

Topology and its Applications 85 (1998) 281-285

TOPOLOGY AND ITS APPLICATIONS

An example of t_p^* -equivalent spaces which are not t_p -equivalent

Witold Marciszewski^{a,b,1}, Jan van Mill^{a,*}

 ^a Vrije Universiteit, Faculty of Mathematics and Computer Science, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
^b University of Warsaw, Warsaw, Poland

Received 15 October 1996

Abstract

We construct an example of two countable spaces X and Y such that the spaces $C_p^*(X)$ and $C_p^*(Y)$ are homeomorphic and the spaces $C_p(X)$ and $C_p(Y)$ are not homeomorphic. © 1998 Elsevier Science B.V.

Keywords: Function space; $C_p(X)$; Ultrafilter

AMS classification: 54C35

1. Introduction

All spaces are completely regular.

For a space X, $C_p(X)$ denotes the space of all continuous real valued functions on X with the pointwise convergence topology. $C_p^*(X)$ is the subspace of $C_p(X)$ consisting of bounded functions.

Recently, Banakh and Cauty [2] proved that if X is countable and nondiscrete then $C_p^*(X)$ is homeomorphic to $C_p(X) \times \sigma$, where σ denotes the linear span of the standard basis in ℓ^2 . This interesting result has several nontrivial consequences, among them the statement that if $C_p(X)$ and $C_p(Y)$ are homeomorphic then so are $C_p^*(X)$ and $C_p^*(Y)$. This result suggests the natural question of whether the reverse implication holds. The aim of this note is to answer this question in the negative: there exist countable spaces X

^{*} Corresponding author. E-mail address: vanmill@cs.vu.nl.

¹E-mail address: wmarcisz@cs.vu.nl.

and Y for which $C_p^*(X) \approx C_p^*(Y)$ (i.e., X and Y are t_p^* -equivalent) but $C_p(X) \not\approx C_p(Y)$ (i.e., X and Y are not t_p -equivalent). For a related result, see [1].

Given a filter F on an infinite countable set T, we denote by N_F the space $T \cup \{\infty\}$, where $\infty \notin T$, topologized by isolating the points of T and using the family $\{A \cup \{\infty\}: A \in F\}$ as a neighborhood base at ∞ .

Recall that a filter F is a P-filter if for every sequence (U_n) of sets from F we can find an $A \in F$ which is almost contained in every U_n , i.e., $A \setminus U_n$ is finite. P-ultrafilters are also called P-points. For the notions from infinite-dimensional topology that we are using, we refer the reader to [9].

2. The example

Lemma 2.1. Let F be a filter on ω which is not a P-filter. Then the intersection $C_p(N_F) \cap [0,1]^{N_F}$ contains a closed nonempty subset R which is an absolute retract and a Z_{σ} -space.

Proof. Since F is not a P-filter we can find a partition of ω into disjoint infinite subsets $A_k, k \in \omega$, with the following properties:

(a) $(\forall i \in \omega) [U_i = \bigcup_{k \ge i} A_k \in F],$

(b) $(\forall A \in F)(\exists i \in \omega) [A \setminus U_i \text{ is infinite}].$

The condition (b) is obviously equivalent to

(b') $(\forall A \in F)(\exists k \in \omega) \ [A \cap A_k \text{ is infinite}].$

To simplify the notation we may assume that F is a filter on $\omega \times \omega$ and $A_k = \{(k, n): n \in \omega\}$.

Let P be the subset of $[0, 1]^{N_F}$ consisting of all functions f with the following properties:

- (1) $(\forall k, n, i \in \omega) \ [(i \leq n) \Rightarrow (f(k, i) \leq f(k, n)],$ (2) $(\forall k, n, i \in \omega) \ [(k \leq i) \Rightarrow (f(k, n) \ge f(i, n)],$
- (3) $f(\infty) = 0$.

Put $R = P \cap C_p(N_F)$. Obviously, the set R is closed in $C_p(N_F) \cap [0, 1]^{N_F}$. Since R is a convex subset of the product \mathbb{R}^{N_F} it is an absolute retract.

Consider an arbitrary $f \in R$. From the continuity of f at ∞ it follows that, for every $\varepsilon > 0$, there is an $A \in F$ such that $f(k,n) \leq \varepsilon$ for all $(k,n) \in A$. By (b') there is $k \in \omega$ such that $f(k,n) \leq \varepsilon$ for infinitely many $n \in \omega$. Then the condition (1) implies that $f(k,n) \leq \varepsilon$ for all $n \in \omega$. From (2) it follows that $f(i,n) \leq \varepsilon$ for all $n \in \omega$ and all $i \geq k$. Hence we have

$$R = \{ f \in P \colon (\forall \varepsilon > 0) (\exists k \in \omega) (\forall i \ge k) (\forall n \in \omega) \ [f(i, n) \le \varepsilon] \}.$$

