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Abstract 

We construct an example of two countable spaces X and Y such that the spaces C,‘(X) and 
CG (Y) are homeomorphic and the spaces C,(X) and C,(Y) are not homeomorphic. o 1998 
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1. Introduction 

All spaces are completely regular. 

For a space X, C,(X) denotes the space of all continuous real valued functions on X 

with the pointwise convergence topology. C,(X) is the subspace of C,(X) consisting 

of bounded functions. 

Recently, Banakh and Cauty [21 proved that if X is countable and nondiscrete then 

C; (X) is homeomorphic to C,(X) x (T, where 0 denotes the linear span of the standard 

basis in e2. This interesting result has several nontrivial consequences, among them the 

statement that if C,(X) and C,(Y) are homeomorphic then so are CG (X) and C; (Y). 

This result suggests the natural question of whether the reverse implication holds. The 

aim of this note is to answer this question in the negative: there exist countable spaces X 
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and Y for which C;(X) ES C;(Y) (i.e., X and Y are t;-equivalent) but C,(X) $ C,(Y) 

(i.e., X and Y are not &,-equivalent). For a related result, see [I]. 

Given a filter F on an infinite countable set T, we denote by NF the space T U {co}, 

where cc $! T, topologized by isolating the points of T and using the family {A U 

{m}: A E F} as a neighborhood base at co. 

Recall that a filter F is a P-filter if for every sequence (Un) of sets from F we can 

find an A E F which is almost contained in every U,, i.e., A \ U, is finite. P-ultrafilters 

are also called P-points. For the notions from infinite-dimensional topology that we are 

using, we refer the reader to [9]. 

2. The example 

Lemma 2.1. Let F be a jilter on w which is not a P-jilter: Then the intersection 

Cp(NF) r- [O, 1lN” contains a closed nonempty subset R which is an absolute retract 

and a Z,-space. 

Proof. Since F is not a P-filter we can find a partition of w into disjoint infinite subsets 

Ak, k E w, with the following properties: 

(4 (Vi E w) [UZ = Ukai A E F], 
(b) (VA E F)(3i E w) [A \ Ui is infinite]. 

The condition (b) is obviously equivalent to 

(b’) (VA E F) (3k E w) [A n Ak is infinite]. 

To simplify the notation we may assume that F is a filter on w x w and Al, = {(k, n): 71 E 

W). 
Let P be the subset of [0, llN” consisting of all functions f with the following prop- 

erties: 

(1) (Vk%i E w) [(i 6 n) * (f(ki) < f(kn)l, 

(2) (V’lc,%i E w) [(k 6 i) =+ (f(kn) b f(i,n)l, 

(3) f(m) = 0. 
Put R = P n C&VF). Ob viously, the set R is closed in Cp(N~) n [0, llNF. Since R is 

a convex subset of the product IRNF it is an absolute retract. 

Consider an arbitrary f E R. From the continuity of f at cc it follows that, for every 

E > 0, there is an A E F such that f(k,n) 6 E for all (k,n) E A. By (b’) there is 

k E w such that f(k, n) < E for infinitely many n E w. Then the condition (1) implies 

that f (k, n) 6 E for all n E w. From (2) it follows that f (i, n) < E for all 72 E w and all 

i 3 k. Hence we have 

R = {f E P: (VE > 0)(3k E w)(Vi 3 k)(Vn E w) [f(i,n) < E]}. 

Let 

Rk = {f E R: (vi > k)(Vn E w) [f(i,n) < l/2]}, 
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for k E w. Then each Rk is a closed subset of R and R = U{ Rk: k E u}. One can 

easily verify that all Rk are Z-sets in R. Indeed, it is enough to observe that, for a fixed 

k, the sequence of maps pJ : R + R \ Rk:, ,j E u, defined by 

+?Jf)(i’ll) = l 
{ 

for i < k and n 3 ,j, 

p(i> n) otherwise 

is uniformly convergent to the identity on R (uniformly with respect to any metric on 

the product [0, IIN’). Therefore R is a Z,-space. 0 

Example 2.2. There exist countable spaces X and Y such that the spaces C,(X) and 

C;(Y) are homeomorphic and the spaces C,(X) and C,(Y) are not homeomorphic. 

Let F be an ultrafilter on w which is not a P-point. We take X = Y x NF. Let 

s = {O,l, l/2, l/3,. .} ( a convergent sequence). The space Y is the topological sum 

of the spaces X and 5’. We have the following: 

Lemma 2.3. The spaces C,(X) and C.>(Y) are not homeomorphic. 

Proof. By [6, Example 7.11, the space C,(N F is a Baire space. Since the space C,(X) ) 

is homeomorphic to Cp(N~)w it is also a Baire space, see [lo]. 

On the other hand, it is known that the space C,(S) is homeomorphic to & (see [4]) 

and therefore it is of the first category. Hence the space C,(Y) which is homeomorphic 

to C,,(X) x C,(S) is also of the first category. q 

Lemma 2.4. The spaces CG (X) and Ci (Y) are homeomorphic. 

