change. For example, in 1854, in
his “Habilitationsschrift”, Riemann studied the problem of the representation by means
of Fourier series of as large a class of arbitrary functions as possible. This automatically
led to the problem of the integrability of highly discontinuous functions. Riemann dis-
covered that a function could possess an infinite number of points of discontinuity in any
interval and still be integrable (in the sense of Cauchy-Riemann). It became clear that
such highly discontinuous functions could be studied and research partially shifted from
the investigation of functions defined by a particular formula or classes of formulas to the
investigation on a much more general level: abstracting from particular examples that
illustrate those relations, the relations themselves between notions like real number, func-
tion, series, convergence, limit, continuity, differentiability, integrability became subject of
investigation.

From this perspective Cauchy’s work showed weaknesses and a second revolution of
rigour took place in analysis, that is associated with the name of Weierstrass. It be-
came clear that Cauchy had not sufficiently distinguished between, for example, uniform
convergence and non-uniform convergence. It also became clear that he had, essentially,
taken the real numbers and their properties, for example their completeness, for granted.
A proof of a theorem like “A real function that is continuous in a closed and bounded
interval attains its maximum value”, which we owe to Weierstrass, would have been
out of place in Cauchy’s work6 and the same holds for more fundamental theorems like
the Bolzano-Weierstrass Theorem, actually due to Weierstrass alone: “Every infinite

6Cauchy’s well-known proof of the intermediate value theorem is in the context of Cauchy’s work
rather exceptional. But also in this case the first completely satisfactory proof was given by Heine [83].
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bounded subset of Rn has a limit point”.7 This theorem was stated for n = 2 by Weier-
strass in a course of lectures in 1865. In 1874 he gave a general proof (Moore [132, p.
17]). The theorem is necessary to prove the existence of limits, something that Cauchy
had also, at heart, still taken for granted.

2.1.2. Volterra, Ascoli. As early as 18838 Volterra had the idea to create a theory of
functionals9, or real-valued “functions of lines”, as he called the field. Volterra wrote
several papers on the subject.10 The lines are all real-valued functions defined on some
interval [a, b]. These functions are viewed as elements of a set for which notions like
neighbourhood and limit of a sequence can be defined. Volterra gave definitions for the
continuity and the derivative of a function of lines and he tried to build up a line-function
theory analogous to Riemann’s theory of complex functions. These attempts were not
motivated by their immediate significance in solving problems in the calculus of variations.
Hadamard wrote about Volterra’s motivation:

“Why was the great Italian geometer led to operate on functions as the in-
finitesimal calculus operated on numbers [...]? Only because he realised that
this was a harmonious way to complete the architecture of the mathematical
building”.11

Weierstrass’ teaching was influential also in Italy. In 1884 Giulio Ascoli (1843-1896)
extended the Bolzano-Weierstrass Theorem to sets of functions as follows. He studied a set
F of uniformly bounded functions on [a, b]. In order to prove that a sequence of functions
{fn} in F possesses a convergent subsequence {gn}, he needed the assumption that the
set F is equicontinuous. The result is known as Ascoli’s Theorem. Equicontinuity of F

means then that for every ε > 0, there exists a δ > 0, such that for all f ∈ F and for
all |x − y| < δ, we have |f(x) − f(y)| < ε. The proof-idea is that a subsequence {g′n}
of {fn} is chosen, such that {g′n(a)} converges. Then a subsequence {g′′n} is chosen from
{g′n} such that {g′′n(b)} converges. Then a subsequence {g′′′n } is chosen from {g′′n} such that
{g′′′n ((a + b)/2)} converges. Continuing in this way a sequence of converging sequences is
generated that correspond to the elements of a set that is dense in [a, b]. The “diagonal
sequence” then does the job (Moore [132, p. 81]).

2.1.3. The Dirichlet-principle and the theorem of Ascoli- Arzelà. The Italian attempts to
extend results from Weierstrass’ real analysis to sets of functions and real functions
defined on such sets, can certainly be understood as “a harmonious way to complete the
architecture of the mathematical building”. Yet there were also other reasons. An example
is Dirichlet’s principle. In 1856–1857 Dirichlet lectured on potential theory in Göttingen.
Modelling conductors, he considered a part Ω of R3, bounded by a surface S on which a

7As far as we know the notion of limit point or accumulation point was first used by Weierstrass.
8According to Whittaker, see Monna [131, p. 108].
9The term functional was introduced by Hadamard in 1903 (Monna [131, p. 108]).
10Atti della Reale Accademia dei Lincei, (4), 3, 1887, 97-105, 141-46, 153-58 = Opere matematiche, 1,

294-314, and other papers of the same and later years. We have not seen these papers.
11Quoted by Siegmund-Schultze [159, p. 377].
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continuous function is defined and dealt with the problem of the existence of a function u
on Ω that equals f on S and satisfies 4u(x, y, z) = 0. In order to solve the problem he
considered the integral

U =

∫
Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂u

∂z

)2
]

dV,

on Ω, which obviously is non-negative for all functions u considered. He concluded that
there must be at least one function u on Ω for which the integral reaches a minimum
value. One can show that the minimizing function satisfies 4u(x, y, z) = 0 and Dirich-
let thought he had solved the problem (Monna [131, pp. 27-30]). In 1871 Heine
criticised Dirichlet for accepting without proof the existence of a minimizing function
(Monna [131, p. 41]). And indeed this method, which is sometimes called Dirichlet’s
principle, needs further justification, because the existence of a greater lower bound for the
values of the integral does not necessarily imply that there exists a function that correponds
to that greater lower bound. In a paper from 1889 by Cesare Arzelà [14] the author
refers to Volterra and his “functions that are dependent on lines” (“funzioni dipendenti
dalle linee”) and writes that continuity for such functions had been defined but that the
existence of maxima and minima still needed investigation. Expressing the hope that his
work will lead to a justification of the “Principio di Riemann-Dirichlet” he proceeded to
prove what is nowadays usually called the Theorem of Ascoli-Arzelà. First Arzelà gener-
alized Ascoli’s theorem from 1884 and proved that an equicontinuous set F of uniformly
bounded functions on [a, b] has a limit-function. By definition a limit- function f of F is a
function that has the property that for every ε > 0, there are infinitely many functions g
in F for which, for all x,

f(x)− ε < g(x) < f(x) + ε.

Then Arzelà turned to continuous real-valued functionals defined on such an equicontin-
uous set F of functions – something which Ascoli had not done – and showed that, if the
set F is closed, i.e. contains all its limit- functions, the lower bound of the set of values of
the functional, the upper bound and all values in between are taken.

In 1896 Arzelà published a paper in which he applied his results to the Dirichlet
principle. He succeeded to prove it only under certain extra conditions (Monna [131, p.
112]). Nowadays the fundamental Ascoli-Arzelà Theorem in analysis is phrased in terms
of compactness, a term introduced by Fréchet in 1904. However, in order to understand
the background of the ideas of frechet, it is necessary to describe the birth of transfinite
set theory first.

2.2. Cantor.

2.2.1. From Fourier-series to derived sets and transfinite counting. Georg Cantor stud-
ied in Berlin under Kummer, Kronecker and Weierstrass. In 1869 he became a
Privatdozent at the University of Halle. His doctoral thesis and his Habilitationsschrift
were on number theory, but soon Cantor turned to analysis. Edward Heine, one of
his colleagues at the University of Halle, had suggested him to study the problem of the
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uniqueness of the representation of a function by means of a trigonometric series. In the
years 1870 through 1872 Cantor published a series of papers on that matter. In 1870 he
published a proof of the theorem saying that if

1

2
a0 +

∞∑
n=1

(an sin nx + bn cos nx)

converges to f(x) for all x on (0, 2π), f(x) cannot be represented by another trigonometric
series converging to f(x) for all x on (0, 2π). In 1871 he improved the proof and, moreover,
showed that the representation remained unique if the requirement of convergence or the
convergence to f(x) would be dropped for a finite set of exceptional points. Soon Cantor’s
main interest moved from trigonometric series to exceptional sets consisting of infinitely
many points. It was this problem that led to the theory of transfinite sets and at the same
time to a number of topological results. Cantor realized that the proof of the theorem
could be easily modified to hold if the infinite exceptional set contained a finite number
of limit points and that it could even be proved if it contained an infinite number of limit
points, provided the set of limit points itself possessed at most a finite number of limit
points. The argument was easily extended to higher levels of sets of limit points of sets
of limit points. However, how could one describe such complex subsets of the continuum?
This question led Cantor in fact to a definition of the real number system, which was
independent of those of Weierstrass, Méray, Heine and Dedekind that were also
given in that period. Cantor [36] started with the set of rational numbers, which he
called A. He considered the set of all Cauchy sequences of rational numbers (as they are
now called - Cantor himself called them fundamental sequences) and defined what we
would now call an equivalence relation on that set. The set of equivalence classes is called
B. The ordering and the elementary operations are then extended from A to the union of
A and B. Cantor now repeats the construction: In precisely the same way by considering
Cauchy sequences in A ∪ B a set C is generated, then sequences in A ∪ B ∪ C generate
a set D, etc. In this way after λ steps a set L is reached whose elements Cantor called
“numbers of type λ”. Cantor was aware of the fact that he could identify A with a subset
of B and he also knew that B, C, D, etc. are isomorphic (although he does not use that
terminology), but he avoided the identification. He needed the hierarchy of number sets
to identify point sets on a line. In order to do that he first introduced the notion “derived
set” of a point set on a line. The first derived set P 1 of a point set P is by definition the
set of all limit points of P and recursively: the derived set P λ of a set P is the first derived
set of P λ−1. Cantor then called P a set of type ν, iff the ν-th derivative P ν is finite.
The existence of such sets can now be seen by using the above defined hierarchy of number
sets, because if we take one point on the line whose coordinate is a number of type ν, we
know that this number represents a Cauchy sequence of numbers of type ν−1, while those
numbers all represent Cauchy sequences of numbers of type ν − 2, etc. If in this way, we
go all the way back to the rational numbers, we wind up on the line with a point set of
type ν.
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Applying this new apparatus Cantor proved the uniqueness theorem for trigonometric
series for exceptional sets of type ν where ν is an arbitrary natural number. In the same
paper he wrote with respect to the hierarchy of number systems defined by means of Cauchy
sequences:

“[...] the notion of number, in so far as it is developed here, carries within
it the germ of a necessary and absolutely infinite extension”.12

Although he does not mention it in his paper he had at the time already extended that
hierarchy beyond the finite levels. And indeed, the question whether there exist sets
that are such that P ν is infinite for all finite ν, arises naturally. We know that already
in 1870 Cantor was aware of the possibility to count beyond the finite (Purkert and
Ilgauds [141, p. 39]).The idea of the transfinite ordinal numbers, was born in this context.

2.2.2. The birth of the transfinite cardinals. In 1872 and 1873 the nature of the continuum
intrigued Cantor more and more. In a letter to Dedekind, dated November 29, 1873,
he wrote that he had tried to find a one-one correspondence between the natural numbers
and the real numbers, but that he had failed. Several days later the transfinite cardinal
numbers were born; they still would have to go a long way, but the idea was there. On
December 7 of the same year Cantor wrote to Dedekind that he had found the proof
that the proposed one-to-one correspondence does not exist. Cantor, who would later
use the diagonal method, gave the following simple proof. Let a1, a2, a3, a4, etc. be the
sequence of all real numbers. Consider an interval [p, q]. Find in the sequence the first
two real numbers that represent an interval [p1, q1] inside [p, q]. Find then the first two
real numbers that represent an interval [p2, q2] inside [p1, q1], etc. This inevitably leads to
a nested sequence of intervals with a non-empty intersection of points that do not occur
in the sequence a1, a2, a3, a4, etc. Cantor published the proof in 1874 (Cantor [38, pp.
115–118]) pointing out that the proof implied the existence of transcendental numbers.
It is remarkable that at the time, Cantor and Dedekind both considered these results
as interesting but not of great importance (Purkert and Ilgauds [141, p. 45]). The
next problem Cantor turned to was the question whether a two-dimensional continuum
could be mapped one-to-one on the real numbers. In 1877 he found the answer: the
unit square, yes, even the n-dimensional unit cube can be mapped one-to-one on the
interval [0, 1]. The paper was published in 1878. Cantor immediately realised that
the result created a problem for the traditional view that the number of dimensions of
a continuum corresponded to the number of parameters needed to describe it. Here we
have the beginning of dimension theory. A survey of its further history was given by
Johnson [94, 95]. See also Koetsier and van Mill [104].

