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Abstract

We present a simpler proof of the known theorem that a fixed-point free homeomorphism on an
n-dimensional paracompact space can be colored avith3 colors.00 1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Let X be anormalspace and lef : X — X be a fixed-point free continuous function.
A coloring of f is a finite closed coved of X such thatdA N f[A] =@ for everyA € A.
Since finite open covers can be shrunk to closed covers, and finite closed covers can be
swelled to open covers, the closedness of the coloring is irrelevant. Finite open covers do
equally well.

Itis a natural question to ask for the minimum number of colors needed to color a fixed-
point free continuous function. For homeomorphisms, the following definitive answer is
known:

Theorem 1.1. Let X be a paracompact Hausdorff space witim X < n. Then any fixed-
point free autohomeomorphism Xfcan be colored wittx + 3 colors.

The numbem + 3 in this theorem is best possible. We will comment on this, and on
related things, in Section 5.

The proof of Theorem 1.1 in the literature goes as follows. The first basic result
is due to van Douwen [3]: he proved (among other things) that any fixed-point free
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autohomeomorphism on a finite-dimensional paracompact space can be colored with
finitely many colors. We call such a functidimitely colorable Then Aarts et al. [1],
using van Douwen’s Theorem, proved that the number of colors on-dimensional
metrizablespace can be reducedita- 3. Then van Hartskamp and Vermeer [6], following
a suggestion due to Hart and using again van Douwen’s Theorem, proved that a fixed-
point free autohomeomorphism on@atimensional paracompact Hausdorff space is semi-
conjugated to a fixed-point free autohomeomorphism on sgmalimensional metrizable
space. So by applying the earlier result on metrizable spaces, and by pulling back the
obtained coloring, one obtains a coloring of the original homeomorphism.

The aim of this note is to present a self-contained proof of Theorem 1.1, using standard
facts from dimension theory only.

For all undefined notions, see Engelking [4,5].

2. Fromfiniteton + 3

Let £ be a collection of sets. As usual, we say thatdahger of £ is less than or equal
to n, abbreviated or@) < n, if for every subfamilyF of £ of cardinalityn + 2 we have
NF=42.

Let X be a normal space, and I¢t: X — X be a fixed-point free homeomorphism.
In this section we will prove that iff is finitely colorable and dinX < n, then f can
be colored withm + 3 colors. The main technical tool is the following theorem, which is
interesting in its own right.

Theorem 2.1. Let X be a normal space witlimX < n, n < w, and leti/ be a finite open
cover of X with |/| > n + 3. In addition, letf : X — X be a homeomorphism. Then there
is an open shrinkingy = {Vy: U € U} of U such that for anyF C U/ with |F| =n + 3 we
have

) wusivul=o.
UeF

It is tempting to think of the shrinkind in this result as a cover for which
ord{Vy U fHVyl: Ueld} <n+1. (2.1)

But since simple examples show that for differérs the setsVy U f~1[Vy] can be the
same, the property df stated in the theorem is stronger than the one in (2.1).

Before presenting the proof of Theorem 2.1, we will first show how we can use it
to reduce the number of colors of a homeomorphism. We employ a technique due to
Btaszczyk and Kim Dok Yong [2, Lemma 2], and Krawczyk and Saegr{7, Lemma 2.1].

Theorem 2.2. Let X be a normal space witdimX < n, and letf: X — X be a fixed-
point free homeomorphism. f can be colored with finitely many colors, then it can be
colored withn + 3 colors.
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Proof. Let k be the minimum cardinality of a coloring of, and leti/ = {U?1, ..., Ui} be
a coloring. Assume that > n + 3. We will derive a contradiction. Observe thdt # U;
if i # j. By Theorem 2.1 we may assume without loss of generality that forragyi/ of
cardinalityn + 3 we have

(N Uuf?ul=0.

UeF
Since f is a homeomorphism, this means that for &y U/ of cardinalityn + 3 we have

M flv1v ol =n. (2.2)

UeF
Let F={F1,..., F;} be a closed shrinking éf. Fori <k — 1, define

Bi = F, U(Fn fIX\UiN fHX\ Uil).

We claim thatB = {Bi, ..., Bx—1} is a coloring of f. To see thatf[B;] N B; = ) observe
that

fIBi1= fIF1U (FIFIN fAX\UIN (X \ Up)).

