GENERAL TOPOLOGY

$C_p(X)$ is not $G_{\delta\sigma}$: a Simple Proof

by

Jan van MILL

Presented by C. BESSAGA on March 29, 1999

Summary. It is known that if $C_p(X)$ is a $G_{\delta\sigma}$ -subset of \mathbb{R}^X then X is discrete. We present a simple proof of this.

1. Introduction. Let $C_p(X)$ be the set of continuous real-valued functions on a Tychonov space X, and topologize $C_p(X)$ as a subspace of the full product \mathbb{R}^X . It is known by [5,2] that unless X is discrete, $C_p(X)$ cannot be a G_{δ} -subset of \mathbb{R}^X , or more generally a $G_{\delta\sigma}$ -subset, or an F_{σ} -subset. But it can be an $F_{\sigma\delta}$ -subset. The proofs of these results are simple, except the proof in [2] of the result that $C_p(X)$ is not a $G_{\delta\sigma}$ -subset of \mathbb{R}^X unless X is discrete. The aim of this note is to provide a simple proof of that fact, inspired by the proof of [4], Lemma A.2.4] and well-known Baire category type approximation methods from infinite-dimensional topology. Let us finally note that the $G_{\delta\sigma}$ -theorem was used in [1] to prove that if X is a nondiscrete, countable space such that $C_p(X)$ is Borel then it is of exact multiplicative class. In addition, all such function spaces $C_p(X)$ which are absolute $F_{\sigma\delta}$'s are homeomorphic by [3]. The precise topological structure of the function spaces $C_p(X)$ of higher Borel complexity is a mystery despite various interesting and complicated partial results (see e.g. [1]).

I am indebted to Henryk Michalewski for spotting an inaccuracy in an earlier version of this note.

2. A reduction. All spaces under discussion are Tychonov. Let X be a space and $f \in C_p(X)$. Since $C_p(X)$ is a subspace of \mathbb{R}^X with the Tychonov

Key words: function space, $G_{\delta\sigma}$ -subset

¹⁹⁹¹ MS Classification: 54C35.

product topology, it follows that basic neighbourhoods of f have the form

$$N(f, F, \varepsilon) = \{ g \in \mathbb{R}^X : (\forall x \in F)(|f(x) - g(x)| < \varepsilon) \},$$

where $F \subseteq X$ is finite, and $\varepsilon > 0$.

Lemma 2.1. Suppose that $C_p(X)$ contains a non-empty G_{δ} -subset of \mathbb{R}^X . Then X is the topological sum of a countable space and a discrete space.

Proof. Let S be a non-empty G_{δ} -subset of \mathbb{R}^X which is contained in $C_p(X)$. Pick an arbitrary element $f \in S$. Let $\{U_n : n < \omega\}$ be a sequence of open subsets of \mathbb{R}^X such that $\bigcap_{n < \omega} U_n = S$. For every $n < \omega$ there exists a finite subset $F_n \subseteq X$ such that every $g \in \mathbb{R}^X$ such that $g \upharpoonright F_n = f \upharpoonright F_n$ belongs to U_n . Put $F = \bigcup_{n < \omega} F_n$. Then F is countable, and every $g \in \mathbb{R}^X$ with $g \upharpoonright F = f \upharpoonright F$ belongs to $\bigcap_{n < \omega} U_n = S \subseteq C_p(X)$. Now if $h: X \backslash F \to \mathbb{R}$ is an arbitrary function then

$$(*) (f \upharpoonright F) \cup h$$

belongs to S and hence is continuous on X. This implies that h is continuous on $X \setminus F$ and so, h being arbitrary, it follows that $X \setminus F$ is discrete. It also follows from (*) that F and $Y = X \setminus F$ are closed. Striving for a contradiction, assume that there exists an $x \in (\overline{F} \setminus F) \cup (\overline{Y} \setminus Y)$. Let $h: Y \to \mathbb{R}$ be the constant function with value f(x) + 1. Since $\xi = (f \upharpoonright F) \cup h$ is continuous on X, and $\xi \upharpoonright F = f \upharpoonright F$, it follows that ξ and f agree on \overline{F} . So if $x \in \overline{F} \setminus F$ then $f(x) = \xi(x) = f(x) + 1$, yields the desired contradiction. On the other hand, if $x \in \overline{Y} \setminus Y \subseteq F$ then since $\xi \upharpoonright Y$ is the constant function with value f(x) + 1 and $x \in F$, it follows that $f(x) + 1 = \xi(x) = (\xi \upharpoonright F)(x) = f(x)$, which yields the same contradiction. \square

Now let X be an arbitrary space such that $C_p(X)$ is a $G_{\delta\sigma}$ -subset of \mathbb{R}^X . By Lemma 2.1 it follows that $X = F \oplus D$, where F is countable, D is discrete, and \oplus means topological sum. Since $C_p(X)$ is canonically equivalent to the subspace $C_p(F) \times \mathbb{R}^D$ of $\mathbb{R}^F \times \mathbb{R}^D = \mathbb{R}^X$, it follows that $C_p(F)$ is a $G_{\delta\sigma}$ -subset of \mathbb{R}^F . We may therefore assume in the proof of the $G_{\delta\sigma}$ -theorem that without loss of generality we deal with function spaces $C_p(X)$ with X countable.

