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All spaces are assumed to be Tychonoff. A monotone map is a closed
continuous surjection with connected fibres. If A and B are subsets of a
space X then A is called locally connected rel B if for every a € A and
every neighbourhood U of a in X there is a neighbourhood V' of a such that
V Cc U and V N B is connected.

As far as extending monotone maps over compacta the following is
known:

PROPOSITION 1. If f : X — Y is monotone and C is a compactification
of X such that f extends to a continuous f C — BY then f is monotone.

PROPOSITION 2. If f : X — Y 1is monotone, D is a compactification of
Y such that D\'Y is locally connected rel Y, and C' is a compactzﬁcatzon of
X such that f extends to a continuous f C — D then f is monotone.

The first proposition is folklore (see Hart [3, Lemma 2.1]) and the second
proposition can be found in Dijkstra [1]. The two propositions have the same
conclusion but very dissimilar premises: for instance, if Y is metric then its
Cech-Stone remainder is never locally connected rel Y. Our first theorem
unifies these propositions.

In this paper we will discuss functions f : X — Y and f C - D
such that X and Y are dense subsets of C and D respectively. Unless stated
otherwise, if A is a subset of X or Y respectively, then A and int(A) refer to
the closure and the interior of A in C or D respectively. Let I be the interval
[0,1]. A zero set A in a space Y is the preimage of 0 for some continuous
a:Y — I. A perfect map is a closed continuous surjection with compact

fibres.

THEOREM 3. If D is a compactification of a space Y then the following
statements are equivalent:
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(1) For every space X, every monotone map f : X — Y, and every
compactification C' of X such that f extends to a continuous f: C — D,
the map j'T s monotone.

(2) There are a space X and a monotone map f : BX — D such that
f(x)cvy.

(3) For any pair of disjoint zero sets A and B in Y we have AN BN
int(AU B) = 0.

(4) For any pair of disjoint closed subsets A and B of Y we have AN
Bnint(AUB) = 0.

We obtain Theorem 3 as an immediate corollary of the following more
general statement.

THEOREM 4. If Y is a dense subspace of a space D then the following
statements are equivalent:

(1) Let X be a dense subspace of a space C and let f C — D be a closed
continuous map such that f = f|X is a monotone map from X onto Y. If
f is perfect or if C is normal then f is monotone.

(2) There are a space X, a space C with X C C' C X, and a monotone
map f: C — D such that f(X)CY.

(3) For any pair of disjoint zero sets A and B in 'Y we have AN BN
int(AU B) = 0.

(4) For any pair of disjoint closed subsets A and B of Y we have AN
BNint(AUB) = 0.

We need an elementary lemma:

LEMMA 5. If f : C — Y is continuous and X is a dense subset of C
such that f|X : X — Y is closed then for everyy € Y we have fy) =
fy)nX.

Proof. Let z be an element of C that is not in f~1(y) N X. To prove
z & f1(y), select a closed neighbourhood U of z that is disjoint from
f~l(y)N X. Since f|X is closed the set V =Y \ f(UN X) is an open
neighbourhood of 3. Note that f~1(V) N int(U) is an open set which is
disjoint from X. Since X is dense, f~!(V) and int(U) are disjoint. Since
z € int(U) we have f(z) # y.

Proof of Theorem 4. Statement (2) follows trivially from (1). We shall
prove: (2)=(3), (3)=(4), and (4)=(1).

Assume (2) and let A and B be disjoint zero sets in Y such that for some
y € D wehave y € ANBNint(AUB). Then y € D\ Y and Fy) is a

connected subset of C'\ X. If W = int(A U B) then FLW)\ F-Y(AUB)
is an open subset of C that is disjoint from X. Since X is dense in C we
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have F Y W) c f-1(AUB) and ) c f‘l(ANU B). Since f1(A) and
f~1(B) are disjoint zero sets in f~1(Y) and X C f~1(Y) C C C X we see
that f—1(A) and f—1(B) are a pair of disjoint closed sets in C that cover
F1(y). So f~(y) is disjoint from one of them, say f~1(A). Then y is not

in f(f~1(A)), which contains A’, because f is closed and surjective. This is
a contradiction.

