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Abstract 

We show that a compact Hausdorff, hereditarily Lindelof, monolithic, monotonically normal 
space has a monolithic hyperspace. This generalises a result of M. Bell for ordered spaces. A con- 
sistent example of a nonmonotonically normal space with a monolithic hyperspace is given. We 
also show that every monotonically normal compact space is measure separable in the sense of 
Kunen and Diamonja. 0 1998 Elsevier Science B.V. 

Keywords: Hyperspaces; Monolithic; Compact spaces; Monotone normality; Measure separable 

AMS classification: 54A25; 54B20; 54D30; 54E20; 28C15 

1. Introduction and notation 

A key role in this paper will be played by the notion of monotone normality. Mono- 

tonically normal spaces are a common generalisation of both metric and ordered spaces 

and have recently received quite a lot of attention in the literature. We will first recall 

the definition: A space X is called monotonically normal (see [ 151) if X is Tj and there 

exists for every pair x and U, where 5 E U and U is an open subset of X, an open set 

r_l(x, U) such that z E p(x; U) C U and the following two properties hold: 

If U c V then ~(5, U) c p(z, V), (1.1) 

P(T X \ h/l) f- P(Y! X \ b>> = 0. (1.2) 
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Such a p is called a monotone normality operator for X. In this paper we will only use 

the following important property of such a monotone operator, which easily follows from 

the two above: 

If ~(z, U) n ~(y, V) # 0 then z E V or y E U. (1.3) 

In fact, this property alone would suffice to define a monotone operator, as (1.2) 

follows at once from (1.3) and we can always assume that p fulfills (1. I) by defining a 

new operator, using unions (letting p(z, U) be the union of all ,P(z, V), where IC E V c U 

and V open in X). It is well known that monotonically normal spaces are hereditarily 

collectionwise normal and that every stratifiable space and every generalized ordered 

space is monotonically normal. See [7] for details. Let X be a topological space and 

let K be an infinite cardinal. X is called n-monohthic [l] if for every subset A of X 

such that IAl < K. we have that nw(x) 6 K. Here nw denotes the net weight of a 

space. If X is compact Hausdorff, we can use weight instead of net weight in the above 

definition, as w(z) = nw(x) in this case. X is called monolithic if it is K-monolithic 

for all cardinals PC. Monolithicity is a hereditary and No-productive property. Examples 

of monolithic spaces include: all metric spaces and all spaces of countable net weight. 

By H(X) we will denote the hyperspace of closed nonempty subsets of X, endowed 

with the Vietoris topology. We will use the following notation for the standard subbasis 

elements of H(X): 

(U) = (FE H(X): F c u} and [U] = {F E H(X): F I- U # 0}. 

Here U is an arbitrary nonempty open subset of X. We will also use the notation (VI, 

> Un) for 

fjli-ln( k”i), 
i=l 

where the Ui’s are nonempty open subsets of X. These sets form a base for the topology 

of H(X). 

Arhangel’skii asked in [2] when H(X) is monolithic. Murray Bell, in [3], obtained 

the two following results concerning this question: 

Theorem 1. Let X be a Tt-space. ZfH(X) is monolithic then X is monolithic, heredi- 

tarily Lindelof and compact. 

Theorem 2. Let X be a compact orderable space. Then H(X) is monolithic if and only 

if X is monolithic and hereditarily Lindelof 

In fact, Bell proved a somewhat stronger result. Looking at his proof of Theorem 1 

we see that he in fact proved the following: If H(X) is N - a monolithic and X is Tt , then 

X is &-monolithic, compact and hereditarily Lindeliif. We will use this later on. Also, 

we will be using the following simple fact from [3]: 

Fact 1. Let F be a closed subset of a compact Hausdo?-fS space X. If there exists a 

collection U of open subsets of X that Tt-separates the points of F, then w(F) < IU[. 
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(Recall that a family is called (strongly) Tt-separating for the points of F if for every 

two distinct points 5, y of F there is a member U of the family such that 2 E U and 

1-l $ u (Y $ Q).) 
In the first section of our paper we will extend Bell’s Theorem 2 to the class of 

monotonically normal spaces. We will also show that the No-monolithicity of H(X} 

need not imply that X is monotonically normal. Our results show that, in general, the 

characterization of spaces with a (No-)monolithic hyperspace is quite a difficult problem: 

this class contains the (No-)monolithic, ccc, monotonically normal compacta, and is closed 

under closed continuous images and multiplication with a compact metric space. Whether 

it is closed under finite products (whenever these are ccc) is still open. 