But this gives us what we want sinéen f[F;1 =0, F;N(X\U;) =@ andFi N f[Fi] = 0.
To see that3 covers, first note that

k-1 k-1
UrclUs:
i=1 i=1

Hence it suffices to show thdf, is covered. To this end, pick an arbitrarye F; and
consider the collection

{fluau i <k -1}
Sincek — 1> n + 2, (2.2) implies that there exists< £ — 1 such that

x ¢ fIUAV fHU;.

But thenx € B;. This contradiction completes the proof of the theorem.

Before turning to the proof of Theorem 2.1, we make the following remarks.
Recall that we wish to shrink an open co¥éto an open covey = {Vy: U € U} such
that for any subfamilyV C U/ of cardinalityn + 3 we have

) Vou rivel=0.
UeW

A moments reflection shows that our task is to constidh such a way that for any
subfamilyW of V of cardinalityn + 3 and any partitior U G of VW we have

7Fn () fliGi=0.
GeG
We first prove a simple lemma.
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Lemma2.3. Let A, A1, ..., A, be closed subsets of a spakeMoreover, letVy, ..., V,
be open subsets of with AN A; C V; for everyi <n. If A=A\ J;_,;V: and
A; = A; UV, fori <nthen

(@ AuUi_1Ai c AUl A

(b) AN Ai S, FrV;i.

Proof. Observe that (a) is trivial. We will prove (b) by induction anif n =1 then
ANAr=(A\VD)N(ALUV) =[(ANAD\ Vi]U[AN(V1\ VD] SFrvy,

sinceA N A1 € Vi. Now assume the lemma to be true ier< n — 1, n > 2. Observe that
by our inductive assumptions,

n n—1 n—1
An(4i= (A\ U w) M)A UV N[(AN V)N (AU V)]
i=1 i=1 i=1
n—1
c m Frv; NErv,,
i=1
which is as required. O

Corollary 2.4. Let X be a normal space withHimX <n. Let F; C U; for i < m, with F;
closed andU; open. In addition, LeG; < U’ for j <k, with G; closed anoU’ open. If
m + k > n + 3 then there exist closed subs@t@ Fm, Gl, .. Gk such that

(a) E C U fori <m, andG‘, C Uj for j <k,

(b) ULy Fi UL, Fi, and Uﬁ:l Gjc< U§:1 Gj,
©) Nt Fin mljzl Gj=90.

Proof. We assume without loss of generality that+ k = n + 3. Suppose first that
m > n+ 2. Since dimX < n, the Theorem on Partitions [4, Theorem 7.2.15], implies that
there exist open setd, ..., V,+1 such that

(1) FCV,CV,CUfori<n+1,

2) N2LFrv; =0.
So we get what we want by a direct application of Lemma 2.34let F; fori <n +1
andA = F,;2). We may therefore assume without loss of generality that n + 1 and,
similarly, thatk < n + 1. Sincem + k = n + 3, this implies thak, m > 2.

Observe that for <m — 1 andj < k — 1 we have

FiNF,CU; and G;NGyCU,.

Since dimX <n and(m — 1) + (k — 1) = n + 1, the Theorem on Patrtitions [4, 7.2.15],
implies that there exist open séts, ..., V,,—1, W1, ..., Wi_1 such that

3) FNF,CcV,cV,cUfori<m-—1,

(4) G;NGySW; CW; CU/forj<k—1,

B) N Frvi NS Frw; = 0.
So we again get what we want by a direct application of Lemma 2:8.
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Proof of Theorem 2.1. Let F be a closed shrinking @f. Fix n + 3 different elements of
U, say,

g={U1,...,Um,Ui,...,U,i},
wherem +k =n+ 3. Let
H:{Fla"'aFM9G19"'9Gk}a

be the elements af corresponding to the elements ¢h So F; C U; for i <m and
f1 [G;]1< ft U ] for j < k. Sincem + k =n + 3, by Corollary 2.4, there eX|st closed
setsAl, e A, Bl, ..., Bx such that

(1) A; CU for i <m andB; < f~HU/]for j <

() ULiFi cUiL1A;, andU] 1f 1[G - Uj —1Bj,

3) ﬂlzlA Nj_1 B} =9.