Assume (3) and let A and B be disjoint closed sets in Y such that
for some y € D we have y € AN BNint(AUB). Then y € D\ Y. Put
W = int(A U B) and select a continuous a : D — [0, 1] such that a(y) =1
and a|D \ W = 0. We now define the continuous map v : ¥ — [—1,1] as
follows:

7= (AU (X\W)) U (-alBU (X \W)).

Define the zero sets A’ = y~1([1/2,1]) and B’ = y~([-1,-1/2]) in Y. Note
that A’UB’ =Y Na"1([1/2,1]). Let O stand for the open set a™1((1/2,1])
and observe that O C A’ U B’. So y is in the interior of A’ U B’. We show
that y € A’ (and hence y € B’ by symmetry). By assumption, y € A and
since O is a neighbourhood of y we have y € AN O. Note that AN O C A’
and hence y € A’. B

Assume (4) and let f : X — Y be a monotone map such that f : C — D
is a closed continuous extension of f that is not monotone. Assume moreover
that f is perfect or that C is normal. Let y be an element of D with a

disconnected fibre. If y € Y then f~!(y) = f~1(y) by Lemma 5. Since f
is monotone this would imply that f~!(y) is connected and hence we know

that y € D\ Y. Since f_l(y) is compact or C is normal we can find a
disjoint open cover {U, V'} of ffl(y) in C such that both U and V intersect
the fibre. Then F = f(C'\ (U UV)) is a closed subset of D that does not
contain y. Let W be a closed neighbourhood of y in D that is disjoint from
F. Note that f~*(W) CUUV. Define A’ =UN f~ (W) = f W)\ V
and B' =V N f~Y(W)=f1W)\U.

Both A’ and B’ are saturated closed subsets of X. This can be seen as
follows: if b € Y such that f~1(b) intersects for instance A’ then f~1(b) C
A" U B’ since A’ UB’ = f~1(W) is saturated. Since f is monotone, f~1(b)
is connected and hence f~1(b) C A’. Since f is a closed map we see that
A = f(A’) and B = f(B’) are disjoint closed subsets of Y, whose union is
W NY. Observe that int(W) C AU B. So y is in the interior of AU B and
by assumption (4), y € A or y ¢ B. By symmetry we may assume that y is
outside A. _

Let « be an element of U such that f(z) = y. Then U N f~H(W) \
F~Y(4) is a neighbourhood of z and hence P = U N f~1(W)\ 4’ is a
neighbourhood of z. Since A’ = U N f~1(W) N X we infer that P does not
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intersect X—a contradiction. So we may conclude that U is disjoint from
F~(y), which contradicts our assumption that {U,V} separates f—'(y).
The proof is complete.

REMARKS. We say that D is a monotone extension of Y if Y is a dense
subset of D and the pair (Y, D) satisfies the conditions (1)—(4) in Theorem 4.
If D is moreover compact then we call it a monotone compactification of Y.

Consider Theorem 3. It may be surprising that the criterion expressed
by statement (3) does only depend on Y and D and that the domain of the
monotone map does not seem to matter. In this context observe that

(5) The extension of the identity 7: fY — D is monotone

is one of many statements that imply (2) and follow from (1).

If we substitute D = $Y in Theorem 3 then (3) is obviously satisfied and
Proposition 1 follows. If D \ Y is locally connected rel Y and A and B are
disjoint closed sets in Y such that y € AN B Nint(A U B) then we can find
a neighbourhood U C int(AU B) of y in D such that U NY is connected.
Then U N A and U N B are both nonempty, which means that A and B
separate the connected set U NY. So D is a monotone extension of Y and
Proposition 2 also follows from the theorem.