2.2.3. Transfinite set theory and topological notions. Those first results from the period
1872–1878 gave Cantor the idea that the problem of the nature of the different kinds of
point sets could be approached systematically. That is what he did in a famous series of
six publications under the title “About infinite linear pointmanifolds” (“Über unendliche

12“[...] der Zahlenbegriff, soweit er hier entwickelt ist, den Keim zu einer in sich notwendigen und
absolut unendlichen Erweiterung in sich trägt” (Cantor [38, p. 95]).
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lineare Punktmannigfaltigkeiten”), that appeared in the years 1879 through 1884. The
papers wonderfully show how Cantor’s theory gradually developed; they also show the
emergence of several topological notions and results. Right from the start set theory and
general topological notions have been intimately connected. A complete discussion of the
six publications goes beyond the purpose of this paper. We will mention a few results.

In the first paper Cantor distinguishes point sets of the first kind – the n-th derivative
is empty for a finite n – and points sets of the second kind – by definition those that are
not of the first kind. The notion of “density in an interval” is introduced and it is shown
that sets of the first kind are never dense in an interval. Cantor also shows that all sets
of the first kind and also some but not all of the second kind are countable. In the second
paper Cantor introduces the sequence: P∞, P∞+1, P∞+2, . . . etc., where P ν refers to the
ν-th derivative of a set P . The fourth paper contains a number of topological results. He
calls a set P of Rn “isolated” if it contains none of its limit-points. He proves: “Every
isolated set in Rn is at most countable” and some related results.

In the fifth paper the transfinite ordinal numbers, viewed as well-ordered sets, are “con-
structed”, and denoted in the now standard way: ω, ω + 1, . . . , ω · ω, . . . etc. The ordinal
numbers are related to the cardinal numbers by means of the notion of number class. The
theory developed in this way generated two fundamental problems: the need to prove that
every set can be well-ordered (this would guarantee that all cardinal numbers could be
reached by means of ordinal numbers) and the continuum hypothesis. The continuum
hypothesis is in the last sentence of the fifth paper. In this text from 1878 Cantor writes
that his investigations point at the conclusion that among the infinite “linear manifolds”,
i. e. the subsets of R, there would occur only two cardinal numbers. He added: “we
postpone a precise investigation to a later occasion” (Cantor [38, p. 133]).

In this fifth paper Cantor also discusses the question when a subset of Rn should
be called a “continuum”. In order to answer that question he defines the notions of a
perfect point set and a connected point set. A perfect point set is by definition equal to
its derivative. A set T is by definition connected if for any two points t and t′ of T and for
any ε > 0, there exists a finite number of points t1, t2, . . . , tn of T in such a way that all
distances tt1, t1t2, t2t3, . . . , tn−1tn, tnt

′ are all smaller than ε. A subset of Rn then is defined
as a continuum iff it is a perfect, connected set (Cantor [38, p. 194]). In a note Cantor
gave the famous example of a set that is perfect and at the same time dense in no interval:{c1

3
+

c2

32
+

c3

33
+ · · · : ci ∈ {0, 2} for every i

}
.

The sixth paper contains a number of topological results on point sets in Rn, which
Cantor undoubtedly obtained while working towards a proof of the continuum hypothesis.
Two examples are: “A perfect set is not countable”, and “If a set is not countable, it can
be split into a perfect set and a countable set”.

2.2.4. The reception of set theory. After a period in which he hardly wrote anything Can-
tor published in 1895 and 1897 in two parts his last important paper on set theory:
“Contributions to the foundation of transfinite set theory” (“Beiträge zur Begründung der
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transfiniten Mengenlehre”). In this paper, primarily devoted to “general” set theory13,
Cantor’s theory got its final form. At the same time the appreciation for set theory
among mathematicians was growing slowly. Right from the start Cantor’s set theory
had been met by sceptical reactions. In particular Kronecker was very critical. How-
ever, significant external applications made many prominent mathematicians understand
the value of set theory. In 1872 Heine, Cantor’s colleague in Halle, had proved that a
real-valued function that is continuous on an interval [a, b] of R is uniformly continuous.
The proof runs roughly as follows. Using the continuity, Heine first aims at constructing
for all small ε > 0 a monotonously increasing sequence {xi} with a = x1 for which

|f(xi+1)− f(xi)| = 3ε.

and for all x with xi ≤ x ≤ xi+1 ≤ b, one has

|f(x)− f(xi)| ≤ 3ε.

If the sequence cannot be constructed (because the function varies less than 3ε) or the
construction stops after a finite number of steps because in the remaining interval the
function varies less than 3ε, we are done. If the sequence is infinite, it converges to a number
X in the interval. Then there exists also an η for which for all x with X − η ≤ x ≤ X we
have

|f(x)− f(X)| ≤ 2ε.

This, however, contradicts the fact that in the interval [X−η, X] there are infinitely many
points of the sequence {xi} for which |f(xi+1)− f(xi)| = 3ε.

In his 1894 doctoral thesis Emile Borel (1871–1956) applied Cantorian set theory to
problems of analytic continuation in the theory of functions of a complex variable. It was
undoubtedly this work which put him on the road to his later contributions to measure
theory. However, one of his proofs involved “a theorem interesting in itself [...]: If one has
an infinity of sub-intervals on a line (that is a closed interval) such that every point of
the line is interior to at least one of them, a finite number of intervals can effectively be
determined having the same property” (Quoted and translated by Hawkins; Grattan-
Guinness [65, p. 175]). We have here the Heine-Borel Covering Theorem. Borel’s proof
uses Cantor’s transfinite ordinals. He considers a transfinite sequence {(aλ, bλ) : λ < α}
of open intervals that covers the interval [a, b] from the left to the right and then by
transfinite induction on α proves that the collection can be reduced to a finite collection.
Hallett [79] discussed this proof an argued that, although the Heine-Borel Theorem was
soon proved without the use of transfinite numbers, Borel’s proof still counts as one
of the first applications of transfinite ordinal numbers ouside of set theory. Soon other
applications followed. Hurwitz gave an invited lecture at an international congress of
mathematicians in Zürich in 1897 on the development of the general theory of analytical
functions in which he summarized Cantor’s theory of transfinite ordinal numbers and
subsequently applied it to classify analytical functions on the basis of their sets of singular
points. Set theoretical methods had arrived in a classical discipline like the theory of

13Zermelo wrote: “viele Hauptsatze der ’allgemeinen’ Mengenlehre finden erst hier ihre klassische
Begründung” (Cantor [38, p. 351]).
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complex functions. And both the problem of the Continuum Hypothesis and the Well-
Ordering Theorem occur in Hilbert’s famous list of problems he considered in 1900 to be
the most important for mathematical research in the twentieth century.

2.3. Maurice Fréchet’s “Analyse Générale”.

2.3.1. Tables, chairs, and beer mugs: another revolution of rigour. In the history of anal-
ysis one distinguishes often the “first revolution of rigour”, brought about by Cauchy
and the “second revolution of rigour”, brought about by Weierstrass. The systematic
introduction of the axiomatic method in mathematics (in combination with the language
of set theory and first-order predicate logic) could, undoubtedly, also be characterized as a
revolution of rigour. There is a famous story told by Constance Reid in her biography
of Hilbert:

”In his docent days Hilbert had attended a lecture in Halle by Hermann
Wiener on the foundations and structure of geometry. In the railway sta-
tion in Berlin on his way back to Königsberg, under influence of Wiener’s
abstract point of view in dealing with geometric entities, he had remarked
thoughtfully to his companions: ‘One must be able to say at all times –
instead of points, straight lines and planes – tables, chairs, and beer mugs’
(Reid [142, p. 57]).”

In an appendix to the book Weyl writes that according to Blumenthal it must have
been 1891 and Wiener’s paper was on the role of Desargues’s and Pappus’s theorems
(Reid [142, p. 264]). Hilbert’s remark contains in a nutshell an important aspect
of the abstract, axiomatic point of view: the theory becomes independent of its intended
model; whatever names are used for the undefined terms, the axioms completely determine
the way in which these terms are related. In Hilbert’s “Foundations of Geometry”
(”Grundlagen der Geometrie”) of 1899 this point of view is applied to geometry. For
many mathematicians Hilbert’s book represented the future; after more than 2000 years
Euclid had been dethroned. Consequently, in the first decade of the twentieth century
the axiomatic method was very much in the air. In 1904 Zermelo published a proof of
the Well-Ordering Theorem (Moore [132, p. 159]). The proof contains the first explicit
statement of what was later called the Axiom of Choice. The reactions to the paper were
such that Zermelo found it necessary to secure the proof even further. The result was
Zermelo’s axiomatization of set theory (Moore [132, p. 157]).14

The axiomatic method is, on the one hand, a method by means of which an already
existing theory can be given its final form. However, the axiomatic method is also a
powerful research method. Its basic rule is: “The occurrence of analogy between different
areas points at the existence of a more general structure that should be defined explicitly
by means of a suitable set of axioms”. In France, Borel used the axiomatic method,
Lebesgue did and also Fréchet, who applied it on a problem suggested to him by
Hadamard, whose student he was. At the first International Congress of Mathematicians

14So Zermelo’s primary motivation was not the occurrence of the antinomies. By the way, the so-called
Russell’s paradox was also found by Zermelo, several years before Russell did so (Moore [132, p. 89]).



GENERAL TOPOLOGY 11

in 1897 Hadamard lectured briefly on possible future applications of set theory. He
remarked that it would be worthwhile to study sets composed of functions. Such sets
might have properties different from sets of numbers or points in space. He said:

“But it is primarily in the theory of partial differential equations of math-
ematical physics that research of this kind will play, without any doubt, a
fundamental role”15

and one of the examples that he implicitly referred to was Dirichlet’s principle.

2.3.2. The genesis of Fréchet’s thesis. In 1904 and 1905 Fréchet published a series of
short papers on “abstract sets” or “abstract classes” in the “Comptes Rendus”, that layed
the groundwork of his thesis: “Sur quelques points du calcul fonctionnel”, Rendiconti del
Circolo Matematica di Palermo, 1906, pp 1-74. That thesis is one of Fréchet’s most
important contributions to mathematics. We will concentrate on the early papers in order
to get an idea of the genesis of the thesis. In his first paper [70] the analogy between
Weierstrass’ theorem: “A real function continuous in a closed and bounded interval
attains its maximum value” and the Dirichlet principle is given as the motivation to develop
a general theory of continuous real functions (Fréchet said “opérations fonctionnelles”)
on arbitrary sets that encompasses both theorems. Fréchet did not mention the Italians
and it is possible that he only heard about their work in 1905. In his first paper Fréchet
introduced an abstract axiomatic theory of limits. The theory refers to a set or class C
of arbitrary elements and concerns infinite sequences of elements A1, A2, A3, . . . of C that
may or may not possess a limit element B in C. Fréchet’s axioms are

(i) If a sequence has a limit B, then all infinite subsequences have the same limit, and
(ii) If Ai = A for all i, then the limit of the sequence equals A.

In terms of this axiomatically defined notion of limit Fréchet can then define the notions
of a closed subset of C, a compact subset of C and of a continuous real function on a subset
of C.

(iii) A subset E of C is by definition closed if every limit element of a sequence of
elements of E belongs to E.

(iv) A subset E of C is compact if for all sequences En consisting of non-empty closed
subsets of C, that are such that Ei+1 is a subset of Ei for all i, the intersection of
all the En’s is non-empty.

(v) The continuity of a function F on C is also defined in terms of sequences: F is
continuous on a subset E of C if for all sequences {Ai} in E that have a limit B in
E, the sequence {F (Ei)} has the limit F (B).