We will also need some definitions from measure theory. All the measures we consider 

will be finite Bore1 measures. We will call a (finite Borel) measure a Radon measure 

if it is inner regular for the compact sets, i.e., the measure of each measurable subset 

is the supremum of the measures of its compact subsets. The measure algebra of a 

Bore1 measure space (X, p) is the Boolean algebra of the Bore1 sets modulo the p- 

negligible sets. This can be made into a metric space in the case that b is finite: let 

d([A], [B]) = ,u(A n B), where [A] denotes the equivalence class of a Bore1 set A and 

A n B is the symmetric difference of A and B (it is easily checked that this definition 

does not depend on the representatives chosen, and that this indeed defines a metric). 

A measure is called separable if this metric space is separable. 

In [9] Kunen and Diamonja introduced the class of measure separable spaces: A space 

is called measure separable if it is compact Hausdorff and every Radon measure on X is 

separable. They proved the following facts about this class of spaces: It is closed under 

countable products and continuous images onto Hausdorff spaces. Every compact metric 

and compact orderable space is measure separable. We will prove in Section 3 that all 

compact monotonically normal spaces are measure separable, generalizing their result for 

compact orderable spaces (of course, this fact is also a generalisation of the well-known 

fact that every compact metric space is measure separable, but this can be proven more 

directly by using the countable base of such a space). 

Finally, for more information on cardinal functions and hyperspaces we refer the reader 

to [6]. We will use the notation hi(X) for the hereditary Lindelof number of X, as defined 

there. 

2. Monolithicity of H(X) 

In this section we will generalize Murray Bell’s Theorem 2. We will prove the same 

result for compact monotonically normal spaces. For this we will first prove the following 

theorem: 

Theorem 3. Let X be a compact, monotonically normal space. Put hi(X) = X and let 

3 be a family in H(X) of (injnite) cardinal@ IF. Suppose that X is TV . X-monolithic. 

Then the closure of 3 in H(X) h as weight less than or equal to K A. 
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Proof. We will first fix some notation: Using the fact that hi(X) = X and the compactness 

of X, we choose for every F E 3 a local base of open neighborhoods (Ucy (F)),,x. In 

particular we will have that 

n Us:(F) = F, 

rU<X 

Now fix an F and a VCY(F) for the time being, and consider the cover {~(z, Us(F)): z E 

F} of F. By compactness there exists a finite F, c F such that 

F c u CL(~,U,(F)). 
SEF, 

Now let 

A(F) = U F, and A = U A(F). 

cU<X FE?= 

It is obvious that (A(F)/ < X and lAJ < K . X. So, putting B = 2, it is clear that 

w(B) < K . A, using the K . X-monolithicity of X. 

We will need the following two lemmas: 

Lemma 1. Let F E 3 and p $?f F U B. Then: 

p(p,X\B)nF=0. 

Proof. Suppose not. Then for every o < X there exists an a, E F, such that p(p, X \ 

B) n p(a,, Us(F)) # 0. N ow, because a, E A c B, and using the second property of 

p we may conclude that for all o < X we have that p E U,(F). This yields that p E F, 

contradicting our assumptions. 0 

Lemma 2. Let G E FHcX) and let 0 be an open neighbourhood of G and p E G \ 

B. Then there exist LY < X, F E 3 and x E F, such that p E p(x, UQ(F)) and 

P(Z) Us(F)) c O. 