EXAMPLE 1. As an illustration to Theorem 3 we give a simple example
of a monotone compactification that is not covered by Proposition 1 or 2.
Let I = [0,1] and define the following subspaces of I x I:

=({0}u{l/n:neN})xI and Y =D)\{(0,0)}.

We verify that D is a monotone compactification of ¥ and hence Theorem
3 guarantees that for every space X which is the preimage of ¥ under a
perfect monotone map and every compactification C' of X the remainder
C\ X is a continuum.

Let A and B be disjoint closed subsets of Y such that ANBNint(AU B)
£ (. Then AN BNint(AU B) = {(0,0)} and we can find an ¢ > 0 such that
([0,€] x [0,e])NY € AUB. We may assume that (0,¢) is in A and hence not
in B. Since B is closed there is an N > 1/e such that (1/n,e) € A for every
n > N. Since for every n > N, {1/n}x [0, €] is a connected subset of AUB we
have {1/n} x [0,e] C A for n > N. Consequently, ([0,1/N]x [0,e]))NnY C A
and hence (0,0) ¢ B, which is a contradiction.

ExAMPLE 2. Consider condition (1) in Theorem 4. A natural question
is whether the mild restriction that f be perfect or C' be normal is really
necessary. The following example shows that the answer is yes.

Let L be the “long halfline,” i.e. the space [0, w1 )x [0, 1) with the topology
generated by the lexicographic order. Let oL = LU {w;} be the compactifi-
cationof L. Let X =Y =L x[0,1), C = (oL x I)\ {(w1,1)}, and let D be
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the one-point compactification Y U{oc} of Y. We take for the monotone map
f X — Y the identity and f: C — D and f:aL x I — D are the exten-
sions of f. It is obvious that {oco} is locally connected rel Y so D is a mono-
tone compactification of Y. The fibre f~1(co0) = (L x{1}) U ({w1i} x[0,1))
has two components so flS not monotone.

It remains to show that f is closed. Let F' be a closed subset of C' and
let G denote the closure of F in oL x I. If co € f(F) then f(F) equals f(G)
and hence is compact. If oo & f(F) then oL x {1} and {w1} x [0,1) are
disjoint from F'. Since [0,1) is Lindel6f and w; has uncountable cofinality
there is a neighbourhood U of wy in oL such that £ N (U x [0,1)) = 0. So
F is disjoint from U x I and hence F and f(F) are compact.

Let D be a compactification of Y. Theorem 3 answers the question when
all “compactifications” with range D of monotone maps onto Y are mono-
tone. We now turn to the question when we can guarantee the existence
of monotone “compactifications” onto D of monotone maps onto Y. Before
presenting a criterion we discuss an illuminating example.

EXAMPLE 3. Put D = I and Y = I\ {1/n : n € N}. Consider the
following closed subspace of Y x I:

= ({0} ><I)un@l ((%2711_1) X {0}) Y <<2nl+1 %) o }>

The map f : X — Y is simply the restriction of the projection. Since X is

closed in Y x I and I is compact we find that the projection f is perfect. Note

that every fibre of f is either a singleton or an interval so f is monotone.
Assume now that C' is a compactification of X such that f extends to

a monotone f : C — D. Since f is monotone, F-1((o, 1/n]), n € N, is a
decreasing sequence of continua in C'. Consequently,

ﬂ F-1((0,1/n))

is a continuum that is obviously contained in f~1(0) = {0} x I. Note that
both (0,0) and (0, 1) are in K but that {0} x (0, 1) is an open locally compact
subspace of X and hence also open in C'. This means that K and {0} x (0,1)
are disjoint so the continuum K equals {(0,0), (0,1)}, a contradiction. We
may conclude that f does not have a monotone “compactification” whose
range is D.

We say that a space Y has ordered neighbourhood bases if évery yey
has a neighbourhood basis that is linearly ordered by the inclusion relation.
First countable spaces are obvious examples of such spaces.
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THEOREM 6. If Y is a dense subspace of a space D and Y has ordered
neighbourhood bases then the following statements are equivalent:

(1) For every space X and every monotone map f : X — Y there erists
a space C such that X is dense in C' and f extends to a monotone and
perfect f : C — D.