Proof. Both spaces C;(X) and 15’; (Y) are a-precompact (i.e., they lie in the a-compact 

subsets of their completions). By [2, Corollary 2.71, it is enough to show that each of 

these spaces embeds as a closed set into the other. The space C;(Y) is homeomorphic 

to C;(X) x C,:(S) = C;(X) x C,(S) z~ Cc(X) x 0”. Obviously C;(Y) contains a 

closed copy of C;(X). Since C,(X) is homeomorphic to C,(X) x C,(X) it remains 

to prove that C’p (X) contains a closed copy of &. From Lemma 1 it follows that the 

space T = C,( NF) fl [0, llNF contains a closed subset R which is an absolute retract 

and a Z,-space. By Lemma 5.3 from [5], the product R” contains a closed copy of gw. 

Since it is obvious that the product T” can be embedded as a closed subset of C;(X), 

we are done. 0 

3. Remarks 

Remark 3.1. Using the results from [3, Lemma 4. I 11 and [2, Lemma 3. l] it is possible 

to give slightly simpler examples of spaces X and Y as in Example 2.2. It is enough 

to consider X = NF. where F is an ultrafilter on w which is not a P-point, and again 

take Y = X @ S. But in this case the proof of the properties of X and Y is much more 

involved. 
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During the 8th Prague Topological Symposium, S.P Gul’ko announced the following 

result: 

Theorem 3.2 (Gul’ko, Sokolov). Let F be an ultrafilter on w. The following are equiv- 

alent: 

(i) F is not a P-point, 

(ii) Cp(N~) contains a closed copy of the rationals Q (equivalently Cp(N~) is not 

a hereditary Baire space), 

(iii) Cp(N~) contains a closed copy of the space o. 

Hence we may use this result (together with Lemma 3.1 from [2]) for the proof of the 

properties of our example, instead of Lemma 2.1. But we decided to include this lemma 

to make our paper more self-contained. 

The result of Gul’ko and Sokolov shows that the existence of P-points in w* (which 

follows from the Continuum Hypothesis) implies the existence of hereditary Baire spaces 

Cp(N~). This fact has some other interesting consequences for the function spaces 

C;(X). We have the following simple observations: 

Proposition 3.3. Let X be a countable space such that C,(X) is a hereditary Baire 

space. Then the space C,‘(X) does not contain a closed copy of the space ow. In 

particular Cl(X) is not homeomorphic to Ci (X)W. 

Proof. We have C;t(X) = UF=‘=, C,(X)n [-n, nix. The Hurewicz theorem implies that, 

in our case, every closed absolute Bore1 subset of C,(X) II [-n, nix is an absolute Gg, 

for every n. Therefore every closed absolute Bore1 subset of C;(X) is an absolute Gsg. 

It is well known that the space ow is not such a space. The last part of the proposition 

follows from the fact that C;(X) always contains a closed copy of 0. (This can be seen 

by a direct argument, but also follows from the result of Banakh and Cauty quoted in 

the introduction.) q 

Let us point out that the space C; (NF) is always homeomorphic to all its finite 

powers (C,*(NF))~. If X is nondiscrete and C;(X) is analytic then it is homeomorphic 

to C,(X) and contains a closed copy of c? (see [2, Section 31). Proposition 3.3 implies 

the following fact: 

Proposition 3.4. Let F be a filter such that C,( N F 1s a hereditary Baire space. Then ) 

the space C: (w x NF) is not homeomorphic to (C,* ( NF))~. 

Proof. By Lemma 4.11 from [3] the space C,(w x NF) z (Cp(N~))w can be embedded 

as a closed subset of Cp(N~). Therefore C,(w x NF) is a hereditary Baire space and 

by Proposition 3.3 C,*(w x NF) does not contain a closed copy of the space ow. On 

the other hand CG (NF) always contains a closed copy of o, so (CG (NF))@ contains a 

closed copy of CF. 0 
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Observe that if X is the topological sum of the spaces Xi. i E I, then C,(X) is 

canonically (linearly) homeomorphic to neEI C,(X,). By [2, Theorem 3.21, if I = LJ 

and, for all i E w, Xi is nondiscrete and C,(X,) is analytic, then also 

Our result shows that this cannot be extended to the general case. 0 

Remark 3.5. In [8, Lemma 4.11 it has been proved that a closed zero-dimensional subset 

of the space Cr,(N~) can be embedded in F” as a closed subset, for every filter F (here, 

we consider F as a subspace of the Cantor set 2” z P(W)>. The theorem of Gul’ko and 

Sokolov shows that this is not the case for Cp ( NF). This space always contains a closed 

copy of the rationals Q. But, if F is a P-point then the product F” is hereditary Baire. 

This follows from the fact that F” can be embedded as a closed subset in Cn(NF), see 

[3, Lemma 4.1 I] and [7, Theorem 2.11. 
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