PutA’j = f[Bj] for j <k.In F replaceF; by A; fori <m andG; by A’ for j <k.
The other elements of are not being replaced. We claim that the coIIecﬁambtalned
in this way coversX, and hence is a closed shrinkingi@f To see that it covers, pick an
arbitraryx € X. If x € [ Ji.; F; then we are done by the first part of (2)xlfe U’;Zl G;j
then

k k
oelJrienc s,
j=1 j=1
by the second part of (2). As a consequence, for spri&, x € A/ Finally, if x does not
belong to any element 6 then the element of that contains belongs taF’. Observe
next that

m k
Ain()fHA1=0
i=1 j=1 ‘

LetV be an appropriate open swelling of th&é which is simultaneously a shrinking of
U [4, Theorem 7.1.4].

So we arrive at the conclusion thidthas an open shrinking such that theV’'s and
f~[V7's corresponding t¢ have empty intersection. The same procedure can be repeated
with any subfamily of) of cardinalityn + 3. So after finitely many steps, we arrive at the
required shrinkingof/. O

3. Coloring continuous functions

If X is a space thedX denotes itech—Stone compactification.Uf is an open subset
of X then
ExU =X\ (X\U)

is the largest open subset®X that containd/. If i/ = {U1, ..., Uy} is a finite open cover
of X then{ExU,...,ExU} is an open cover oBX [4, Lemma 7.1.13]. In addition,
dimX =dimgX [4, Theorem 7.1.17].
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Let X be a normal space with dimi< n, and letf : X — X be a continuous function
without fixed-points. Assume thgtis finitely colorable. What is the least number of colors
needed to coloif? An inspection of the proof of Theorem 2.2 shows that the only place
where we used that the map under consideration is a homeomorphism, is in the proof
of Theorem 2.1. So the question naturally arises whether Theorem 2.1 is also true for
continuous maps instead of homeomorphisms.

Forn = 0 there are no problems. To see this, assumeXhatzero-dimensional/ is
a finite open cover ok, and f : X — X is continuous. Since ditki = 0, there is an open
shrinkingV = {Vy: U € U} of U with ord(V) < 0, i.e.,V is pairwise disjoint. But then
V is as required. For let € X, and observe that there is precisely one element tfat
containsx. Similarly, there is precisely one element 6f1()) that contains:.

But for largern, Theorem 2.1 does not hold for continuous functions, as the following
simple example shows.

Example 3.1. Let X be the topological sum of the spadgs» < w, where eac, is a
copy of [0, 1]. In addition, let{d;: i > 1} be a countable dense subseflgf Now define
f:X — X as follows. f | Ip is a homeomorphism froffy ontol;. In addition, f [ I; is
the function with constant valué for i > 1. Thenf is clearly continuous (and has no
fixed-point). For every < w let E; and F; be open subsets &f such thatt; U F; =1; and

I; \ E; 75@75]11 \ Fi. Define

Ui=Eog, Us=Fp, U3=UEl- and U4=UE-.
i>1 i>1

Thentd = {Uy, ..., Uas} is an open cover oK. LetV = {V1, ..., V4} be an arbitrary open
shrinking of&/. Then vy, and V» coverlp, and are clearly proper subsetslgf So by
connectivity ofllp, V1 N Vo £ @. Picki > 1 with d; € V1 N V,. Since V3 and V4 cover
U,.>1]Ii, the same argument shows thatn V4 N 1I; £ ¥. We conclude that

FHvIN FHVRI N Ve Va # 6,

as required.

This example shows that if one wishes to color continuous functions, the method used
in the previous section does not work. Fortunately, a beautiful trick due to R. Pol using the
coloring result for homeomorphisms to obtain a coloring result for continuous functions,
does the job for us.

Theorem 3.2. Let X be a normal space and lef: X — X be fixed-point free and
continuous. Iff is finitely colorable andlimX < n, then f can be colored with: + 3
colors.

Proof. Let U be a finite coloring off. We may assume without loss of generality that
X is compact. Simply observe that we can extghdX — X to a continuous function
Bf:BX — BX, U to an open cover B = {ExU: U € U} of X, and that dinX =
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dimgX. Also, 8f has no fixed-point sincé& is finite. So a “good” shrinking of EX
corresponding t@f traces to a “good” shrinking @ corresponding tg.

We can now follow the proof due to Pol in [1, Section 2.3] verbatim to obtain the desired
result. O

4. From infinite to finite

The results in the previous section show that the “coloring of maps”—problem boils
down to the problem of which maps are finitely colorable. The first result on this problem
is due to van Douwen [3]. He proved thatXf is finite-dimensional and paracompact,
then any fixed-point free closed mappiffg X — X having the property that for some
n <o, |f~1(x)| <n foreveryx € X, is finitely colorable. For related results for compact
spaces, see also Kim Dok Yong [10].