(2) For every closed subspace X of Y x I such that the projection f :
X —Y is monotone there exists a space C such that X is dense in C and
f extends to a monotone f: C — D.

(3) Everyy € Y has a neighbourhood U in D such that U is a monotone
extension of Y NU.

(4) There exists an open O in D that is a monotone extension of Y.

Proof. Statement (2) follows trivially from (1). We shall prove: (4)=(1),
(3)=(4), and —(3)=-(2).

Assume (4) and let f : X — Y be monotone. Extend f to f : 6X — BD.
Put U = f~1(0) and C' = f~1(D). Note that f|U is a perfect map from U
onto O. Since O is a monotone extension of Y we see that f|U is monotone.
Consider the closed subspace F' = C’\ U of C’ and the closed map p = f|F
from F onto G = D \ O. Let C be the adjunction space C' U, G and let
7 : C' — C be the quotient map. Then we can define a function f C—D
such that f om = f|C'. The map f obviously extends f and is closed and
continuous. If y € O then f 1(y) is a fibre of the map f|U and hence
a continuum. If y € D\ O = G then f’l(y) is a singleton. So we may
conclude that f is monotone and perfect.

Assume (3). If we define

U = {U : U an open subset of D such that
U is a monotone extension of Y N U}

then O = |JU is an open set in D that contains Y. Let g : V' — O be a
perfect extension of the identity on ¥ such that ¥ C V' C Y. Note that by
Theorem 4, g|g~*(U) is monotone for each U € U and hence g is monotone.
So O is a monotone extension of Y.

Assume that condition (3) is false, i.e. there is a y € Y such that no
neighbourhood U in D is a monotone extension of Y NU. Let {V, : a < K}
be a neighbourhood basis for y in ¥ where & is some regular cardinal and
Va C Vg for B < a < k. Define Vo =D\ (Y \ V,) for each o and note that
{Va :a < Kk} is a neighbourhood basis for y in D because Y is dense and D
is regular.

We construct by induction for each o < x an ordinal y(a) < &, a point
Yo € D\Y, an open subset U, of D, and disjoint closed subsets A, and B,
of Y such that
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(i) ¥(8) <7(e) for B < a,
(ii) Yo € Ua N Ay N Ba,

(ifi) Us C (Aa UBa) N Vy(a) \ Viar)-
Let a < k. If o is a successor ordinal then we assume that v(«) has already
been selected, if & = 0 then we put v(«) = 0, and if « is a limit ordinal then
we put () = supg.,¥(8). We can find a y, € ‘77(&) and disjoint closed
subsets A, and B, of Y such that yo € Aq N By Nint(Ay U By). Select a

v(a+ 1) > () such that y, & ‘77(0‘4_1). Then define

U = int(Aa U Ba) N ‘77(04) \ ‘77(&_’_1).

Note that the U,’s are pairwise disjoint. Put O = {J,., U and define
the subset X of Y x I by

=((Y\0)x DU | (A4aNTa) x {0}) U ((Ba NTa) x {1})-
a<k
Let f : X — Y be the projection. Since {4, N Uq, Bo NUy : @ < K} is a
pairwise disjoint open covering of O NY, we see that X is closed in ¥ x I
and that every fibre of f is a singleton or an interval. Since X is closed we
find that f is perfect by the compactness of I. Consequently, f is monotone.

_ Let C be a space such that X is dense in C and f extends to a monotone
f : C — D. Define the following closed subsets of C"

A=¥ x{0)NX and B=(¥Y x{l})NX.

We show that f~1(0O) is contained in AUB. If z € f~1(0) and V is a
neighbourhood of z that is contained in f~1(0O) then we can finda z € VNX.
Since f(z) € O we have z € (Y x {0,1}) N X. Hence z is in AU B and so
is .