Proof. We have that G E (0) n [~(p, X \ B)], so there exists an F E 3 such that F c 0 

and Fny(p,X\B) # 0. F rom Lemma 1 it follows that p E F. Now we can choose an 

o < X such that p E F C U,(F) c 0, and for this (Y we can find an x E F, such that 

p E ~(z, Us(F)). Obviously we now also have /k(x, UCY(F)) c 0. 0 

We shall now construct a family of open subsets of H(X) which will be Ti -separating 

for FHcX). This family will have cardinality not exceeding K X and by Fact 1 in the 

introduction, this will show that the weight of 3 -H(X) does not exceed K A. Let V 

be a collection of open subsets of X which is strongly Ti-separating for B, such that 

IV1 < K . A. Also choose a family (V ) cy or<~ of open neighborhoods of B such that 

nru<XI/a = B. Put: 

U’ = VU {~}~<x U {p(z, C&(F)): F E 3, oz < X, CL- E Fey}. (2.1) 
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Now we make this collection closed under finite unions and intersections, call the re- 

sulting collection IA. It is clear that both 24’ and U have cardinality not exceeding K . A. 

Finally we put: 

w= {(U),(X\li);[Ii],[X\D]: UEU} (2.2) 

and we will show that this family is the required Tl-separating family for Fwcx) (in 

fact it is even Tz-separating). 

Let G and H be two distinct elements of FHcX). Without loss of generality we may 

assume that there is an 5 E G \ H. We will consider three cases. 

Case l(a). Suppose z E B and H n B = 0. Using the compactness of H and the fact 

that U is closed under finite intersections. we can choose a V E U such that IC E B c V 

and I/ f? H = 0). Then [V] and (X \ v) are disjoint hyperspace neighborhoods of G and 

H, respectively, and obviously these are members of W. 

Cuse l(b). Suppose IC E B and H f~ B # 0. Now, for every y E H n B we can find 
- 

a U, E V such that y E U, and x $ U,. We can find finitely many of these CTy’s that 

cover H n B, call the union of these U,‘s CT. We then have that U E U and r $ u. If we 

now have that H c U then we can separate G and H by [X \ V] and (U), respectively. 

So assume this is not the case. Now choose an open neighbourhood 0 of H such that 

.T $ 0. Because H \ U c X \ B and H \ U is compact, we can find, using Lemma 2, 

finitely many (1 < A, F E Z= and urr such that the ~(a~, LT<?(F))‘s cover H \ U, and 

are all contained in 0. Let V be the union of the previously found U and these finitely 

many /~(a,, U,?(F))‘s. Then V E U and r $ V. Now [X \ V] and (V) are disjoint 

neighbourhhoods of G and H, respectively. 
- 

Cuse 2. Suppose that z $4 B. First choose a V, such that x $! V,. If we now have 

that H C V,, we can separate G and H by (1%) and [X \ E]. If not, we can find, as in 

the previous case, a finite number of 11 (a,. tIci,, ( F))‘s that cover H \ V,, that stay inside 

an open neighbourhood 0 of H whose closure does not contain 2. Let V be the union 

of I;, and the /~(n,, UC1(F))’ s, and this is a member of U. Now again (V) and [X \ -i;‘] 

will be the required separating neighborhoods of G and H. 0 

This theorem has some corollaries: 

Corollary 1. Let X be a compact, monotonically normal space. If n 3 hi(X) and X is 

ti-monolithic, then H(X) is K-monolithic as well. 

Corollary 2. Let X be a hereditarily Lindelgk monotonically normal, compact space. If 

X is (K-)monolithic then H(X) will he (K-)monolithic as well. 

Now we can easily prove the announced generalisation of Bell’s Theorem 2: 

Theorem 4. Let X be a monotonically normal space. Then H(X) is monolithic if and 

only if X is monolithic, compact and hereditarily LindelQfI 

Proof. Necessity follows from Theorem 1. Sufficiency follows from Corollary 2. 0 
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Using the remark following Theorem 2 we have the following: 

Theorem 5. Let X be a monotonically normal space. Then H(X) is No-monolithic if 

and only if X is No-monolithic, compact and hereditarily LindeliiJ: 

In [2] it was asked whether X must be metrizable when its hyperspace is monolithic. 

As Bell showed, this question is undecidable in ZFC. For the class of monotonically 

normal spaces we have: 

Theorem 6. The following are equivalent: 

(1) There exists a nonmetric, monotonically normal space with an No-monolithic hy- 

perspace. 

(2) There is a Souslin line (SH). 