Let

$$R_{k} = \big\{ f \in R: \ (\forall i \ge k) (\forall n \in \omega) \ \big[f(i,n) \le 1/2 \big] \big\},\$$

for $k \in \omega$. Then each R_k is a closed subset of R and $R = \bigcup \{R_k : k \in \omega\}$. One can easily verify that all R_k are Z-sets in R. Indeed, it is enough to observe that, for a fixed k, the sequence of maps $\varphi_j : R \to R \setminus R_k$, $j \in \omega$, defined by

$$\varphi_j(f)(i,n) = \begin{cases} 1 & \text{for } i \leq k \text{ and } n \geq j, \\ f(i,n) & \text{otherwise} \end{cases}$$

is uniformly convergent to the identity on R (uniformly with respect to any metric on the product $[0, 1]^{N_F}$). Therefore R is a Z_{σ} -space. \Box

Example 2.2. There exist countable spaces X and Y such that the spaces $C_p^*(X)$ and $C_p^*(Y)$ are homeomorphic and the spaces $C_p(X)$ and $C_p(Y)$ are not homeomorphic.

Let F be an ultrafilter on ω which is not a P-point. We take $X = \omega \times N_F$. Let $S = \{0, 1, 1/2, 1/3, \ldots\}$ (a convergent sequence). The space Y is the topological sum of the spaces X and S. We have the following:

Lemma 2.3. The spaces $C_p(X)$ and $C_p(Y)$ are not homeomorphic.

Proof. By [6, Example 7.1], the space $C_p(N_F)$ is a Baire space. Since the space $C_p(X)$ is homeomorphic to $C_p(N_F)^{\omega}$ it is also a Baire space, see [10].

On the other hand, it is known that the space $C_p(S)$ is homeomorphic to σ^{ω} (see [4]) and therefore it is of the first category. Hence the space $C_p(Y)$ which is homeomorphic to $C_p(X) \times C_p(S)$ is also of the first category. \Box

Lemma 2.4. The spaces $C_p^*(X)$ and $C_p^*(Y)$ are homeomorphic.

Proof. Both spaces $C_p^*(X)$ and $C_p^*(Y)$ are σ -precompact (i.e., they lie in the σ -compact subsets of their completions). By [2, Corollary 2.7], it is enough to show that each of these spaces embeds as a closed set into the other. The space $C_p^*(Y)$ is homeomorphic to $C_p^*(X) \times C_p^*(S) = C_p^*(X) \times C_p(S) \approx C_p^*(X) \times \sigma^{\omega}$. Obviously $C_p^*(Y)$ contains a closed copy of $C_p^*(X)$. Since $C_p^*(X)$ is homeomorphic to $C_p^*(X) \times C_p^*(X)$ it remains to prove that $C_p^*(X)$ contains a closed copy of σ^{ω} . From Lemma 1 it follows that the space $T = C_p(N_F) \cap [0, 1]^{N_F}$ contains a closed subset R which is an absolute retract and a Z_{σ} -space. By Lemma 5.3 from [5], the product R^{ω} contains a closed copy of σ_p^{ω} . Since it is obvious that the product T^{ω} can be embedded as a closed subset of $C_p^*(X)$, we are done. \Box

3. Remarks

Remark 3.1. Using the results from [3, Lemma 4.11] and [2, Lemma 3.1] it is possible to give slightly simpler examples of spaces X and Y as in Example 2.2. It is enough to consider $X = N_F$, where F is an ultrafilter on ω which is not a P-point, and again take $Y = X \oplus S$. But in this case the proof of the properties of X and Y is much more involved.

During the 8th Prague Topological Symposium, S.P. Gul'ko announced the following result:

Theorem 3.2 (Gul'ko, Sokolov). Let F be an ultrafilter on ω . The following are equivalent:

- (i) F is not a P-point,
- (ii) $C_p(N_F)$ contains a closed copy of the rationals \mathbb{Q} (equivalently $C_p(N_F)$ is not a hereditary Baire space),
- (iii) $C_p(N_F)$ contains a closed copy of the space σ .

Hence we may use this result (together with Lemma 3.1 from [2]) for the proof of the properties of our example, instead of Lemma 2.1. But we decided to include this lemma to make our paper more self-contained.

The result of Gul'ko and Sokolov shows that the existence of *P*-points in ω^* (which follows from the Continuum Hypothesis) implies the existence of hereditary Baire spaces $C_p(N_F)$. This fact has some other interesting consequences for the function spaces $C_p^*(X)$. We have the following simple observations:

Proposition 3.3. Let X be a countable space such that $C_p(X)$ is a hereditary Baire space. Then the space $C_p^*(X)$ does not contain a closed copy of the space σ^{ω} . In particular $C_p^*(X)$ is not homeomorphic to $C_p^*(X)^{\omega}$.