Since fis closed f(A) is closed in D. For each oo < K, Ao NU, is a subset
of f(A). Since yo € Aq NUs we have yo € f(A). So F1(ya) N A # 0 and
by symmetry f1(y.) N B # 0.

Let U and V be disjoint open sets in C such that (y,0) € U, (y,1) € V,
and UNB = VNA = 0. Since f is perfect we have f~1(y) = f~(y) = {y} xI.
Note that this fact implies that F = f(A\ U) U F(B\ V) is a closed subset
of D that does not contain y. Since sup, ., v(c) = & there is an a < k with
Vv(a) NF=40.80y, € D\ F by (11) and (iii). Since yo € Uy C O we have
' (ya) C AUB. Consequently, f- Y(yo) C UUV and since f- Yya)NA#D
and f1(yo)NB # 0 we have f~(ya) NANU # 0 and f~1(ya) NBOV # 0.
Since U and V are disjoint open sets they separate the fibre f_l(ya) and
hence fis not monotone, a contradiction.
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REMARKS. Note that the condition that Y has ordered neighbourhood
bases is only used to prove (2)=-(3). Without any restrictions on Y we
have (3)<(4)=-(1)=-(2). One can think of other conditions that would make
Theorem 6 true. For instance, if Y is an ordered space then the proof can
easily be adapted. The question is whether the implications (1)=-(3) or
(2)=(3) are true in general.

Proposition 1 implies that every monotone map can be “compactified” to
a monotone map by using the Cech-Stone compactifications. For separable
metric spaces that result is not very satisfactory, especially since we were
motivated to look at monotone maps by a problem formulated in Dijkstra
and Mogilski [2], which concerns extendibility of cell-like decompositions of
Hilbert space. To address the metric case we have the following

THEOREM 7. If f : X — Y is a monotone map between separable metric
spaces then there exist metric compactifications C' and D of X and Y such
that f extends to a monotone f: C — D.

Proof. The proof uses the Wallman compactification whose definition
we now recall. We call a closed basis 20 for the topology of a space X a
Wallman basis for X if 2 is closed under finite intersections and if 20 is
normal (i.e. if A and B are disjoint members of 20 then there are V,W € 20
such that VUW = X and VNB = ANW = (). If 20 is a Wallman basis for X
then the underlying set for the Wallman compactification w(20) of X relative
20 is the set of 2-ultrafilters. If W € 20 then W = {F € w(2W) : W € F}.
The collection {WW : W € 20} functions as a closed basis for the topology
on w(20). Since 2 is normal w(2W0) is Hausdorff and if 20 is countable then
w(20) is metrizable. We shall use the following well-known fact: if f : X — Y
is a map and X and 2) are Wallman bases on X and Y respectively such
that f~1[9)] C ¥ then f extends to a map f : w(X) — w(Q). See Walker [5]
for more information about Wallman compactifications.

Let f : X — Y be a monotone map between separable metric spaces.
Select a countable Wallman basis €y for X. Expand f[€p], which is a count-
able collection of closed subsets of Y, to a countable Wallman basis ®q for
Y. Next, expand f~1[Dg] U to a countable Wallman basis €;. Continuing
this back-and-forth process we find an increasing sequence (&,,)52, of count-
able Wallman bases for X and an increasing sequence (9,)%2, of countable
Wallman bases for Y such that f[¢€,] C D, and f~1[D,] C €, for each
n>0.5¢=U2,¢ and ® = |, , D, are countable Wallman bases
for X and Y respectively with the properties f~1[®] C € and f[¢] = D.
If we define the metric compactifications C = w(€) and D = w(D) then f
extends to a continuous f: C — D.