Proof. If (1) holds, then we know that X is hereditarily Lindelof, compact and No- 

monolithic. So X is not separable. This implies (2) by a result of Williams and Zhou 

[161. 
For the other direction, if there is a Souslin line, by standard techniques we can make 

it compact, and such that every separable subspace is second-countable. Then Bell’s 

Theorem 2 (or our Corollary 2) imply that its hyperspace is also No-monolithic. 0 

We will now present a nice preservation result for spaces with monolithic hyperspaces. 

This will have as a corollary the fact that there are (consistent) nonmonotonically normal 

spaces with a monolithic hyperspace. This is of some relevance, as up to now all spaces 

with monolithic hyperspaces were monotonically normal, and we have shown [4,5] that 

Kunen’s compact L-space from CH has a nonmonolithic hyperspace. This latter space 

cannot be monotonically normal, as it carries a nonseparable Radon measure (see the 

next section). 

Theorem 7. Let X be a compact space such that H(X) is n-monolithic and let Y be a 

compact space of weight < 6.. Then H(X x Y) is n-monolithic. 

Proof. We will first prove the theorem for the case that Y is a zero-dimensional space. 

So let (U&E~ be a clopen base for Y. For every closed set F in X x Y we define F, to 

be F n (X x Ua). Let 3 be an arbitrary family of closed sets of X x Y of cardinality less 

than or equal to fi and denote by 3a the family {F,: F E 3, F, # S} c H(X x Ua). 

Claim. rf F E FHcX x y, and F, # 0 then F, E % (in H(X x Ua)>. 

For a proof of this, let U = (VI, , Vj) be an arbitrary neighbourhood of F in 

H(X x U,), where Vi,. . , Vk are open subsets of X x lJ, (so also open in X x Y). If 

F, = F then F E U so there exists a G E 3 such that F’ E U. But then G c X x U,, 

soG=G,~3,.IfF,#FthenF~(V,,...,V~,XxU~),whichisopeninXxY, 

so there is an F’ E (VI, . . . , Vj, X x Uz) n 3. But then FA E U n 3Q, as required. 
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Denote, for all Q E 6, the projection mapping from H(X x Ua) to H(X) by 7riTa. - - 
By continuity of rrQ we have that ~~[3~] c rr0[3,,], so 1jr~[3~] has weight < n, by 

n-monolithicity of H(X). So we can choose a family V, of open subsets of H(X) of - 
cardinality < K which is Ti-separating for the points of rr, [3,]. Now we define the 

following family of open subsets of H(X x Y): 

W={(V xu,,..., Vk x UJ: o E K. (vl?. . I.$$) E va} 

u{(vi x U,,...! vk x lJ,.x x VA): Q E K, (vi.. . ,vk) E VO} 

u {(X x U;), [X x Ua]: 0 E Kc>. 

Obviously, ]W] 6 K. We will now show that W is TI-separating for the points of 

7, thereby showing that w(3) < K. So let F and G be two distinct elements of 7. 

Without loss of generality there is a point x E F \ G. We can find a U, and an 

open subset V of X such that z E V x UQ and (V x Ua) n G = 8. If G, = 8, 

then F E [X x Ucy] and G E (X x U$ and these sets are disjoint. So in that 
- 

case we are done. If G, # 0, then by the claim we have that F,. G, E 3<,, and 

x,(F,) # xJrCY(GO), as n,(x) E T~(F,)\T,(G~). So we can find a set (VI,. . . , Vk) E V, 

such that rrcr (11;2) E (VI, , Vk) and rra (G,) $! (VI, . . . . Vj). It follows that F is ei- 

ther in (VI x Cl,,..., Vj x Un) or in (VI x U,, . Vk x U,,X x Ug), depending 

on whether F,, = F or not. Any of these sets is in W, and G is not an element 

of it, for if it were, 7rTT, (G,) would be an element of (VI, . . . Vk), as is easy to see. 

So W is Ti-separating for 7, as required. This concludes the case that Y is zero- 

dimensional. 