3. Proof of the $G_{\delta\sigma}$ -theorem. Let X be a space, and let $Y \subseteq \mathbb{R}$. By $C_p(X,Y)$ we denote the set of continuous functions $f:X\to Y$, topologized as a subspace of the full product Y^X . Since Y^X is a subspace of \mathbb{R}^X , it follows that $C_p(X,Y)$ is simply the subspace $\{f\in C_p(X):f[X]\subseteq Y\}$ of $C_p(X)$.

Let X be a space and $\varepsilon > 0$. We put

$$U(f,\varepsilon) = \{ g \in C_p(X) : (\forall x \in X)(|f(x) - g(x)| < \varepsilon) \}.$$

Lemma 3.1. Let X be a countable space, let $f \in C_p(X)$ and let $\varepsilon > 0$. Then

- (1) $U(f,\varepsilon)$ is a G_{δ} -subset of $C_p(X)$.
- (2) $U(f,\varepsilon)$ and $C_p(X)$ are homeomorphic.
- (3) $\bigcup_{0<\delta<\varepsilon} U(f,\delta)$ is dense in $U(f,\varepsilon)$.

Proof. That $U(f,\varepsilon)$ is a G_{δ} -subset of $C_p(X)$ is clear since for every $x \in X$ the set

$$\{g \in C_p(X) : |g(x) - f(x)| < \varepsilon\}$$

is open in $C_p(X)$ and X is countable.

To show that $C_p(X) \approx U(f, \varepsilon)$, first consider the translation $\xi : \mathbb{R}^X \to \mathbb{R}^X$ defined by

$$\xi(g) = g - f \quad (g \in \mathbb{R}^X).$$

This function maps $U(f,\varepsilon)$ onto $U(\underline{0},\varepsilon)$, where $\underline{0}$ is the constant function with value 0. So it suffices to show that this set and $C_p(X)$ are homeomorphic. But by observing that $(-\varepsilon,\varepsilon)$ and \mathbb{R} are homeomorphic, this follows by the remark at the beginning of this section.

It remains to prove (3). It suffices to prove that $\bigcup_{0<\delta<\varepsilon}U(\underline{0},\delta)$ is dense in $V=U(\underline{0},\varepsilon)$. So let $g\in V,\,F\subseteq X$ be finite, and $\gamma>0$. It suffices to show that $N(g,F,\gamma)\cap\bigcup_{0<\delta<\varepsilon}U(f,\delta)\neq\emptyset$. But this is trivial. Simply observe that $\max|g[F]|=t<\varepsilon$ and the function $h:X\to\mathbb{R}$ defined by $h(x)=\min\{g(x),t\}+\max\{g(x),-t\}-g(x)$ is continuous and belongs to $N(g,F,\gamma)\cap U(\underline{0},\frac{1}{2}t+\frac{1}{2}\varepsilon)$.

A separable metrizable space X is *complete* if its topology is generated by a complete metric. It is well-known that a subspace Y of a complete space X is complete if and only if Y is a G_{δ} -subset of X ([6, Theorem 4.7.4]).

If X is countable then \mathbb{R}^X is complete. So for a subspace $A \subseteq \mathbb{R}^{\tilde{X}}$ the statements 'A is complete' and 'A is a G_{δ} -subset of \mathbb{R}^X ' are equivalent.

Theorem 3.2. If $C_p(X)$ is a $G_{\delta\sigma}$ -subset of \mathbb{R}^X then X is discrete.

Proof. As observed in the previous section, we may assume without loss of generality that X is countable. So let X be countable and nondiscrete such that $C_p(X) = \bigcup_{i=0}^{\infty} G_i$, where G_i is complete for every i and $G_0 = \emptyset$. We will derive a contradiction.

Claim 1. $C_p(X)$ does not have a dense complete subspace.

This is [2, Theorem 1]. We repeat the proof for completeness sake. There is a function $g \in \mathbb{R}^X \setminus C_p(X)$. Define $\Phi : \mathbb{R}^X \to \mathbb{R}^X$ by $\Phi(f) = f + g$. Then Φ is a homeomorphism of \mathbb{R}^X onto itself and $\Phi[C_p(X)]$ is a dense

subspace of $\mathbb{R}^X \setminus C_p(X)$. Thus $\mathbb{R}^X \setminus C_p(X)$ also contains a dense complete subspace, which violates the Baire Category Theorem since \mathbb{R}^X is complete. This proves the claim.