Let y be an element of D with a disconnected fibre. If y € Y then
f~(y) = f~1(y) by Lemma 5. Since f is monotone this would imply that
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f_l(y) is connected and hence we may assume that y € D\Y. Write fN_l(y)
as a disjoint union of two nonempty compacta A and B. Select from € two
disjoint elements F' and G such that F is a neighbourhood of A and G is a
neighbourhood of B. Then P = f(C \ int(F U G)) is a closed set that does
not contain y. Let W be an element of ® such that W is a neighbourhood of y
that is disjoint from P. Note that f~*(W) C FUG. Define F' = Fnf~Y(W)
and G’ = G N f~1(W) and note that both sets are in €. Also, both F’
and G’ are saturated subsets of X. This can be seen as follows: if b € ¥
such that f~1(b) intersects for instance F’ then f~1(b) C F’ UG’ because
F'UG' = f~1(W) is saturated. Since f is monotone, f~1(b) is connected
and hence f~1(b) C F'. Note that U = f(F’') and V = f(G’') are disjoint
elements of D and that their union is W. Since D = w(D) we see that U and
V are also disjoint so that one of them does not contain y, say y ¢ U. Then

(y) is disjoint from f 1(U) and hence disjoint from F’. Consequently,

A = f L(y) N F” is empty, which is a contradiction.

COROLLARY 8. Let C and D be separable metric spaces, let ]?: C—D
be a closed and continuous map, and let X andY be dense subsets of C' and
D respectively such that f = f |X is a monotone map from X ontoY. Then
there is a Gs-subset G of D such that Y C G and f|f1(G): f1(G) — G

18 monotone.

So every extension of a monotone map over metric compactifications
restricts to a perfect monotone extension over completions.

Proof. Note that ]?is surjective because it is closed and its range con-
tains Y. Let C and D be metric compactifications of C' and D such that
f extends to a continuous f:C — D. If we define X = - L(Y) then by
Lemma 5, f ]?IX' is a perfect monotone map from X to Y. With Theo-
rem 7 we find metric compactifications X’ and Y of X and Y respectively
such that f extends to a monotone f' : X’ — Y. According to Lavrentiev [4]
there exist Gs-sets A C C AlcX',BC D B’ C Y’, and homeomorphisms
a:A— A and §: B—>B’suchthatXCA XCA' Yc B YcH,
and a|X and G|Y are identity mappings. Let G’ = B’ \ f/(X’"\ 4’) and note
that G’ is a Gs-set in Y’ that contains Y. Define the Gs-sets F' = f'~1(G"),
F= oz_l(F’) and G = 3~ ( ). Since f]X = 810 f'oa|X and X is dense
we have f’F gt of’oa\F Since f'|F" is perfect and monotone so is f|F
Put F = FNC and G = GN D. Consider the map g = f|F f|F from F'
to G. B

It is obvious that f~ 1(@) = F and that g is closed" “and surjective. It
remains to verify that g has connected fibres. If y € Y then g~!(y) is con-
nected by Lemma 5. Let y € G\Y and z € F such that f( ) = y. Select
a sequence T, Ts,... in X that converges to z. If x ¢ C then {z,, : n € N}
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is closed in C. Since f : C — D is closed we see that {f(z,) : n € N} is
closed in D. This contradicts the fact that f(z1), f(x2),... is a sequence in
Y that converges to y € D\ Y. So we may conclude that ifye G\Y then

g Hy) = f_l( ). Since f is monotone, g is monotone.

EXAMPLE 4. In view of Theorems 3 and 7 it is natural to ask the following
question: does every separable metric space Y have a metric compactification
D with the property that whenever f : C — D is a map with compact metric
domain such that f|X : X — Y is monotone for some dense X C C, then f
is monotone as well?

The answer is easily seen to be no. Consider a metric compactification D
of the natural numbers N and let 7 : SN — D be the extension of the identity.
Since |D \N| < ¢ and |GN\ N| = 2¢ we can pick a y € D \ N with nontrivial
fibre. Pick a subset A of N such that both A and its complement in AN
intersect 2% (y). Let By be the closure of A in D and let By be the closure
of N\ A in D. If C is the topological sum of B; and B, then the natural
map from C to D is an extension of the identity that is not monotone.
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