To finish the proof, let Y be an arbitrary compact space of weight < K. Because 

(0, l}” maps continuously onto the the Tychonoff cube of weight n, it is easy to see 

that Y is the continuous image of some compact zero-dimensional space 2. Then we 

also have a continuous surjection from X x 2 onto X x Y, which, by compactness, 

induces a surjection between their hyperspaces. It is easily seen that r;-monolithicity is 

preserved by closed continuous maps, so the first part of the proof now yields the desired 

result. 0 

Corollary 3. Assuming -SH, there exists a nonmonotonically normal space with a N,,- 

monolithic hyperspace. 

Proof. Let X be a compact, No-monolithic Souslin line, as in Theorem 6. Then X x 

(w + 1) (or X x 2”) has an No-monolithic hyperspace, by the preceding theorem. If it 

were monotonically normal, by a theorem from [15], we would have that X is (compact 

and) stratifiable, and hence metrizable (see [7]). 0 

Note that in this corollary some additional axiom is required: as Bell noted, MA(wi) 

implies that every X with H(X) No-monolithic is metrizable (and hence monotonically 

normal). 

We will end this section with two questions that we were unable to solve. The first is 

related to the above theorem. It is obvious that one cannot prove that the product of two 
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monotonically normal spaces with a monolithic hyperspace has a monolithic hyperspace: 

look at the square of a (compact monolithic) Souslin line, which is not even ccc, let 

alone hereditarily Lindelof. But maybe not being ccc is the only obstacle to this. We can 

at least prove the following: 

Theorem 8. Let X and Y be monotonically normal, No-monolithic spaces, and suppose 

that X x Y is ccc. Then X x Y is hereditarily Lindel$ 

Proof. First note that since X x Y is ccc, the same holds for X and Y. It then follows 

from a result of Ostaszewski [ 1 l] that X and Y are hereditary Lindelof. Now, let 2 be 

an arbitrary subset of X x Y, and let U be an open cover of 2. Let V be a maximal 

disjoint family of (nonempty) sets of the form Zfl (Ui x Uz), where Ui and U, are open 

sets in X and Y, respectively, and such that each V E V is contained in some UV E .?A. 

By ccc-ness of the product we have that V is countable, and by maximality it is easy to 

see that U V is dense in 2. Denote by Mi the collection { Ui: 372 c Y: 2 n (Ul x U2) E 

V}. Likewise we define the collection &. For every U E Ul we choose a maximal 

disjoint family 01 (U) of elements of the form P(z,, Vi), where CQ E Vi and every 

Vi is open in U. This defines a set of xi’s of which the corresponding b(xi, Vi) form 

01 (U). We call this set Xu. Similarly we define sets Yu c Y for every U in Uz. By 

maximality, we have that if an open subset of X meets U E 241 in a nonempty set, it 

must meet a member of Or (U) in a nonempty set, and likewise for Y and 02(U). Now 

we define 

s= uxu and T= u YU. 

UEUI UEUz 

Because all sets involved are countable and because X and Y are No-monolithic, we 

have that 5’ and T have countable net weight. We now claim that: 

Z\UVc(SxY)U(XxT). 

To see this, suppose this is not the case. We then have (x, y) E 2 \ U V and x $! 5’ 

and y 6 T. So we can pick open neighborhoods U, and U, of x and y such that 

U, n S = 0 = U, n T. The open neighborhood ~(2, Uz) x p(y, U,) of (x, y) now 

meets some (U, x Uz) n 2 E 1/ in a nonempty set. Moreover, we have that either 

x $ U, or y +! lJ2 (or both), as (x, y) $! U V. So assume the former, as the other case 

is similar. We have that ~(x, Uz) n U1 # 0, so for some b(Zi, Ui) E O(U1) we have 

that ~(5, Uz) n p(xi, Ui) # 0. But then we have that either x E Vi or x, E U, (or 

both). In the former case we would have that CC E Vi c U, in the latter case we would 

have that U, n S contains x,. In both cases we have a contradiction. This proves the 

claim. 