Fréchet then, without further proof, phrases the generalisation of Weierstrass’ theo-
rem as follows: “If E is a closed and compact set in C and U is a continuous functional
operation on C, then the values of U are bounded and U assumes an absolute maximum
value at some point A of E.” In his next note [73] in the “Comptes Rendus” Fréchet

15“Mais c’est principalement dans la théorie des équations aux dérivées partielles de la physique
mathématique que les études de cette espèce joueraient, sans nul doute, un role fondamental” (quoted
by Taylor [166, p. 259]).
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answers in the negative the question whether the derived set of a set E is necessarily
closed. The counterexample that he gives consists of all real polynomials in the set of all
real functions on an interval; a function f is the limit of a sequence of polynomials if there
is pointwise convergence. This was a problem for Fréchet, because he felt that in order
to get interesting generalisations of existing theorems he would need the property that the
derivative of a set is always closed. In the third note [72] the new ideas are applied to
the space E∗ of infinitely many dimensions, the elements of which are all real sequences
{ai}. Sequence A is the limit of a sequence {Ai} of sequences iff for all p the sequence of
pth coordinates of the Ai converges to the pth coordinate of A16. A set of points A in E∗

is bounded iff there are fixed numbers Mi such that for all points in the set for all i the
absolute value of the ithe coordinate is smaller than Mi. Fréchet defines a condensation
point (“point de condensation”) of a set A as a limit-point that remains a limit-point of the
set if one removes in an arbitrary way a countable infinite number of points from the set.
Fréchet then states, without actually giving proofs, that he succeeded in proving several
theorems. Three examples are: “The necessary and sufficient condition for a subset of E∗

to be compact is that it is bounded”, “The derived set of a subset of E∗ is closed” and
“Every uncountable and bounded subset of E∗ possesses at least one condensation point”.

The desire to develop a general theory in which the derived set of a set E is neces-
sarily closed, continued to bother Fréchet. There exists an interesting letter (probably
from 1904) concerning this point from Hadamard to Fréchet in which Hadamard
suggests the use of an abstract notion of nearness or neighbourhood (“voisinage”) (quoted
by Taylor [166, pp. 245-246]). Hadamard wrote:

“Would it be good if you started, in general, from the notion of neighbour-
hood and not from that of limit?”17

In [71] Fréchet had decided to introduce a generalised notion of “voisinage”, assum-
ing that in the classes of arbitrary elements to each couple of arbitrary elements there
corresponds a real number (A, B) for which

(i) (A, B) ≥ 0,
(ii) (A, B) = 0 iff A = B,
(iii) If (A, C) and (B, C) are infinitely small, then so (A, B).

[The last requirement means: if (A, C) and (B, C) are sequences converging to zero, then
so (A, B).] Fréchet defines the notion of limit in terms of this abstract notion of distance:
{An} converges to A iff (An, A) converges to 0. Without proof Fréchet states that always
when the limit can be defined by means of a suitable “écart”: I) Every derived set is closed,
II) A functional operation that is continuous on a compact set is uniformly continuous.
Fréchet also refers to Ascoli and Arzelà, remarking that these theorems and the ones
in his earlier notes can be seen as generalisations of the Italian work.

16So Fréchet considers the space that we now call s, see §4.
17“Feriez vous bien de partir, en général, de la notion de voisinage et non de celle de limite? [...]”(Tay-

lor [166, p. 246]).
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2.3.3. Fréchet’s 1906 thesis. Fréchet’s 1906 thesis is based on the papers from the period
1904-1905. We will only discuss the thesis very briefly.18 In the thesis an abstract class with
sequential limits that satisfy the two requirements from his first 1904 note is called “une
classe (L)”. We shall call them L(imit)-classes . In the second chapter of the first part of
the thesis Fréchet introduces an abstract notion of distance, which he calls “voisinage”.
An abstract set is “une classe (V )”, or, as we will say, a V(oisinage)- class if there exists
a real-valued binary function (A, B) on the set which satisfies:

(i) (A, B) = (B, A) ≥ 0,
(ii) (A, B) = 0 iff A = B,
(iii) There exists a positive real function f(ε), defined for positive ε, for which

lim
ε→0

f(ε) = 0,

such that, whenever (A, B) ≤ ε and (B, C) ≤ ε, then (A, C) ≤ f(ε).

A V -class can be turned into an L-class by means of the definition: {An} converges to A
iff (An, A) converges to 0.

It is remarkable that at one point in the thesis Fréchet replaces the third V -class
axiom by a triangle inequality:

(iiia) for all A, B, C we have (A, C) ≤ (A, B) + (B, C).

Here is what we nowadays call a metric space (following Hausdorff [80, p. 211]). It
is called a“classe (E)” by Fréchet, because here he uses the term “écart” instead of
“voisinage”. For such écart-classes or E-classes Fréchet proves the theorem: If a subset
G of an E-class is such that every continuous functional operation on G is bounded on G
and attains on G its least upper bound, then G is closed and compact. The E-class was
actually introduced because Fréchet could not prove this theorem for V - classes.19 The
thesis also contains a generalization of the Heine-Borel Covering Theorem: If E is a closed
and compact subset of a V -class then every countable covering M of E contains a finite
number of sets that also cover E. In the second part of his thesis Fréchet applies the
abstract theory to concrete examples.

2.4. Hausdorff’s definition of a Hausdorff space.

2.4.1. Hilbert. While Fréchet was developing a theory of abstract spaces, others were
doing similar things. Before Fréchet started working on abstract spaces, Hilbert in
1902 briefly wrote about the possibility to characterize the notion of manifold in an abstract
way, while in 1906 in Hungary, independent of Fréchet, Frigyes Riesz (1880–1956)
also attempted to give as general as possible a characterization of the notion of space. In
Hilbert’s proposal the notion of neighbourhood is central. Hilbert wrote:

“The plane20 is a system of things that are called points. Every point A
determines certain sub-systems of points to which the point itself belongs

18For a more extensive discussion we refer to Taylor [166]).
19In 1908 Hahn succeeded in doing so and in 1917 Chittenden [44] turned it into a metrisation

theorem.
20As will be clear later, Hilbert uses the notion of plane in a generalised sense.
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and that are called neighbourhoods of the point A. The points of a neigh-
bourhood can always be mapped by means of a one-to-one correspondence
on the points of a certain Jordan-area in the number plane. The Jordan-
area is called the image of that neighbourhood. Every Jordan-area, that
contains (the image of) A, and is contained in an image, is also image of
a neighbourhood of A. If different images of a neighbourhood are given,
then the resulting mapping of the two corresponding Jordan- areas on each
other is continuous. If B is any point in a neighbourhoofd of A, this neigh-
bourhood is also a neighbourhood of B. To any two neighbourhoods of A
always corresponds such neighbourhood of A, that the two neighbourhoods
have in common. When A and B are any two points of the plane, there ex-
ists always a neighbourhood of A that contains at the same time B. These
requirements contain, it seems to me, for the case of two dimensions, the
sharp definition of the notion that Riemann and Helmholtz denoted as
“multiply extended manifold” and Lie as “number manifold”, and on which
they based their entire investigations. They also offer the foundation for a
rigourous axiomatic treatment of the analysis situs.”21

The quotation, which contains everything that Hilbert wrote about the subject, dates
from 1902, that is from before Fréchet started his topological work. Hilbert never
continued the line of research that the quotation suggested. He left the further “rigourous
axiomatic treatment of the analysis situs” to others. The axioms define an abstract notion
of space and the basic concept is the concept of neighbourhood. Some of the axioms
only concern the set theoretic properties of neighbourhoods. The other properties of the
neighbourhoods are, however, fixed by means of axioms concerning the (continuous) one-
one correspondences that are postulated to exist between neighbourhoods and Jordan-areas
in the number-plane.

2.4.2. Riesz. Riesz’ approach to the problem and also his motivation are quite different. In
his 1907 paper (a German translation of a Hungarian paper that appeared in 1906) Riesz

21”Die Ebene ist ein System von Dingen, welche Punkte heißen. Jeder Punkt A bestimmt gewisse
Teilsysteme von Punkten, zu denen er selbst gehört und welche Umgebungen des Punktes A heißen. Die
Punkte einer Umgebung lassen sich stets umkehrbar eindeutig auf die Punkte eines gewissen Jordanschen
Gebietes in der Zahlenebene abbilden. Das Jordansche Gebiet wird ein Bild jener Umgebung genannt.
Jedes in einem Bilde enthaltene Jordansche Gebiet, innerhalb dessen der Punkt A liegt, ist wiederum ein
Bild einer Umgebung von A. Liegen verschiedenen Bilde einer Umgebung vor, so ist die dadurch vermittelte
umkehrbar eindeutige Transformation der betreffenden Jordanschen Gebiete aufeinander eine stetige. Ist
B irgendein Punkt in einer Umgebung von A, so ist diese Umgebung auch zugleich eine Umgebung von
B. Zu irgend zwei Umgebungen eines Punktes A gibt es stets eine solche Umgebung des Punktes A, die
beiden Umgebungen gemeinsam ist. Wenn A und B irgend zwei Punkte unserer Ebene sind, so gibt es stets
eine Umgebung von A, die zugleich den Punkt B enthält. Diese Forderungen enthalten, wie mir scheint,
für den Fall zweier Dimensionen die scharfe definition des Begriffes, den Riemann und Helmholtz als
“mehrfach ausgedehnte Mannigfaltigkeit” und Lie als “Zahlenmannigfaltigkeit” bezeichneten und ihren
gesamten Untersuchungen zugrunde legten. Auch bieten sie die Grundlage für eine strenge axiomatische
Behandlung der Analysis situs.” (Hilbert [84, pp. 165-166]).
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distinguishes our subjective experience of time and space from the mathematical continua
by means of which we describe them. His goal is to give as general a characterisation as
possible of mathematical continua and to show the precise relation between our subjective
experience and mathematical continua. In a footnote Riesz criticises the way in which
philosophers have dealt with notions like continuous and discrete and he repeats Russell’s
remark about the followers of Hegel: “the Hegelian dictum (that everything discrete is
also continuous and vice versa) has been tamely repeated by all his followers. But as to
what they meant by continuity and discreteness, they preserved a discrete and continuous
silence; [...]” (Riesz [143]). The relation of our subjective experience of space and time
and mathematical continua is described by Riesz as follows. Mathematical continua pos-
sess certain properties of continuity, coherence and condensation. On the other hand, our
subjective experience of time is discrete and consists of countable sequences of moments.
Systems of subsets of a mathematical continuum can be interpreted as a physical contin-
uum when subsets with common elements are interpreted as undistinguishable and subsets
without common elements as distinguishable. Riesz [143, p. 111] is an interesting paper
in which Riesz, who had read Fréchet’s work and appreciated it, developed a different
theory of abstract spaces, based on the notion of “Verdichtungsstelle”, i.e. “condensation
point” or, as we will translate “limit point”. In his theory Riesz succeeded in deriving
the Bolzano-Weierstrass Theorem and the Heine-Borel Theorem. We will not discuss this
paper. We will restrict ourselves to a shorter paper that was presented by Riesz in 1908
at the International Congress of Mathematicians in Rome. In that paper, “Stetigkeit und
Abstrakte Mengenlehre”, (Riesz [144]) concentrates on the characterisation of mathemat-
ical continua. We will briefly describe some of the ideas that Riesz describes in the paper.
As we said, Riesz’ basic notion is the notion of limit point (Verdichtungsstelle). Riesz
did consider Frechet’s restriction to limit points of countable sequences as too severe.
That is why in his theory limit points satisfy the following three axioms:

(i) Each element that is a limit point of a subset M is also a limit point of every set
containing M .

(ii) When a subset is divided into two subsets, each limit point is a limit point of at
least one of the subsets.

(iii) A subset consisting of only one element does not have a limit point.

A mathematical continuum is for Riesz, by definition, any set for which a notion of limit
point is defined that satisfies these three axioms. However, in order to be able to develop
some theory on the basis of the axioms Riesz is forced to add a fourth axiom:

(iv) Every limit point of a set is uniquely determined through the totality of its subsets
for which it is a limit point.

Riesz uses the examples of R \ {0} and R \ [0, 1], that exhibit as far as their limit points
are concerned precisely the same structure, to show that the four axioms are not enough
to characterize properties of “continuity”. That is why in his paper Riesz suggests to add
the notion of “linkage” (Verkettung). For any pair of subsets of a manifold it should be
defined whether they are linked or not. Such a linkage structure must satisfy the following
three axioms:
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(i) If subsets S1 and S2 are linked, then every pair of sets that contain S1 and S2 are
also linked.