Proof. We have $C_p^*(X) = \bigcup_{n=1}^{\infty} C_p(X) \cap [-n, n]^X$. The Hurewicz theorem implies that, in our case, every closed absolute Borel subset of $C_p(X) \cap [-n, n]^X$ is an absolute $G_{\delta,\sigma}$. for every *n*. Therefore every closed absolute Borel subset of $C_p^*(X)$ is an absolute $G_{\delta,\sigma}$. It is well known that the space σ^{ω} is not such a space. The last part of the proposition follows from the fact that $C_p^*(X)$ always contains a closed copy of σ . (This can be seen by a direct argument, but also follows from the result of Banakh and Cauty quoted in the introduction.) \Box

Let us point out that the space $C_p^*(N_F)$ is always homeomorphic to all its finite powers $(C_p^*(N_F))^n$. If X is nondiscrete and $C_p^*(X)$ is analytic then it is homeomorphic to $C_p(X)$ and contains a closed copy of σ^{ω} (see [2, Section 3]). Proposition 3.3 implies the following fact:

Proposition 3.4. Let F be a filter such that $C_p(N_F)$ is a hereditary Baire space. Then the space $C_p^*(\omega \times N_F)$ is not homeomorphic to $(C_p^*(N_F))^{\omega}$.

Proof. By Lemma 4.11 from [3] the space $C_p(\omega \times N_F) \approx (C_p(N_F))^{\omega}$ can be embedded as a closed subset of $C_p(N_F)$. Therefore $C_p(\omega \times N_F)$ is a hereditary Baire space and by Proposition 3.3 $C_p^*(\omega \times N_F)$ does not contain a closed copy of the space σ^{ω} . On the other hand $C_p^*(N_F)$ always contains a closed copy of σ , so $(C_p^*(N_F))^{\omega}$ contains a closed copy of σ^{ω} . \Box

284

Observe that if X is the topological sum of the spaces X_i , $i \in I$, then $C_p(X)$ is canonically (linearly) homeomorphic to $\prod_{i \in I} C_p(X_i)$. By [2, Theorem 3.2], if $I = \omega$ and, for all $i \in \omega$, X_i is nondiscrete and $C_p(X_i)$ is analytic, then also

$$C_p^*(X) \approx \prod_{i \in \omega} C_p^*(X_i)$$

Our result shows that this cannot be extended to the general case. \Box

Remark 3.5. In [8, Lemma 4.1] it has been proved that a closed zero-dimensional subset of the space $C_p(N_F)$ can be embedded in F^{ω} as a closed subset, for every filter F (here, we consider F as a subspace of the Cantor set $2^{\omega} \approx \mathcal{P}(\omega)$). The theorem of Gul'ko and Sokolov shows that this is not the case for $C_p^*(N_F)$. This space always contains a closed copy of the rationals \mathbb{Q} . But, if F is a P-point then the product F^{ω} is hereditary Baire. This follows from the fact that F^{ω} can be embedded as a closed subset in $C_p(N_F)$, see [3, Lemma 4.11] and [7, Theorem 2.1].

References

- [1] J. Baars, J. de Groot, J. van Mill and J. Pelant, An example of ℓ_p -equivalent spaces which are not ℓ_p^* -equivalent, Proc. Amer. Math. Soc. 119 (1993) 963–969.
- [2] T. Banakh and R. Cauty, Universalité forte pour les sous-ensambles totalement bornés. Applications aux espaces $C_p(X)$, Preprint.
- [3] R. Cauty, T. Dobrowolski and W. Marciszewski, A contribution to the topological classification of the spaces $C_p(X)$, Fund. Math. 142 (1993) 269–301.
- [4] T. Dobrowolski, S.P. Gulko and J. Mogilski, Function spaces homeomorphic to the countable product of ℓ_f^2 , Topology Appl. 34 (1990) 153–160.
- [5] T. Dobrowolski, W. Marciszewski and J. Mogilski, Topological classification of function spaces $C_p(X)$ of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991) 307–324.
- [6] D.J. Lutzer and R.A. McCoy, Category in function spaces, Pacific J. Math. 90 (1980) 145-168.
- [7] D. Lutzer, J. van Mill and R. Pol, Descriptive complexity of function spaces, Trans. Amer. Math. Soc. 291 (1985) 121–128.
- [8] W. Marciszewski, On analytic and coanalytic function spaces $C_p(X)$, Topology Appl. 50 (1993) 241–248.
- [9] J. van Mill, Infinite-Dimensional Topology. Prerequisites and Introduction (North-Holland, Amsterdam, 1989).
- [10] J. Oxtoby, Cartesian products of Baire spaces, Fund. Math. 49 (1961) 157-166.

285