So now we can find a countable subcollection of U: {UV: V E V} which covers IJ V, 

while the other points of 2 are contained in a union of two hereditarily Lindelof spaces, 

as the product of a hereditarily Lindelof space and a space with a countable net weight 

is again hereditarily Lindelof. So X x Y is hereditarily Lindelof. 0 
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(For the case that X and Y are ordered spaces, the above theorem can be obtained 

from an easy adaptation of the proof of [ 12, Theorem 11. Our result, and its proof, 

were inspired by this theorem as well.) So now there is a natural question, trying to 

generalize the above preservation result from the case of compact metric Y to arbitrary 

monotonically normal spaces: 

Question 1. Let X and Y be compact, (No-)monolithic, monotonically normal, hereditar- 

ily Lindelbf spaces, and let X x Y be ccc. Is it true that H(X x Y) has a (N”-)monolithic 

hyperspace? 

Of course, the above is trivially true if there are no compact L-spaces. Nontrivial ex- 

amples of the conditions in the question (using two Souslin lines) can, e.g., be constructed 

under 0. 

The second question is related to the problem of whether every compact monotonically 

normal space is the continuous image of a compact linearly ordered space (see [lo]). It is 

easy to see that the closed continuous image of a (K-)monolithic space is (K-)monolithic. 

So if the following question would be answered affirmatively, we would have a different 

proof of our Theorems 4 and 5, by using Bell’s theorem for the ordered case and observing 

that a map from X onto Y induces a map from H(X) onto H(Y). 

Question 2. Let X be a compact, ccc, monotonically normal and (No-)monolithic space. 

Is it true that X is the continuous image of a (No-)monolithic, compact ccc linearly 

ordered space? 

3. Measure separability of X 

In this section we prove a generalisation of Kunen and Diamonja’s result that compact 

orderable spaces are measure separable. This will show in particular that every “Kunen 

space” (i.e., a space that is constructed like the compact L-space in [S], using inverse 

limits) is never monotonically normal. The authors showed in [4,5] that all Kunen spaces 

(which are compact hereditarily Lindeliif and monolithic spaces with a nonseparable 

measure) have a nonmonolithic hyperspace, thereby showing that these conditions are in 

general not sufficient for the hyperspace to be monolithic. In fact, we obtained in [4] that 

a certain modification of Kunen’s space had a nonmonolithic hyperspace, and hence we 

could only conclude from our Theorem 4 that this particular space was not monotonically 

normal. The results in [5] now give another proof of the fact that no Kunen space is 

monotonically normal. 

We now first state a lemma: 

Lemma 3. Let X be a monotonically normal compact space with a$nite Radon measure 

A. Suppose that all points have measure 0 and that all nonempty open sets have strictly 

positive measure. Then X is separable (as a topological space), and its measure algebra 

is separable. 
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Proof. We will build a tree of open subsets of X like in the paper [16] of Williams 

and Zhou to show the separability of X. For the reader’s convenience we will give a 

complete proof here. The following fact from [16] will be used below: 

Fact 2. Let X be monotonically normal, and let Y c X. Suppose that U is an open 

cover of Y. Then: 

{I*(Y, u): u E u, 1~ E Y n U} c F u UU. (3.1) 

To prove this, let 5 be an element of the left hand side, and suppose that 2 is not a 

member of any U E 1A. Let V be an arbitrary open neighbourhood of 2. There exists an 

open U E U and a point y E Y, such that ,LL(X, V) n ,LL(~, U) # 0. Because x $ U, we 

have that y E V. As V is arbitrary, this proves that z E y. 

We will now construct a tree ‘7 of countable height by induction. The order in the 

tree will be reverse inclusion. The first level of the tree, 70, will be just {X}. We first 

pick for every point z f X and every natural number n 3 1 a neighbourhood U,,, such 

that X(Uz,n) < l/n. It is easy to see that such a neighbourhood exists for all 2 and 

n, because the measure of a point is 0 and the measure is outer regular for open sets. 

Suppose now that we have constructed I,, the nth level of our tree 7. Let 0 be an 

arbitrary member of 7,. Now consider the following family U: 

U = {~(x, 0, n U,,,): z E O,! 0, c 0, 0, is open in X}. 

Let U(0) be a maximal pairwise disjoint subfamily of U with at least two members 

(this can be done, because the conditions on X imply that X has no isolated points). 

This determines a set of z’s of which the corresponding ~(x, 0, n Uz+)‘s form U(0). 