(ii) If subsets S1 and S2 are linked and S1 is split into two subsets, at least one of the
two is linked to S2.

(iii) Two sets that each contain only one element cannot be linked.

Although he believed that the notions of limit point and linkage could be used to develop
an abstract theory of sets in the sense of Hadamard’s proposal of 1897, Riesz himself
did not continue this work. In later publications Fréchet used some of Riesz’ ideas.

2.4.3. Hausdorff. The different attempts to give an abstract definition of space culminated
in the work of Felix Hausdorff (1868–1942). In 1912 Hausdorff, professor at the
university of Bonn, taught a class on set theory. Chapter 6 of his notes22 deals with “Point
sets” (”Punktmengen”) and is called “Neighbourhoods” (”Umgebungen”). Hausdorff
writes:

“Point sets on a straight line (linear), in the plane (planar), in space (spa-
tial), in general in an n-dimensional space r = rn. A point is defined by a
system of n real numbers (x1, x2, . . . , xn) and vice versa, that we think as
orthogonal coordinates. As distance of two points we define

x · y =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 ≥ 0.

The neighbourhood Ux of a point x is the collection of all points y for which
x · y < ρ (ρ a positive number; the inner area of a “Sphere” with radius ρ).

For the sake of illustration we will usually take the plane r = r2; if
the individual numbers of dimensions cause deviations, we will especially
emphasize them. The neighbourhoods have the following properties:
(α) Every Ux contains x and is contained in r.
(β) For two neighbourhoods of the same point U ′

x ⊇ Ux or Ux ⊇ U ′
x holds.

(γ) If y lies in Ux, then there also exists a neighbourhood Uy, that is con-
tained in Ux (Ux ⊇ Uy).

(δ) If x 6= y, then there exist two neighbourhoods Ux, Uy without a common
point: (θ(Ux, Uy) = 0).

The following considerations are based initially only on these properties.
They hold very generally, if r is a point set {x}, if to the points x correspond
point sets Ux with these 4 properties. Such a system is, for example, the
following: one defines as a neighbourhood of x the system of points where

|x1 − y1| < ρ, y2 = x2;

a neighbourhood is then a horizontal segment (without endpoints) of length
2ρ. Or: one defines as a neighbourhood the system

|x1 − y1| < ρ, |x2 − y2| < ρ

22Hausdorff, manuscript 1912b, par. 6, Archive Bonn University.
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i.e., the inner area of a square with side-length 2ρ, whose centre is x, etc.”23

According to Scholz [152], Hausdorff was led to the four axioms in the spring or the
summer of 1912 by a logical analysis of the foundations of complex analysis. In this context
it is remarkable that at the same time, Weyl was applying Hilbert’s ideas from 1902
in his work his on Riemann surfaces (Weyl [184]). Scholz argues that both were inde-
pendently influenced by Hilbert. In 1914 Hausdorff’s “Grundzüge der Mengenlehre”
appeared, one of the first textbooks on set theory. Above we saw how set theory was
born from point set theory in Rn and that Cantor’s first papers show a mixture of point
set theory and more abstract considerations. Hausdorff carefully distinguishes general set
theory from point set theory. The first seven chapters of his book are devoted to general
set theory. It is remarkable that he did not include Zermelo’s axiomatization. In the
first chapter, after mentioning the antinomies, he writes why not:

“E. Zermelo undertook the subsequently necessary attempt to limit the
borderless process of set-creation by suitable restrictions. Because so far
these extremely shrewd investigations can not yet claim to be finished and
an introduction of the beginner in set theory in this way would be connected
with great difficulties, we will permit here the naive notion of set, at the
same time, however, we will in fact stick to the restrictions that cut off the
road to that paradox.”24

In chapter 7 of his book, Hausdorff addresses the question of the position of point set
theory within the system of general set theory. Point set theory here means abstract point
set theory. He briefly discusses three possible approaches to turn a set that is so far treated

23”Punktmengen auf einer Geraden (linear), in der Ebene (ebene), im Raume (räumliche), allgemein
in einem n-dimensionalen Raume r = rn. Ein Punkt x ist durch ein System von n reellen Zahlen
(x1, x2, . . . , xn) und umgekehrt definiert, die wir als rechtwinklige Coordinaten denken. Als Entfernung
zweier Punkte definieren wir x · y =

√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 ≥ 0. Unter einer Umge-

bung Ux des Punktes x verstehen wir den Inbegriff aller Punkte y für die x · y < ρ (ρ eine positive Zahl;
Inner[e]s einer ”Kugel” mit Radius ρ). Wir werden zur Veranschaulichung in der Regel die Ebene r = r2

nehmen; sollten die Einzelnen Dimensionenzahlen Abweichungen hervorrufen, so werden die besonders
hervorgehoben werden. Die Umgebungen haben folgende Eigenschaften: (α) Jedes Ux enthält x und ist
in r enthalten. (β) Für zwei Umgebungen desselben Punktes ist U ′

x ⊇ Ux oder Ux ⊇ U ′
x. (γ) Liegt y in

Ux, so giebt es auch eine Umgebung Uy, die in Ux enthalten ist (Ux ⊇ Uy). (δ) Ist x 6= y, so giebt es zwei
Umgebungen Ux, Uy ohne gemeinsamen Punkt (θ(Ux, Uy) = 0). Die folgenden Betrachtungen stützen sich
zunächst nur auf diese Eigenschaften. Sie gelten sehr allgemein, wenn r eine Punktmenge {x} ist, wenn
Punkten x Punktmengen Ux zugeordnet sind mit diesen 4 Eigenschaften. Ein solches System ist z. B.
folgendes: man definiere als ein Umgebung von x das System der Punkte, wo |x1 − y1| < ρ, y2 = x2; eine
Umgebung ist dann eine horizontale Strecke (ohne Randpunkte) von der Länge 2ρ. Oder: als Umgebung
werde das System |x1−y1| < ρ, |x2−y2| < ρ definiert, d. h. das Inner eines Quadrates von der Seitenlänge
2ρ, dessen Mittelpunkt x ist, u.s.w.”

24“Den hiernach notwendigen Versuch, den Prozeß der Uferlosen Mengenbildung durch geeignete
Forderungen einzuschränken, hat E. Zermelo unternommen. Da indessen diese äußerst scharfsinnigen
Untersuchungen noch nicht als abgeschlossen gelten können und da eine Einführung des Anfangers in die
Mengenlehre auf diesem Wege mit großen Schwierigkeiten verbunden sein dürfte, so wollen wir hier den
naiven Mengenbegriff zulassen, dabei aber tatsächlich die Beschränkungen innehalten, die den Weg zu
jenem Paradoxon abschneiden.” (Hausdorff [80, p. 2]).
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purely as a system of its elements without considering relations between the elements, into
a space. His goal is obviously to define a very general notion of space that encompasses not
only the Rn, but also Riemann surfaces, spaces of infinitely many dimensions and spaces
the elements of which are curves or functions (Hausdorff [80, p. 211]). He gives two
advantages of such a general notion: it simplifies theories considerably and it prevents us
from illegitemately using intuition (die Anschauung). The first possibility is to base point
set theory on the notion of the distance (Entfernung) of two elements, that is a function
that associates with each pair of elements of a set a particular value. Hausfdorff remarks
that on the basis of the notion of distance the notion of a converging sequence of points
and its limit can be defined. Moreover, on the basis of the notion of distance, one can also
associate with each point of a set subsets of the space called neigbourhoods of the point.

However, one can also turn a set into a space by circumventing the notion of distance and
starting from a function f(a1, a2, a3, . . . , ak, . . . ) which maps certain sequences of elements
(the converging sequences) of the set M on elements of M (the limits of the sequences).
Thirdly, one can also start with the notion of neighbourhood. Formally one then maps
every element of a set M on certain subsets of M that are called the neighbourhoods of the
element. Which of the three “spatial” notions one chooses as the most fundamental is for
Hausdorff to a certain extent a matter of taste (Hausdorff [80, p. 211]). Neigbour-
hoods and limits can be defined in terms of distances. By means of neighbourhoods one
can define limits, but in general no distances. By means of limits one can define neither
neighbourhoods nor distances. Hausdorff writes; “Thus the distance theory seems to be
the most special and the limit theory the most general; on the other hand the limit theory
creates immediately a relation with the countable (with sequences of elements), which the
neighbourhood theory avoids.” (Hausdorff [80, p. 211]).

As a good teacher he now first gives an example. He defines metric spaces by means of
the well-known three axioms. Rn with the Euclidean distance is an example of a metric
space. Hausdorff concentrates on the four properties of the spherical neighbourhoods
that he had already given in his 1912 lectures. He writes:

“A topological space is a set E in which the elements (points) x are mapped
on certain subsets Ux, that we call neighbourhoods of x, in accordance with
the following neighbourhood axioms [...].”25

He then gives the four axioms that occur already in his 1912 lectures and he shows that
the spherical neighbourhoods in Rn satisfy the axioms.

Hausdorff’s generalization of the notion of space represented a major contribution
to the unification of mathematics. Geometry and analysis had been separate disciplines.
Axiomatization ended that. Hausdorf succeeded in picking a set of axioms that was, on
the one hand, general enough to handle abstract spaces and, on the other hand, restrictive
enough to yield an interesting theory. He succeeded in giving a theory of topological and

25Unter einem topologischen Raum verstehen wir eine Menge E, worin den elementen (Punkten) x
gewisse Teilmengen Ux zugeordnet sind, die wir Umgebungen von x nennen, und zwar nach Maßgabe der
folgenden Umgebungsaxiome [...]” (Hausdorff [80, p. 213]).
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metric spaces that encompassed the previous results and generated many new notions and
theorems.

2.5. L. E. J. Brouwer. Above we sketched the genesis of the notion of topological space
as it was finally defined by Hausdorff. His book was very influential. For years it was
an important source for many mathematicians. Yet our story, which is so far restricted to
the genesis of the notion of topological space, is very one-sided. In order to do some more
justice to the actual development, the contributions of Brouwer must be mentioned.
Brouwer’s approach to general topology is totally different from Hausdorff’s. Also
their views of mathematics were completely different. Hausdorff was a great supporter
of the axiomatic method. Brouwer rejected the axiomatic method and argued that
mathematics ought to be founded in intuition.26

In the first decade of this century Arthur Schoenflies had attempted to give a
thorough set-theoretic foundation of topology.27 In Schoenflies’ work a central result
is Jordan’s Theorem: a closed Jordan curve, i.e. the one-to-one continuous image of a
circle, divides the plane into two domains with the image as their common boundary. A
domain is an open connected set. At certain points Schoenflies work is quite subtle.
For example, he distinguishes between simple closed curves and closed curves that are not
simple by means of the notion of accessibility. By definition a point P on the boundary
of a domain is accessible if it can be reached from an arbitrary point in the domain by a
finite or an infinite polygonal path in the domain. A closed curve is here by definition a
bounded closed point set that divides the plane into two domains with the curve as their
common boundary (Schoenflies [151, pp. 118–120]). Closed curves that are such that
all their points are accessible from the two domains are called simple by Schoenflies. An
important result that he proved is the following: simple closed curves are closed Jordan
curves. In his early work Brouwer relied on Schoenflies’ results. However, in the
winter of 1908–1909 he discovered suddenly that Schoenflies’ results were not reliable.
In [33], entitled “Zur Analysis Situs”, he gave a series of devastating counterexamples.
Brouwer does not criticise Schoenflies’ theory of simple closed curves, but attacks his
more general theory of closed curves. In the paper he gave the sensational example of a
closed curve that splits the plane into three domains of which it is the common boundary.
It is also the first example of an indecomposable continuum. Schoenfliess’ general
theory of closed curves and domains had to be rejected entirely. Soon Brouwer produced
several other highly original papers. We will mention only two: (“Beweis der Invarianz der
Dimensionenzahl”, submitted in June 1910 and published in 1911 (Brouwer [34]) and his
paper [35]. The first paper marks, according to Freudenthal, the onset of a new period
in topology. Although the paper is very short and merely contains a simple proof of the
invariance of dimension, “it is in fact much more than this – the paradigm of an entirely
new and highly promising method, now known as algebraic topology. It exhibits the ideas
of simplicial mapping, barycentric extension, simplicial approximation, small modification,
and, implicitly, the mapping degree and its invariance under homotopic change, and the

26See also Koetsier and van Mill [104].
27For a fuller treatment we refer to Johnson [94, 95].
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concept of homotopy class.” (Freudenthal [64, p. 436])28. In the second paper Brouwer
proved the basic theorem on fixed points: every continuous transformation of the n-simplex
into itself possesses at least one fixed point. Although Brouwer’s results were reached
from a totally different philosophical position his results could be easily incorporated in
and considerably enriched the axiomatic framework created by Hausdorff. This led to
much further work.