To complete the proof of the $G_{\delta\sigma}$ -theorem, we shall by induction on i define a sequence $\{f_i: i \geq 0\}$ in $C_p(X)$ and a decreasing sequence of positive real numbers $\{\varepsilon_i: i \geq 0\}$ such that

- (1) f_0 is the constant function with value 0, and $\varepsilon_0 = 2^0$,
- (2) $U(f_0, \frac{1}{4}\varepsilon_0) \supseteq U(f_1, \varepsilon_1) \supseteq U(f_1, \frac{1}{4}\varepsilon_1) \supseteq U(f_2, \varepsilon_2) \supseteq \dots$
- (3) $\varepsilon_i \leqslant 2^{-i}$ for every i,
- (4) $\varepsilon_{i+1} < 3^{-i-1} \cdot \varepsilon_i$ for every i,
- (5) $U(f_i, \varepsilon_i) \cap G_i = \emptyset$ for every i.

Assume that we have proved the existence of such sequences. Then for every i we have by (2) and (3) that

$$\sup_{x \in X} |f_i(x) - f_{i+1}(x)| \leqslant \frac{1}{4} \varepsilon_i \leqslant 2^{-i-2}.$$

So we conclude that the sequence $(f_i)_i$ converges uniformly to a continuous function $f: X \to \mathbb{R}$. It follows moreover from (4) that for $x \in X$, $i \geq 0$ and $n \geq 2$ we have

$$|f_{i}(x) - f_{n+i}(x)| \leq |f_{i}(x) - f_{i+1}(x)| + |f_{i+1}(x) - f_{i+2}(x)| + \dots + |f_{n+i-1}(x) - f_{n+i}(x)|$$

$$\leq \frac{1}{4}\varepsilon_{i} + \sum_{j=1}^{n-1} 3^{-j} \cdot \varepsilon_{i}.$$

This implies that

$$\sup_{x \in X} |f_i(x) - f(x)| \leqslant \frac{1}{4}\varepsilon_i + \sum_{j=1}^{\infty} 3^{-j} \cdot \varepsilon_i = \frac{3}{4}\varepsilon_i < \varepsilon_i$$

for every i, i.e. $f \in \bigcap_{i=0}^{\infty} U(f_i, \varepsilon_i) \subseteq C_p(X) \setminus \bigcup_{i=1}^{\infty} G_i = \emptyset$, which is a contradiction.

It remains to perform the induction. Assume that f_i and ε_i have been determined. By Lemma 3.1 it follows that $U(f_i, {}^1\!/\!_4\varepsilon_i)$ is a G_δ -subset of $C_p(X)$ which in addition is homeomorphic to $C_p(X)$. This implies by Claim 1 that $U(f_i, {}^1\!/\!_4\varepsilon_i)$ does not contain a dense complete subspace. Observe that $G_{i+1} \cap U(f_i, {}^1\!/\!_4\varepsilon)$ is a G_δ -subset of G_{i+1} and hence is complete. So $G_{i+1} \cap U(f_i, {}^1\!/\!_4\varepsilon)$ is not dense in $U(f_i, {}^1\!/\!_4\varepsilon)$. So there are by Lemma 3.1(3) an element $f_{i+1} \in U(f_i, \delta)$ for some $0 < \delta < {}^1\!/\!_4\varepsilon_i$, a finite set $F \subseteq X$ and a $\gamma > 0$ such that

$$N(f_{i+1}, F, \gamma) \cap (G_{i+1} \cap U(f_i, \frac{1}{4}\varepsilon_i)) = \emptyset.$$

Now let ε_{i+1} be a positive real number smaller than

$$\min\{\gamma, \frac{1}{4}\varepsilon_i - \delta, 2^{-(i+1)}, 3^{-i-1} \cdot \varepsilon_i\}.$$

It is clear that f_{i+1} and ε_{i+1} satisfy the inductive hypotheses.

FACULTEIT DER EXACTE WETENSCHAPPEN, DIVISIE WISKUNDE EN INFORMATICA, VRIJE UNIVERSITEIT, DE BOELELAAN 1081A, 1081 HV AMSTERDAM, THE NETHERLANDS e-mail: vanmill@cs.vu.nl

REFERENCES

- [1] R. Cauty, T. Dobrowolski, W. Marciszewski, A contribution to the topological classification of the spaces $C_p(X)$, Fund. Math., 142 (1993) 269-301.
- [2] J. Dijkstra, T. Grilliot, D. J. Lutzer, J. van Mill, Function spaces of low Borel complexity, Proc. Amer. Math. Soc., 94 (1985) 703-710.
- [3] T. Dobrowolski, S. P. Gulko, J. Mogilski, Function spaces homeomorphic to the countable product of ℓ_f^2 , Top. Appl., 34 (1990) 153-160.
- [4] A. J. M. van Engelen, Homogeneous zero-dimensional absolute Borel sets, CWI Tract, vol. 27, Centre for Mathematics and Computer Science, Amsterdam 1986.
- [5] D. J. Lutzer, R. McCoy, Category in function spaces. I, Pac. J. Math. 90 (1980), 145-168.
- [6] J. van Mill, Infinite-dimensional topology: prerequisites and introduction, North-Holland Publishing Company, Amsterdam 1989.