In this section we will present a simpler proof of van Douwen’s Theorem, based on
his ideas though. We will present our proof for homeomorphisms only. We leave it to the
reader to check that the same proof also works for maps of finite bounded order.

Lemma4.1. Let X be a normal space witdimX < n, let f: X — X be a homeomor-
phism, and letF be a discrete collection of closed subsetsXoWwith f[F] N F = ¢ for
everyF € F. Then there exist closed subsdts . .., Ay, +3 of X such that

@) flAINA; =@fori <2n+3,

(b) UF cUZ A

Proof. If |F| < 2n 4+ 3 then there is nothing to prove. So assume otherwise, and let
{G1,..., G243} be any subcollection of of cardinality 2 + 3. PutFp = Ui<2n+3 Gi,
andA? = Gy for k < 2n+ 3. Enumerateér \ {G1, ..., Gau43} as{Fy: 1< < «}, without
repetitions. By transfinite induction an< «, we will construct closed subset§’ of F,
for k < 2n + 3 such that

(1) ordAY: k<2n+3)<n,

(2) foreveryk <2n+3,

f[UAf]m U a7 =0
p<a p<a

Assume that the&f are defined fof <o <« andk < 2n + 3 and putBy = U, _, Af.
Then eaclB is closed sincer is discrete and by (2)f[Bx] N B = ¥. Fork < 2n+ 3, put
Dy = fIBIU fHByl.
Sincek < 2n + 3 andf is one-to-one, it easily follows from (1) that
ﬂ Dy =0.
k<2n+3
As a consequence,

{Fy \ Dy k< 2n+ 3}
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coversF, and consists of open subsets &f. (Here we use thaf is a closed map.)
Since dimF, < n, being a closed subset o&f [4, Theorem 7.1.8], there is a collection
G ={A}: k < 2n + 3} consisting of closed subsets &}, such thatAy N Dy = ¢ for
k<2n+3,0ord{A}: k<2n+3}) <n, a”dngzn+3 A = Fy. We claim that these sets
are as required. This is easy. Simply observe that fgr2n + 3,

f[ U Ag} N U AY = fIBr U A% N (B U AY)
B<La B<La
= (fIBIN Bx) U (fIBINAL]) U (FIAYIN Br) U (FIAFINA) =0

since
flF,INFy =0, AYNDy=9 and f[AY]N Dy =0.

Now fork < 2n+ 3, putdA, =UJ AY. O

o<k

We now come to the main result in this section.

Theorem 4.2. Let X be finite-dimensional and paracompact. Then every fixed-point free
autohomeomorphism dof is finitely colorable.

Proof. Let f: X — X be a fixed-point free autohomeomorphism. We will show tfiat
is (n+ 1) - (2n + 3) colorable, where: = dimX. Since f is fixed-point free, and is
paracompact ang-dimensional, there is a locally finite open cobee {U;}ses of X such
that ordif) < n while moreoverf[U;] N Uy = @ for everys € S. There is an open cover
V of X which can be represented as the uniom &f 1 familiesV1, V5, ..., V,41, where
V; = {Vis}ses is pairwise disjointand; ; € U, fors € S andi < n+1[5, Theorem 3.2.4].
Let F be a closed shrinking df [4, Theorem 1.5.18]. It is clear that we can represEiais
the union ofn 4 1 familiesF1, Fo, ..., Fut1, WhereF; = {F; s}ses is such that; ; C V;
for s € S andi < n + 1. As a consequencg; is discrete for every < n + 1 sincel{ is
locally finite. Clearly,f[F1N F = () for everyF € F;. From this it follows that for every,
“f 1 UF: can be colored withi2+ 3 colors” (Lemma 4.1). We conclude thgtcan be

colored with(n + 1) - (2n + 3) colors. O

5. Remarks

As noted in [1,6], by results of Steinlein [9,8], Theorem 1.1 is sharp for.all

There exists a fixed-point free continuous function on the space of irrational numbers
P which is not finitely colorable by a result of Mazur, see Krawczyk and &irepi7,
Theorem 3.4]. This shows that Theorem 4.2 is best possible.

Several results in this note can also be formulated and proved for Tychonoff spaces
instead of normal spaces. This is left as an exercise to the reader.

In[1] it was shown that the number of colors needed to color a fixed-point free involution
on ann-dimensional space is+ 2. This can be shown by our methods as well.
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