2.6. Functional analysis. Brouwer’s work shows how problems in point set topology
led to algebraic topology. We will, however, use the example of Brouwer’s fixed point
theorems to illustrate another way in which results from general topology penetrated other
areas of mathematics.

Between Hilbert’s, Fréchet’s and Riesz’ first attempts and the publication of Haus-
dorff’s book the number of “sets with a spatial character”, deviating from Euclidean
space, had grown, and with it the potential value of abstract characterisations of the no-
tion of space. For example, between 1904 and 1910 Hilbert had published his six famous
“communications” on the foundations of the theory of integral equations. The space `2 had
gradually become the object of investigation. The proof of the isomorphism of `2 and L2,
the space of quadratic Lebesgue-integrable functions, led to the notion of Hilbert space.
In 1910 Riesz introduced the normed linear function space Lp. That work meant also the
start of modern operator theory.29

In his Lwów dissertation of 1920 Banach introduced the notion of a “Banach space”
(the name is Fréchet’s). In the 1920s and 1930s the Polish school carefully applied set-
theoretic methods to functional analysis and proved fundamental theorems like the Hahn-
Banach Theorem and the Banach Fixed-Point Theorem. With Banach’s “Théorie des
opérations linéaires” of 1932 functional analysis was established as one of the central fields
in modern analysis. Banach’s student J. P. Schauder (Studia Mathematica 2, 1930, pp.

170–179) and Schauder and J. Leray (Ann. de l’ École Normale Superieure 51, 1934,
pp. 45–78) carried over Brouwer’s topological notions into infinite-dimensional spaces
and generalized his fixed point theorem in order to establish the existence of solutions of
non-linear differential equations. This work was of great importance for the development
of non-linear functional analysis in the 1950s.

3. Intermezzo: The Golden Age

The next phase in the history of general topology, its golden age, lasted roughly from
the 1920s until the 1960s. Among the main themes in this period were dimension theory,
paracompactness, compactifications and continuous selections. The important results and
the way in which they are related can all be found in a number of classical textbooks (see
below). About this phase we will be very brief.

28For a more extensive treatment of Brouwer’s work in dimension theory we refer to Johnson [94,
95]. See also Koetsier and van Mill [104]. For Brouwer’s topological work as a whole we refer to
Freudenthal [64].

29For a more extensive survey of the history of functional analysis at the beginning of the century we
refer to Siegmund-Schultze [159].
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Dimension theory was fully developed (see Hurewicz and Wallman [90] for a beautiful
survey of dimension theory until 1941). In the late 1940’s and early 1950s paracompactness,
introduced by Dieudonné [54], was the leading theme in general topology. Stone [164]
proved that metrizable spaces are paracompact and Nagata, Smirnov and Bing pub-
lished/proved their metrization theorems in [136], [160] and [28] respectively. The work
on compactifications in the 1950’s culminated in the publication of the beautiful book [76]
by Gillman and Jerison. Michael [123, 124, 125] developed his theory of continuous
selections. For more information, see e.g. Hu [88], Dugundji [61], Nagata [138, 137],
Engelking [68, 67] and Arhangel’skĭı and Ponomarev [13].

We will turn now to the third period that we distinguish in the history of general
topology: the period of harvesting. We will concentrate in the sections 4 and 5 on two
major areas of research that developed out of the golden age, infinite-dimensional topology
and set theoretic topology, and show how these solved difficult problems outside of general
topology.

The style of §2 was rather informal, in keeping with the pioneering works of the area.
In the sections 4 and 5 we attempt to describe some complex results from the front line of
mathematics. In order to do so we will use the much more compressed, conceptual style
of modern mathematics.

4. The Period of Harvesting: Infinite-dimensional topology

4.1. The beginning. As usual, let a separable Hilbert space be the set

`2 =
{

x ∈ R∞ :
∞∑
i=1

x2
i < ∞

}
endowed with the norm

(4.1) ‖x‖ =

√√√√ ∞∑
i=1

x2
i .

The metric derived from (4.1) is complete and hence `2 is a complete linear space.30

By using convexity type arguments, Klee [102] proved that `2 \ {pt} and `2 are home-
omorphic. We say that points can be deleted from `2. In fact, he proved in that even
arbitrary compact sets can be deleted from any infinite-dimensional normed linear space.
This result demonstrates a striking difference between finite-dimensional and infinite-
dimensional normed linear spaces. For a finite-dimensional linear space is equivalent to
some Rn and no point can be deleted from Rn, since Rn \ {pt} is not contractible.

Klee’s results were later substantially simplified by the approach of Bessaga [22, 23]
who proved, among other things, that if an infinite-dimensional linear space admits a Ck-
differentiable norm (except at 0) which is not complete, then the deleting homeomorphisms
can in fact be chosen to be diffeomorphisms of class Ck.

30A linear space in this article is a real topological vector space.
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Motivated by the results of Klee, Anderson [9] studied in 1967 the question which sets
can be deleted from another classical linear space, namely the countable infinite topological
product of real lines R∞ (see §2.3.2). This space is denoted by s. Its topology is generated
by the following complete metric:

(4.2) d(x, y) =
∞∑

n=1

2−n |xn − yn|
1 + |xn − yn|

.

So s is a locally convex complete metrizable linear space. Such a space is called a Fréchet
space in the literature. Unfortunately, s has an unpleasant defect: its topology is not
normable in the sense that there is no norm ‖ · ‖ on it so that the metrics

ρ(x, y) = ‖x− y‖
and d in (4.2) are equivalent. This is clear once one realizes that every neighbourhood of
the origin contains a nontrivial (linear) subspace of R∞.

The linear structure on s is therefore very different from the linear structure on a normed
linear space, and so the methods of Klee and Bessaga do not apply if one wishes to prove
results on the possibility of deleting sets. But by using a completely different method,
Anderson [9] showed that from s one can delete sets as easily as from `2. In fact, he got
the following remarkable result31:

Theorem 4.1.1. Let X be any separable metrizable space. Then every σ- compact set can
be deleted from X × s.

A new field in topology was born: it was called infinite-dimensional topology.
Anderson was motivated by purely intrinsic topological questions. Soon however it

turned out quite unexpectedly that his methods could be used to solve a classical open
problem, posed by Fréchet [74, pp. 94–96] in 1928. In 1932 in [19, p. 233], Banach
stated that Mazur had solved the problem, but this claim turned out to be incorrect.
Subsequently it was understood that the question was still open.

To put the question into perspective, let us first make a few remarks. The spaces s and
`2 are both natural generalizations of the finite-dimensional Euclidean spaces Rn, but their
linear structures are notably different. There does not exist a homeomorphism h : s → `2

which is linear , i.e. has the property that

h(λx + µy) = λh(x) + µh(y)

for all x, y ∈ s, and λ, µ ∈ R. The question therefore naturally arises whether s and `2 are
(topologically) homeomorphic at all. The question of Fréchet and Banach is much more
eleborate, it asks whether all infinite-dimensional Fréchet spaces are homeomorphic.

The question had a long history when Anderson considered it in 1966. By several ad
hoc methods, homeomorphy of many linear spaces had already been established. The first
relevant result is due to Mazur [121] who proved in 1929 that all spaces Lp and `p for
1 ≤ p < ∞ are homeomorphic to `2. Then Kadec in a series of papers developed an
interesting “renorming technique” for separable Banach spaces and finally proved in 1965

31As usual, a space is σ-compact if it can be written as a union of countably many compact subspaces.
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that all infinite-dimensional separable Banach spaces are homeomorphic (see Kadec [97]).
Kadec’s proof used the result of Bessaga and Pe lczyński [25] that a separable Banach
space containing a linear subspace homeomorphic to `2 is in fact itself homeomorphic to `2.
This result combined with another result of Bessaga and Pe lczyński [26] showed that
the homeomorphy of s and `2 would imply the positive answer to Fréchet’s question, i.e.
the homeomorphy of all separable infinite-dimensional Fréchet spaces. The proofs of these
interesting results combine techniques from functional analysis, especially the geometry of
Banach spaces, with various ingeneous arguments from general topology.

This final, but crucial, open problem was solved in the affirmative by Anderson [7]
using the results from his previous paper [9]. He proved that s and `2 are homeomorphic
and hence settled the question of Fréchet and Banach in the affirmative.

4.2. The Hilbert cube Q. Let Q denote the product
∏∞

n=1[−1, 1]n of countably many
copies of [−1, 1]. The topology on Q is the Tychonoff product topology. Alternatively, its
topology is generated by the metric

d(x, y) =
∞∑

n=1

2−n · |xn − yn|.

So Q is a compact metrizable space. Geometrically one should think of it as an infinite-
dimensional brick the sides of which get shorter and shorter. This can be demonstrated in
the following way. Let x(n) ∈ Q be the point having all coordinates 0 except for the n-th
coordinate which equals 1. So x(n) is the “endpoint” of the n-th axis in Q. In addition,
let y be the “origin” of Q, i.e., the point all coordinates of which are 0. Intuitively, each
x(n) has distance 1 from y and hence x(n) and y are far apart. However, the appearance
of the factor 2−n in the definition of d implies that

d(x(n), y) = 2−n,

whence the sequence (x(n))n converges to y in Q.
It can be shown that Q is homeomorphic to the subspace

{x ∈ `2 : (∀n ∈ N)(|xn| ≤ 1
n
}

of `2.
The first paper in infinite-dimensional topology is in fact Keller’s paper [100] from

1931. In that paper it is shown that all infinite-dimensional compact convex subsets of `2

are homeomorphic to Q, and also that Q is topologically homogeneous, i.e. for all x, y ∈ Q
there exists a homeomorphism f : Q → Q with f(x) = y. This last result is at first glance
very surprising since the finite-dimensional analogues In of Q are not homogeneous. For
n = 1 this is a triviality, and for larger n this boils down to the Brouwer Invariance of
Domain Theorem.
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A familiar construction in topology is that of the cone over a locally compact space X,
it is the one-point compactification of the product X × [0, 1). The compactifying point is
called the cone point of the cone which itself is denoted cone(X).32

Now, it is clear that for each n the cone over In is homeomorphic to In+1 and so naively
one would expect, by taking the “limit” as n goes to infinity, that cone(Q) ≈ Q. That
this is indeed true follows from Keller’s first result because we can realize cone(Q) as a
compact convex subset of `2.

Since Q is contractible, the cone point in cone(Q) has arbitrarily small neighbourhoods
with contractible boundaries. This is not surprising since every point on the boundary of
In has the same property. However, points in the interior of In do not have this property.
But since Q is homogeneous, every point of Q has arbitrarily small neighborhoods with
contractible boundaries. This is again a striking difference with the finite-dimensional
situation.

At the time Keller made his fundamental observations, they apparently did not get
the credit they deserved for they did not play any significant role for approximately thirty-
five years. Maybe, but this is speculation on the part of the authors of the present paper,
in the thirties Keller’s results were thought of as mere curiosities. Infinite-dimensional
topology took approximately thirty-five more years to finally come to real existence. In
that process, the work of Anderson was vital.

4.3. Homeomorphism extension results in Q-manifolds. In [9], Anderson also
proved results on the possibility of extending homeomorphisms in Q. It was known already
that if X is any countable closed subset of Q then any homeomorphism f : X → X can be
extended to a homeomorphism of Q (see Keller [100], Klee [101] and Fort [69]). In the
subsequent paper [8], Anderson introduced the fundamental concept of a Z-set in Q and
proved that any homeomorphism between such sets can be extended to a homeomorphism
of Q.