This set will be denoted by M(0, n). Now level n + 1 of 7 will be given by the union 

of all U(O)‘s for every 0 E 7n. This completes the construction of 7, for all n E w. 

It is easy to see, by induction, that the union of every level of the tree is dense in X. 

Also, denote by M,, the union of all M(0, n) for 0 E 7,. We will now prove that 

D = UIEW A& is dense in X. Obviously M is countable, because every level of 7 is 

countable (since X has ccc) and the height of the tree is countable. So suppose there 

exists a point z E X \ n. Then, using the density of the union of 72 and the fact above, 

we have that 

.EU{O: 0~Z)cZu U (O,nU,,,)cDu U 0,. 
YEMZ YE& 

Because we assumed that x $ D, we know that x E UyEM, O,, so there is a unique 

01 E I; that contains x. Continuing the above argument inductively, we find a decreasing 

sequence of On’s, all containing 5 and such that each 0, comes from the nth level of 

7. so x E nnEw 0,. The interior of this intersection is empty because the its measure 

is 0 (all sets on level n have measure smaller than l/n) and we assumed that nonempty 

open sets have positive measure. So for some n there will be y t Mn such that 

~(2, X \ n) n P(Y, 0, n U,,J # 0, 
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where this ~(y, 0, n U,,,) is a member of 7, different from 0,. But we then have 

that y E D and 2 $ O,, so this cannot happen. This contradiction proves that X is 

separable. But now a theorem of Mary Ellen Rudin (see [13,14]) shows that X is the 

continuous image of a compact ordered space, which is measure separable. So X is 

measure separable as well, by the results mentioned in the introduction. 0 

Note that this lemma already implies that no “Kunen” space is monotonically normal, 

as it is not separable and its measure always is of the above type. 

An inspection of the proof of Kunen and Diamonja shows that for ordered spaces 

having a measure of the above type there is a nice description of the measure algebra, 

resulting in a more or less explicitly given countable dense subset of the measure algebra. 

In the above proof we made an essential use of the highly nontrivial results from [ 13,141. 

As a consequence, we did not find a nice description of the measure algebra as in the 

ordered case. This leaves open the natural question of whether such a description is 

possible, i.e., whether a more direct proof of the above lemma avoiding Rudin’s results 

can be found. 

Now we can show the main theorem in this section: 

Theorem 9. Let X be a monotonically normal space with a finite Radon measure X. 

Then the measure algebra of X is separable. 

Proof. We will first reduce the proof to the case that X is compact, as follows: Let 

(C&)7&G be a maximal family of disjoint compact subsets of X having strictly positive 

measure. Such a family exists because X is a Radon measure and the family is countable, 

because the measure is finite. (Note that this also holds if X were a sigma-finite measure.) 

Obviously, by maximality of (Cn)nEd we have that 

We now consider every C, with the restriction of X to this subset. These are all com- 

pact monotonically normal spaces with a finite Radon measure. Let M, be the measure 

algebra of C, and let M be the measure algebra of X. One can show M to be homeo- 

morphic to the topological product of the M, (considered as metric spaces) by the map 

@ which sends the equivalence class of a Bore1 subset A to the point ([A n C71])nEU, 

in rI7LEW M,. This map is obviously well-defined, continuous l-l and onto. Also the 

map that sends a point in the product to the class of the union of its components is a 

continuous inverse for this map. This shows that we only have to prove that a compact 

monotonically normal space is measure separable. So suppose this is not the case. We 

now use the following simple fact from [9]: 

Fact 3. If X is compact and X is a nonseparable Radon measure on X, then there is a 

closed K c X such that X(K) > 0, f or all subsets B of K having positive measure the 

restriction of X to B is not separable, and every nonempty relatively open subset of K 

has strictly positive measure. 
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So if a compact space X is not measure separable, and X would be a nonseparable 

Radon measure, we would find K as above. It is easy to see that such a K satisfies 

the conditions of the preceding lemma: it is monotonically normal, and all points have 

measure 0 because the measure algebra of a one point set is separable. So we conclude 

that X restricted to this K is separable, which is a contradiction. 0 
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