Before we present the definition of a Z-set, we make some remarks. Let K denote
the familiar Cantor middle-third set in I. It is known that it is characterized by the
following topological properties: K is a compact, metrizable, zero-dimensional space33

without isolated points. So it follows easily that K × K ≈ K from which it follows that
K contains a nowhere dense closed copy of itself, say X. It also contains a copy of itself
having nonempty interior, namely K itself. Consider any homeomorphism ϕ : X → K.
Then it cannot be extended to a homeomorphism ϕ̄ : K → K for obvious reasons. One of
them being that K is fat, having nonempty interior, and X is small, having empty interior.

A space homeomorphic to K is called a Cantor set.
Similar remarks apply to other spaces as well. It is known that any homeomorphism

ϕ between Cantor sets in R2 can be extended to a homeomorphism of R2. However,
Antoine’s necklace X is a Cantor set in R3 whose complement is not simply connected
and so no homeomorphism ϕ : X → Y , where Y is a Cantor subset of the x-axis of R3,

32There are other constructions of cones that work for general spaces. One then considers the product
X × I and identifies the set X × {1} to a single point. But this cone is in general not metrizable.

33Here a space is called zero-dimensional if it has a base consisting of open and closed sets.



GENERAL TOPOLOGY 25

can be extended to a homeomorphism of ϕ : R3 → R3. This phenomenon occurs in Q as
well: in [187] Wong constructed a wild Cantor set in Q.

So for a homeomorphism extension theorem, one needs a class of tame subspaces which
are flexible enough to perform the required constructions. For Q this class was identified by
Anderson. He called a closed subset A of Q a Z- set34 provided that for every nonempty
homotopically trivial open subset U ⊆ Q the set U \ A is nonempty and homotopically
trivial as well. He proved in [8] the following fundamental homeomorphism extension
theorem:

Theorem 4.3.1. If ϕ : A → B is a homeomorphism between Z-sets in Q then there exists
a homeomorphism ϕ̄ : Q → Q extending ϕ.

In the proof important ideas of Klee [101] were exploited.
Later, Barit [20] observed that if the homeomorphism ϕ satisfies d(ϕ, id) < ε for some

ε > 0 then the extension ϕ̄ can be chosen to satisfy the same smallness condition.
The final result on the possibility of extending homeomorphisms in manifolds modeled

on Q is due to Anderson and Chapman [11]. Let X be a space and let f : X → X be
a function. If U is an open cover of X then we say that f is limited by U provided that
for every x ∈ X there exists U ∈ U containing both x and f(x). Here is the Anderson-
Chapman Homeomorphism Extension Theorem from 1971:

Theorem 4.3.2. Let M be a manifold modeled on Q and let A, B ⊆ M be Z-sets. If
ϕ : A → B is a homeomorphism and U is an open cover of M such that ϕ is limited by it,
then there exists a homeomorphism ϕ̄ : M → M extending ϕ which is also limited by U.

This is a purely topological result belonging to general topology and at the time Ander-
son and Chapman proved it, they could not have foreseen what potential this theorem
turned out to have. We will report on this later.

4.4. Identifying Hilbert cubes. In 1964, Anderson [6] proved that the Q is homeo-
morphic to any countably infinite product of dendrons.35 In particular, one gets the curious
result that if T denotes

(I× {0}) ∪ ({1
2
} × I)

then T × Q and Q are homeomorphic. For a published proof of Anderson’s result, see
West [181]. So the Hilbert cube surfaces at various places, not only as convex objects such
as in Keller’s Theorem cited above. The result started the game of identifying Hilbert
cubes. It was a very fascinating game. The tools were from general topology with special
emphasis on geometric methods.

The hyperspace 2X of a compact space X is the space consisting of all nonempty closed
subsets of X with topology generated by the Hausdorff metric dH defined by

dH(A, B) = inf{ε > 0 : A ⊆ Dε(B) and B ⊆ Dε(A)};
34One of the authors of the present paper once asked Anderson why he chose this terminology. He

replied that he had no idea.
35A dendron is a uniquely arcwise connected Peano continuum.
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here Dε(A) means the open ball about A with radius ε. Hyperspaces were first considered in
the early 1900’s in the work of Hausdorff and Vietoris. In 1939 Wojdys lawski [186]
asked whether for every Peano continuum X the hyperspace 2X is homeomorphic to Q.
At the time of the conjecture this was a rather bold question because the only nontrivial
Hilbert cubes that were identified at that time were Keller’s infinite-dimensional compact
and convex subsets of `2. In [153] Schori and West proved that 2I is homeomorphic to Q
and in [49] Curtis and Schori completed the picture by showing that 2X is homeomorphic
to Q if and only if X is a Peano continuum. This was a spectacular result at that time
and fully demonstrated the power and potential of infinite-dimensional topology.

4.5. Hilbert cube manifolds. In the early seventies, Chapman began the study of
spaces modeled on Q, the so called Hilbert cube manifolds or Q- manifolds. Certain
delicate finite-dimensional obstructions turned out not to appear in Q-manifold theory. In
some vague sense, Q-manifold theory is a “stable” PL n-manifold theory.

We already mentioned the important homeomorphism extension result Theorem 4.3.2.
Using this result, and several ingeneous geometric constructions, Chapman developed the
theory of Q-manifolds. It was known from previous work that if P is a polyhedron then
P ×Q is a Q-manifold. Chapman [41] proved the converse, namely that all Q-manifolds
are of this form, a result that turned out to be of fundamental importance later.

Some truly spectacular results were the result of Chapman’s efforts. In 1974 he used
Q-manifold theory to prove the invariance of Whitehead torsion. This is the statement
that any homeomorphism between compact polyhedra is a simple homotopy equivalence.
A map f : X → Y of compact polyhedra is a simple homotopy equivalence if it is homotopic
to a finite composition

X
f1−→ X1

f2−→ X2 −→ · · · fn−→ Xn
fn+1−→ Y,

where each Xi is a compact polyhedron and each fi is either an elementary expansion or
an elementary collapse. Thus a simple homotopy equivalence is a homotopy equivalence of
a very special nature. It is one which can be resolved into a finite number of elementary
moves. More specifically, Chapman proved in [42]:

Theorem 4.5.1. A map f : X → Y between compact polyhedra is a simple homotopy
equivalence if and only if f × {id} : X ×Q → Y ×Q is homotopic to a homeomorphism.

There is also a version of this result for noncompact polyhedra.
All of Chapman’s results quoted here can also be found in his book [?].

4.6. West’s Theorem. Borsuk [?, Problem 9.1] asked whether every compact ANR
has the homotopy type of a compact polyhedron. For simply connected spaces, this ques-
tion was answerd by De Lyra [117] in the affirmative. For non-simply connected spaces
Borsuk’s problem stayed a mystery for a long time.

The problem was laid to rest by West [182] who showed, using among other things the
technique in Miller [128], that for every compact ANR X there are a compact Q-manifold
M and a cell-like map from M onto X.
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A cell-like map between compacta is one for which point-inverses have the shape of
a point; a cell-like map between ANR’s is a fine homotopy equivalence as proved by
Haver [81] and Toruńczyk [173]. As we have seen above, the Q-manifold M is homeo-
morphic to P ×Q for some compact polyhedron P and so X has the same homotopy type
as P .

4.7. Edwards’ Theorem. In 1974, Edwards [?, Chapter XIV] improved West’s result
by showing that X × Q is a Q-manifold if and only if X is a locally compact ANR.
This provides an elegant proof of West’s Theorem: for a compact ANR X there is by
Chapman’s result a compact polyhedron P such that X×Q and P×Q are homeomorphic;
clearly then X and P have the same homotopy type.

In the proof of Edwards’ result and in Toruńczyk’s work, which we shall describe mo-
mentarily, a crucial role was played by shrinkable maps. A continuous surjection f : X → Y
between compact spaces is said to be shrinkable if one can find for every ε > 0 a home-
omorphism ϕ of X onto itself such that d(f ◦ ϕ, f) < ε, and diam(ϕ(f−1(y)) < ε for all
y ∈ Y . So a shrinkable map f is map whose fibers can be uniformly shrunk to small sets
by a homeomorphism that looking from Y does not change f too much.

Bing’s Shrinking Criterion form [29] characterizes shrinkable maps as uniform limits of
homeomorphisms (so-called near homeomorphisms). Thus, in order to prove two compact
spaces homeomorphic it suffices to produce a shrinkable map between them.

As an example consider cone(Q). We observed above that from Keller’s Theorem it
follows that cone(Q) ≈ Q. But this follows also trivially from Bing’s Shrinking Criterion.
Since one-point compactifications are unique, it follows that we can also think of cone(Q)
as the space obtained from Q× [0, 1] by identifying the set Q×{1} to a single point. The
decomposition map is easily seen to be shrinkable, hence a near homeomorphism, and so
cone(Q) ≈ Q× [0, 1] ≈ Q, as desired (for details, see [126, Theorem 6.1.11]).

It is easy to see that if X and Y are compact ANR’s and f : X → Y is a near home-
omphism then f is cell-like. So the method of shrinkable maps only works for cell-like
maps.

4.8. Toruńczyk’s Theorems (part 1). In 1980, Toruńczyk [174] published a remark-
able result. He was able to topologically characterize the Q-manifolds among the locally
compact ANR’s. From Edwards’s Theorem it was already known that if X is a locally
compact ANR then X × Q is a Q-manifold. Toruńczyk studied the question when the
projection

π : X ×Q → X

is shrinkable, and came to an astounding conclusion. This map is shrinkable if and only if
X has the following property: given n ∈ N and two maps f, g : In → X and ε > 0 there
exist maps ξ, η : In → X such that

ξ[In] ∩ η[In] = ∅

while moreover

d(f, ξ) < ε and d(η, g) < ε.
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For obvious reasons this property is called the disjoint cells-property. So one arrives at the
following conclusion, which is called Toruńczyk’s Theorem:

Theorem 4.8.1. Let X be a locally compact ANR. Then X if a Q- manifold if and only
if X satisfies the disjoint-cells propery.

As in the case of Edwards’ Theorem, the Bing Shrinking Criterion and the Z-set Un-
knotting Theorem 4.3.2 were crucial in the proof of this result.

Toruńczyk’s remarkable theorem ended the game of identifying Hilbert cubes. For in
order to prove that a given space X is homeomorphic to Q, all one needs to prove is that it
is an AR and satisfies the disjoint cells-property. Observe that both properties are trivially
necessary for a space to be homeomorphic to Q. It is fascinating that these two properties
that are stated in simple topological terms are also sufficient. In order to demonstrate the
power of his topological characterization of Q, Toruńczyk [174] presented a very short
and elegant proof of the Curtis-Schori-West Hyperspace Theorem.

4.9. The Taylor Example. The above results emphasized the close relationships between
infinite-dimensional topology and AR and ANR-theory. As we said above, certain delicate
finite-dimensional obstructions turned out not to appear in Q-manifold theory. However,
certain delicate infinite-dimensional obstructions do appear in infinite-dimensional topo-
logy. The first result demonstrating this was the result of Taylor [167] which we shall
describe briefly.

It is an example of a cell-like map from a compactum X to Q which is not a shape
equivalence. The space X is the inverse limit of a sequence of compact polyhedra with
special properties. That the desired polyhedra exist follows from work of Adams [2] and
Toda [169]. Adams’ proof uses complex K-theory.

The Taylor Example was widely used in infinite- dimensional topology, shape theory
and ANR-theory to obtain all sorts of counterexamples. Daverman and Walsh [52] used
it to get an example of a cell-like map f : X → Y between compacta whose non-degeneracy
set is contained in a strongly countably dimensional set and which is not a shape equiva-
lence. They also obtained from the Taylor Example new examples of locally contractible
continua which are not ANR’s. It was also used in 1979 to answer Borsuk’s problem [?,
Problem V.12.16] in the negative for the construction of an upper semi-continuous decom-
position of Q into copies of itself, whose decomposition space is not an ANR36. And it
was used to give a negative answer to Kuratowski’s question [113] from 1951 whether
a space with the compact extension property is necessarily an AR; a space X is said to
have the compact extension property if for every space Y and every compact subset A of
Y every continuous map from A to X has a continuous extension over X37. For the use of
the Taylor Example in shape theory, see Mardešić and Segal [120].

4.10. Dranǐsnikov’s Example. Through the work of Edwards and Walsh [180] it
was known in 1981 that the following two fundamental problems in dimension theory are
equivalent:

36The construction can be found in Topology and its Applications 12 (1981), 315–320.
37The construction can be found in Proc. Amer. Math. Soc. 97 (1986), 136–138.
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(1) Does there exist an infinite-dimensional compactum with finite cohomological di-
mension? (This problem is due to Alexandrov [5].)

(2) Does there exist a cell-like map f : X → Y , where X is a finite dimensional com-
pactum but Y is infinite-dimensional? (This problem, known as the cell-like di-
mension raising mapping problem, grew out of manifold theory and the work of
Kozlowski [107]. The first attempt to solve it by proving that every infinite-
dimensional compactum contains sets of arbitrarily large finite dimension was shown
to lead nowhere by Walsh [179].)

The problem was solved by Dranǐsnikov [59] in 1988: there exists an infinite-dimensional
compactum with cohomological dimension 3. Essential in his construction is that there is
a generalized cohomology theory for which the Eilenberg-MacLane complex K(Z, 3)
behaves like a point. For 2 dimensions, such an approach does not work. But there does
exist an infinite-dimensional compactum with cohomological dimension 2, as was shown by
Dydak and Walsh [62]. Their work is based on the validity of the Sullivan conjecture.

As in the case of the Taylor Example, the Dranǐsnikov Example was also used by
various authors to obtain counterexamples to a variety of questions. We will mention only
one such application of special interest in infinite-dimensional topology. To put this result
into perspective, we will first make some remarks. It was known since 1951 from the work of
Dugundji [60] that every locally convex linear space is an AR. Whether the local convexity
assumption could be dropped was a fascinating question in infinite-dimensional topology
and ANR-theory for a very long time. It was settled in the negative by Cauty [39] in
1994 by a very interesting method and an essential use of the Dranǐsnikov Example.
More specifically, he proved that there exists a necessarily non-locally convex linear space
L which is not an AR but which is a closed linear subspace of a linear space which is an
AR.

4.11. Toruńczyk’s Theorems (part 2). So far, we mainly concentrated on (locally)
compact spaces. As is to be expected, there are also results for complete spaces. Recall
that infinite-dimensional topology started with the investigation of completely metrizable
linear spaces. In [175] Toruńczyk characterized the topology of Hilbert spaces in much
the same way as he characterized the topology of the Hilbert cube. In this characterization
the disjoint-cells property is replaced by the discrete approximation property; this property
states that for every open cover U of the space X and every map f from the topological
sum

⊕∞
n=1 In to X there is another map g from

⊕∞
n=1 In to X that is U close to f and is

such that the family {g[In] : n ∈ N} is discrete. The characterization reads:

Theorem 4.11.1. A separable space is a manifold modeled on `2 if and only if it is a
completely metrizable separable ANR with the discrete approximation property.

As a consequence `2 is characterized as the only separable completely metrizable AR
with the discrete approximation property.

Toruńczyk has also a similar characterization of manifolds modeled on arbitrary
Hilbert spaces, see [175] for more details.
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4.12. Epilogue. We saw that Anderson, interested in questions in general topology, cre-
ated a new field in topology called infinite-dimensional topology and was at the beginning
unaware of its potential. But good mathematics inevitably led to good results in various
other disciplines, mostly in algebraic and geometric topology. The highlights of infinite-
dimensional topology are the theorems of Anderson on the homeomorphy of `2 and s, of
Chapman on the invariance of Whitehead torsion, of West on the finiteness of homoto-
topy types of compact ANR’s and of Toruńczyk on the topological characterization of
manifolds modeled on various infinite-dimensional spaces.

A large collection of open problems is West’s paper [183]. The subjects that are being
touched upon range from absorbing sets and function spaces to ANR theory. We mention
two particularly prominent problems:

(1) Let α : Q → Q be an involution with a unique fixed-point. Is α conjugated to the
standard involution β on Q defined by β(x) = −x?

(2) For n ≥ 3, let Hn be the group of all homeomorphisms on In endowed with the
compact-open topology. Is Hn homeomorphic to `2?

5. The Period of Harvesting: Set theoretic topology

In the sixties, general topology renewed its interaction with set theory. In 1878, Can-
tor’s work [37] had created set theory and topology as we saw in §2.2. They developed as
diverse, complex and independent fields. Soon after their renewed interaction spectacular
results surfaced, also in parts of topology where traditionally geometric and algebraic tools
were used, or tools from analysis. It is about those results that we wish to report here.

We saw that in [37] Cantor wrote down the Continuum Hypothesis (abbreviated CH)
that would have a profound effect on set theory in the 20th century. The CH states that the
first uncountable cardinal is c, the cardinality of the real line (the continuum). The work of
Gödel [77] and Cohen [46] has shown that CH is consistent with and independent from
the ‘usual’ Zermelo-Fraenkel Axioms of Set Theory. The methods used in these proofs,
and especially Cohen’s forcing, had a profound effect on the development of a new field
in topology called set theoretic topology. In that development, the work of Mary Ellen
Rudin was vital.

In our report below we will almost exclusively concentrate on independence results in
topology, that is, results that are independent from and consistent with the ‘usual’ Zermelo-
Fraenkel Axioms of Set Theory. So we will ignore important parts of general topology. Also
some problems are being discussed whose solution is very strongly of a set theoretic nature
without being an independence result. None of the results mentioned has its roots in
general topology.

5.1. Souslin’s problem. Suppose that S is a connected, linearly ordered topological space
without a first or last element. If S is separable then S is isomorphic to R. What happens if
one relaxes the separability condition to the condition that any pairwise disjoint collection
of nontrivial intervals of X is countable? This is Souslin’s Problem from [162]. It was
posed in 1920 and has fascinated topologists and set theorists ever since.
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The requirement that pairwise disjoint collections of intervals (or more general open
sets) are countable is called the countable chain condition (abbreviated ccc).

A counterexample to Souslin’s question, a ccc connected linearly ordered space without
first or last element that is not homeomorphic to the real line, is called a Souslin line,
and Souslin’s Hypothesis (SH) is the statement that no Souslin lines exist. Jech [92] and
Tennenbaum [168] used Cohen’s forcing method to show that Souslin lines can exist and
Jensen [93] proved that they also exist in Gödel’s Constructible Universe, the same uni-
verse Gödel used to establish the consistency of the Continuum Hypothesis. In [161],
Solovay and Tennenbaum developed the forcing method further and proved the con-
sistency of Souslin’s Hypothesis. Their proof established the consistency of a powerful
combinatorial principle, which we shall discuss briefly.

The principle, called Martin’s Axiom (MA), states that no compact Hausdorff space that
satisfies the ccc is the union of fewer than c nowhere dense sets. Under CH ‘fewer than c’
means countable and so MA holds by the Baire Category Theorem. However, MA is also
consistent with the negation of CH and it is this combination, MA + ¬CH, that proved to
be very powerful indeed.

Solovay and Tennenbaum [161] showed that under MA + ¬CH there are no Souslin
lines, thereby proving that SH is undecidable. Ever since this result, Martin’s Axiom
played a prominent role in set theory and set theoretic topology, as the rest of our story
will tell.

5.2. Alexandroff’s problem. Most mathematicians in geometric topology are only inter-
ested in metrizable spaces, and metrizable manifolds in particular. But there are also math-
ematically important objects that are not always metrizable, for example, CW-complexes,
linear spaces, topological groups and manifolds. By a manifold we mean a locally Euclidean
Hausdorff space. Manifolds are certainly mathematically important, with or without dif-
ferential or algebraic structure.

Let M be a manifold. If A ⊆ M is closed then one certainly wants to be able to extend
every continuous real valued function f : A → R to a continuous function f̄ : M → R.
By the Tietze-Urysohn Theorem, this is equivalent to M being normal. In the process
of constructing new continuous functions from old ones (think of homotopies) it is also
extremely pleasant if M has the following property: for every closed subset A ⊆ M there
is a sequence 〈Un〉n of open subsets of M such that A =

⋂
n<ω Un. General topologists say

that spaces with this property are perfect. If one wants to generalize some of the existing
theory on metrizable manifolds to nonmetrizable ones, it becomes clear quite quickly that
in many instances it is inevitable to restrict oneself to manifolds that are both normal
and perfect, i.e. manifolds that are perfectly normal. The question then naturally arises
whether there is a perfectly normal manifold which is not metrizable. This question was
asked by Alexandroff [4] in 1935 and also by Wilder [185] in 1949.

It seems very unlikely that a set theoretic statement like CH has anything to do with
manifolds, let alone with Alexandroff’s problem. In [150] however, Rudin and Zenor
constructed assuming CH an example of a perfectly normal nonmetrizable manifold. Later,
Kozlowski and Zenor [108] even constructed such a manifold that is analytic, again
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under CH. These provisional solutions to Alexandroff’s problem very strongly suggested a
positive answer to it.

In [149], Rudin proved that under MA + ¬CH, all perfectly normal manifolds are
metrizable; as a consequence, she came to the remarkable conclusion that Alexandroff’s
problem is undecidable.

5.3. Dowker’s problem. In [30], Borsuk proved his famous homotopy extension the-
orem for metrizable spaces. Actually, his result is true for spaces X for which the prod-
uct X × I is normal. This generalisation is due to Dowker and was first published in
Hurewicz and Wallman [90]. A necessary condition for X × I to be normal is that X
is normal. So it is natural to ask whether this condition is also sufficient. This is Dowker’s
Problem. Dowker [58] and Katětov [98] independently gave necessary and sufficient
conditions for a space X to have the property that its product with I is normal.

Theorem 5.3.1. Let X be a space. Then X × I is normal if and only X is normal and
for every decreasing sequence of closed subsets 〈Dn〉n of X with

⋂
n<ω Dn = ∅ there exists

a sequence 〈Un〉n of open subsets of X such that Dn ⊆ Un for every n while moreover⋂
n<ω Un = ∅.

A normal space X for which X×I is not normal is called a Dowker space in the literature.
So if one wishes to construct a Dowker space, all one needs to do is to construct a normal
space X having a sequence of closed subsets 〈Dn〉n of X with

⋂
n<ω Dn = ∅ such that if

Un ⊆ X is open and Dn ⊆ Un for every n then
⋂

n<ω Un 6= ∅. It is surprising that this
condition is such a complicated one.

In 1955, Rudin [145] constructed the first example of a Dowker space assuming the
existence of a Souslin line. That was a major breakthrough at that time, but as turned
out later, had an unpleasant drawback since, as we saw above, SH is undecidable.

But in 1971 it was shown that the solution to Dowker’s problem does not depend on set
theory: the first example of a real (= using no axioms beyond ZFC) example of a Dowker
space was constructed again by Rudin [147]. This Dowker space was the only ZFC example
of such a space for about twenty years. Balogh [17] constructed another such example
only in 1994 (see also his subsequent paper [18]). This very interesting example is ‘small’
while the original Dowker space is ‘large’. It is certainly not the final word on Dowker
spaces since it is still unknown whether there can be a first countable Dowker space in
ZFC, or one of cardinality ω1. Using pcf theory, Kojman and Shelah [105] constructed
a Dowker subspace of Rudin’s Example in [147] of size ℵω+1. This is a ‘real’ example of
a small Dowker space since its cardinality is decided in ZFC, while Rudin’s and Balogh’s
are not.

Ironically, Borsuk’s Theorem that started all this research, turned out to hold also with-
out the assumption of normality of the product with I, see Morita [133] and Star-
bird [163].

5.4. Whitehead’s problem. Whitehead asked whether every compact arcwise- con-
nected abelian topological group is isomorphic to a product of circles. This is a very
natural problem for a topologist. We first translate it into purely algebraic language to
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turn it into a very natural problem for an algebraist as well. If A and B are abelian groups
then a surjective homomorphism f : A → B is said to split if there is a homomorphism
g : B → A with f ◦ g is equal to the identity on B. An abelian group G is Whitehead if for
every abelian group B, every surjective homomorphism f : B → G with kernel isomorphic
to Z splits. It is clear that all free groups are Whitehead and Whitehead asked whether
all Whitehead groups are free. It is a consequence of Pontrjagin duality that both problems
we attributed here to Whitehead are equivalent.

Shelah [154, 155] showed that Whitehead’s problem in undecidable by showing that un-
der V = L all Whitehead groups are free while under MA + ¬CH there exists a Whitehead
group which is not free.

The fact that Whitehead’s problem can be formulated both into algebraic and topological
language is not an exception for a problem that turns out to be dependent upon one’s set
theory. These problems can often be translated into several mathematical languages and
can therefore be attacked from several directions. There are for example numerous prob-
lems in Boolean algebras that can be translated into topology and vice versa. Sometimes
such a translation helps.

It is questionable of course whether Whitehead’s problem discussed above is a ‘real’
topological problem. We took the liberty of mentioning it because it is such a good example
of our point that problems of set theoretic nature can often be attacked from different
angles.

5.5. Choquet’s problem. A BA (= Boolean Algebra) will be identified with its universe.
A BA B is called

complete/countably complete/weakly countably complete

if for any two subsets P and Q such that p ∧ q = 0 for r ∈ P and q ∈ Q

without further condition/with |P | = ω or |Q| = ω/with |P | = |Q| = ω

there is an s ∈ B which separates P and Q, i.e. p ≤ s fpr p ∈ P and q ≤ s′ for q ∈ Q.
Consider the following statements:

FB every weakly countably complete BA is a homomorphic image of a
countably complete BA;

BE every countably complete BA is a homomorphic image of a complete
BA;

FE every weakly countably complete BA is a homomorphic image of a
complete BA.

The earliest statement we are aware of where one of these statements is considered is
Louveau [116]. Here he attributes the question (or conjecture) of whether FE holds
to Choquet, and proves that under CH the restriction of FE to algebras of size ≤ c
holds. The question of whether BE holds was raised by Koppelberg [106], who was
apparantly unaware of Louveau’s paper. She proved that the restriction of BE to algebras
of cardinality ≤ c holds under CH. The question of whether FB holds was raised by van
Douwen, Monk and Rubin [130], who also repeated the question of whether BE holds.
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By Stone duality, all these question can be formulated in topological language. They
were all solved by topologists. It was shown that FB is not a theorem in ZFC under MA +
c = ω2, hence neither is FE.38 The problem of whether BE holds turned out to be difficult.
It was finally shown in Dow and Vermeer [57] that BE is not a theorem of ZFC. The
algebra in question is B, the algebra of Borel sets of the unit interval. They showed that if
B is the quotient of some complete Boolean algebra then there is a lifting of the quotient
of B modulo the meager sets back into B. An appeal to a result of Shelah [158] that
such a lifting need not exist finishes the proof.

5.6. Binary operations on βω. Let βω denote the the Čech-Stone compactification of
the discrete space ω. As is well-known, the points of this space can be thought of as
ultrafilters in P(ω). Thinking about the points in βω in this way, it is easy to extend
various binary operations on ω to binary operations on βω. As an example, let us consider
ordinary addition on ω.

For A ⊆ ω and n ∈ ω we set

A− n = {k ∈ ω : k + n ∈ A}.
For p, q ∈ βω put

p + q = {A ⊆ ω : {n ∈ ω : A− n ∈ p} ∈ q}.
Then + is a well-defined binary operation on βω which extends the ordinary addition on
ω and moreover is associative and right-continuous (this is due to Glazer, see [47]). So
(βω, +) is a compact right topological semigroup. By a result of Wallace [177, 178] (see
also Ellis [66]), the compactness of βω implies the existence of a point p ∈ βω for which
p + p = p, i.e. a so- called idempotent.

Glazer (see [47]) used the existence of idempotents in the semigroup (βω, +) to give
a particularly simple topological proof of Hindman’s Theorem from [86]: If the natural
numbers are divided into two sets then there is a sequence drawn from one of these sets
such that all finite sums of distinct numbers of this sequence remain in the same set.

This statement was known for some years as the Graham-Rothschild Conjecture.
Several other results from classical number theory can be proved as well by similar

methods. In [21] Bergelson, Furstenberg, Hindman and Katznelson again used
the semigroup (βω, +) to present an elementary proof of van der Waerden’s Theorem
from [176]: if the natural numbers are partitioned into finitely many classes in any way
whatever, one of these classes contains arbitrarily long arithmetic progressions.

5.7. Strong homology. Let Y (k+1) be the topological sum of countably many copies of
the (k+1)-dimensional Hawaiian earring. The calculation of the strong homology of Y (k+1)

is of interest in the question of whether strong homology satisfies the additivity axiom (of
Milnor [129]). In [119], Mardešić and Prasolov translated the calculation of the (k-
dimensional) strong homology of Y (k+1) into a condition of set theory. They proved that
this condition holds under CH, and hence that the (k-dimensional) strong homology of
Y (k+1) can be nontrivial. But, as was shown in Dow, Simon and Vaughan [56], there

38The construction can be found in Trans. Amer. Math. Soc. 259 (1980), 121–127.
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are also models of set theory in which it does not hold, and therefore in such models the
(k-dimensional) strong homology of Y (k+1) is trivial.

5.8. Banach spaces. In Banach space theory, many results from general topology are
applied. The completeness of the real line gives the Hahn-Banach Theorem, Baire’s Cat-
egory Theorem is essential in the proof of the open mapping theorem and the uniform
boundedness principle, while Tychonoff’s compactness theorem proves the Alaoglou theo-
rem. Etcetera. It is therefore not surprising that set theoretic topology turned out to have
very interesting applications in Banach space theory. It is about two of those results that
we wish to report here.

For a compact space K we let M(K) denote the space of all finite real-valued regular
Borel (or, Baire) measures on K (with ‖µ‖ = |µ|(K), where |µ| is the total variation of µ).

Pe lczyński [140] proved the following result:

Theorem 5.8.1. Let α be an infinite cardinal number, X a Banach space, and `1
α ↪→ X

an isometric imbedding. Then the space M({0, 1}α) admits an isometric imbedding in the
dual X∗ of X. In particular,

L1({0, 1}α) ↪→ X∗ and `1
2α ↪→ X∗.

The question naturally arises whether the converse to this theorem holds, i.e. whether
from M({0, 1}α) ↪→ X∗ it follows that `1

α ↪→ X. Pe lczyński conjectured that this is true,
and verified the conjecture for α = ω, [140]. The answer to Pe lczyński’s Conjecture is
fascinating. For cardinals α > ω1 it is true, as was shown by Agryros [3]. So there only
remains the cardinal ω1. For that cardinal number the question is undecidable. Under MA
+ ¬CH, Pe lczyński’s Conjecture is true for α = ω1 as was also shown by Agryros [3].
But under CH, Haydon [82] constructed a counterexample of a particular nice form since
it is of the form C(K) for a certain compact Hausdorff space K. The space K is an inverse
limit of an ω1-sequence of Cantor sets with certain specific properties. Independenly, a
similar space was also constructed by Kunen [111] motivated by topological questions. In
addition, it also surfaced in the work of Talagrand [165]. So Pe lczyński’s Conjecture
turned out to boil down partly to the construction under CH of a very peculiar compact
Hausdorff space K. It is precisely in such constructions where set theoretic topology plays
such a prominent role and where its techniques are fundamental.

Another application of set theoretic topology to Banach space theory is the following
one. If X is a Banach space and A ⊆ X then convex(A) denotes the closed convex hull
of A. If X is separable, then for every uncountable subset A ⊆ X there exists an element
a ∈ A such that a ∈ A \ {a}, in particular, a ∈ convex(A \ {a}). Davis and Johnson
asked whether the latter property could hold in a non-separable Banach space. It was
solved in the affirmative by Shelah [156] under the combinatorial principle 3. But this
example is not of the form C(K) for some compact Hausdorff space K. But such a space
exists even under the weaker hypothesis CH, as was shown by Kunen [109].

5.9. Epilogue. Our overview of set theoretic topology is very much less than complete
as a description of what happened in that area (see our remarks at the beginning of the
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introduction). We have for example not mentioned several very important areas in set
theoretic topology such as cardinal functions, S- and L-spaces, the Normal Moore Space
Conjecture, βX (including βω), the set theoretic aspects of topological groups, etc. In
addition, we could have talked much more about its relation with set theory and we said
very little about Boolean Algebras.

For more information on set theoretic topology we refer the reader to Rudin’s book [148],
the Handbook of Set Theoretic Topology [112] and the book on Open Problems in Topo-
logy [127].

Notes

In this section we will give some additional information on the material presented in §§4
and 5 that we find useful. No attempt has been made to be complete.

In §3 we already mentioned the following books for among other things information on
some the results obtained in the golden age of general topology: Hu [88], Hurewicz and
Wallman [90], Gillman and Jerison [76], Dugundji [61], Nagata [138, 137], En-
gelking [68, 67] and Arhangel’skĭı and Ponomarev [13]. To this list we can add
the following books for additional information and later developments, some of which we
already mentioned in the other sections: Arhangel’skĭı [12], Bessaga and Pe lczyński
[?], Borsuk [?, 31], Comfort and Negrepontis [48], Balcar and Štěpánek [16],
Devlin and Johnsbr̊aten [53], Bourbaki [32], Hu [89], Aarts and Nishiura [1],
Juhász [96], Kechris [99], Kunen [110], Kuratowski [114, 115], Kuratowski and
Mostowski [?], Mardešić and Segal [120], Nadler [135], Shelah [157], Todorčević [171],
Daverman [51], Aull and Lowen [15], Chapman [?], Rudin [148], the Handbook of
Set Theoretic Topology [112], the book on Topics in General Topology [134], the book on
Open Problems in Topology [127], the book on Recent progress in General Topology [91]
and Chigogidze [43].

Notes on §4. For a different proof that all infinite-dimensional separable Banach spaces
are homemorphic, see Bessaga and Pe lczyński [24].

For different proofs of Anderson’s Theorem that s ≈ `2, see Anderson and Bing [10]
and [126, chapter 6].

As we observed, Keller proved that the Hilbert cube is homogeneous. This result was
later generalized by Fort [69] who proved that the infinite product of compact manifolds
is homogeneous if and only if none or infinitely many of the factors have a boundary.

For a proof that any homeomorphism ϕ between Cantor sets in R2 can be extended to
a homeomorphism of R2, see Kuratowski [114, 115]. For the cited result about Antoine’s
necklace, the reader can consult e.g. Daverman [51, Corollary 5A].

Let X be a space, and let A ⊆ X be closed. Nowadays we call A a Z-set in X if for
every ε > 0 and every continuous function f : Q → X there exists a continuous function
g : Q → X \ A such that d(f, g) < ε. This definition is easier to work with than the
original one and is equivalent to it in the special case X = Q (but this is not entirely
trivial). For detailed proofs of the Z-set homeomorphism extension results in Q-manifolds,
see Bessaga and Pe lczyński [?], Chapman [?] and van Mill [126, chapter 6].
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See Cohen [45] for more information on the concept of a simple homotopy equivalence.
For a detailed description of the Dranǐsnikov Example, see also Chigogidze [43].
As we remarked, the remaining open problems in infinite- dimensional topology (see

West [183]) deal among other things with problems in absorbing sets (see e.g. [27] and [55]),
function spaces (see e.g. [40]) and ANR-theory.

For general information on hyperspaces see Nadler [135].

Notes on §5. For a simple proof that metrizable spaces are paracompact, see Rudin [146].
Many of the set theoretic things that we merely touched upon in this section can be

found in great detail in Kunen [110].
For more information on SH and many related topics, see Todorčević [170].
For more information on Whitehead’s Problem, see Ecklof [63].
For more information on the role of topology in Banach spaces and measure theory, see

Negrepontis [139], Mercourakis and Negrepontis [122] and Fremlin [75].
For more information on ultrafilters and combinatorial number theory, see Hindman [87].
A recent book on general/set theoretic topology is Todorčević [172]
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[71] M. Fréchet, La notion d’écart dans le calcul fonctionnel, Comptes rendus hebdomadaires des scéances
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