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Introduction

Dutch work in dimension theory can be very naturally divided into two peri-
ods. The first period encompasses the contributions of LUITZEN EGBERTUS JAN
BROUWER (1881-1966), whose work brought about a revolution: modern topo-
logy was born and with it dimension theory. The second period concerns the work
of other Dutch mathematicians who worked in topology after BROUWER, when
topology had become an established discipline.

In the first part of this paper we will discuss BROUWER's contributions to di-
mension theory. However, in order to understand the background of BROUWER’s
work in topology more fully it is necessary to concentrate also on the broader
context of his entire scientific opus and in particular on the relation of his
topological work with his intuitionistic foundational views. Usually the intuition-
istic work and the topological work of L. E. J. BROUWER are considered as
almost disjoint. In the first part of this paper we argue that this view is very
one-sided. We briefly describe BROUWER’s intellectual development and show,
by considering BROUWER’s contributions to dimension theory, not only that the
topological work is closely related to BROUWER’s pre-1917 intuitionism, but
even that without his intuitionistic views BROUWER might never have turned
to topology. The opposition between classical topology and intuitionism arises
only after 1917 when BROUWER had become aware of the fact that a consequent
intuitionism implied the loss of a considerable part of classical mathematics, not
only with respect to method but also with respect to content. In this first part
we will stay very close to BROUWER’s precise but rather informal mathematical
style. A translation of BROUWER’s work into modern mathematical language
would be misleading.

In the second part of the paper we briefly describe the development of the
interest in The Netherlands in topology and in particular general topology after
BROUWER. Although the events described all took place after Brouwer had
turned away from classical topology, before World War II Brouwer’s presence
continued to influence the developments. As we will see FREUDENTHAL — whose
influence on Dutch topology was considerable — came to The Netherlands
because of BROUWER’s intuitionism. We illustrate the Dutch work in dimen-
sion theory with a description of a particularly interesting development to which
Dutch topologists contributed substantially: the history of DE GROOT’s compact-
ification problem.

Part I: L. E. J. Brouwer’s Topological Work and its Relation
with Intuitionism

1.1. DR.JEKYLL AND MR. HYDE?

With good reason BROUWER has been called one of the two greatest Dutch
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mathematicians, next to the seventeenth century genius CHRISTIAAN HUYGENS.
Yet there seems to be something schizophrenic about him. His collected works
consist of two volumes. The first volume contains BROUWER’s philosophical
and foundational work. The second volume contains mainly topological work.
According to Heyting, the editor of the first volume, the two volumes are “al-
most disjoint” [36, p. xiii]. At first sight there are two BROUWERS, and both are
famous, although in different circles. There is on the one hand the foundationalist
BROUWER, who defended and developed a highly original branch of construct-
ivistic mathematics: intuitionism. For an intuitionist a proof requires a mental
construction. From the intuitionistic point of view actually infinite sets cannot
be constructed mentally, which means, for example, that the principle of the
excluded third, “p or non-p”, is not generally valid so that the classical proof by
contradiction is unreliable, because “non-non-p” does not necessarily imply p. At
first sight there is, however, on the other hand, next to the foundationalist, another
BROUWER, one of the major founders of modern topology. Like Stephenson’s
Mr. Hyde, who does everything that his alter-ego, Dr. Jekyll, resents, the topo-
logist BROUWER without hesitation violates the intuitionistic rules and studies
actually infinite sets and freely uses the principle of the excluded third. Rumour
has it that some topologists tend to view BROUWER primarily as a topologist,
whose foundational work was merely the result of a peculiar hobby, while, on
the other hand, some foundationalists tend to consider the topological work as
deviant.

An example of the latter tendency we find in VAN STIGT’s publications. The
historian VAN STIGT, an expert on BROUWER and the author of a major work
on BROUWER’s intuitionism [73], argues that the foundationalist BROUWER in
fact realized that no one was going to listen to his foundational message unless
he first proved to the world that he was a great mathematician. BROUWER’s
topological work was, in VAN STIGT’s view, the result of a conscious attempt
to show the world that he deserved to be taken seriously. As soon as the world
took him seriously, after four or five very fertile years of topological work, and
after Amsterdam University made him an ordinary professor in 1912, BROUWER
returned to foundational studies. This thesis is the central theme of [71].1 VAN
STIGT’s view represents one possibility to understand BROUWER’s work as a
whole. It can be supported by the fact that BROUWER’s topological work was
all done in a very short period, following the defense of his doctoral dissertation
on the foundations of mathematics in 1907 and preceding his professorship in
1912. Yet, although VAN STIGT is probably right in the sense that BROUWER did

'In [73] the same argument returns, although less conspicuously. However, Professor VAN
STIGT wrote us that in his view the apparent disagreement between the present paper and
his publications is more a matter of emphasis and that it has never been his intention to
maintain that BROUWER’s foundational and topological work are wholly disjoint interests (private
communication, June 30, 1994),
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indeed view his topological work as a good means to acquire a reputation that
would enable him to get attention for his foundational ideas, we will try to show
that the opposition between foundational and the topological work should not be
exaggerated and that the two parts of his work are very much coherent.

Below we will describe BROUWER’s intellectual development chronologic-
ally and we will see that BROUWER the topologist and BROUWER the intu-
itionist are closely related: there is only one BROUWER, a great mathematician
and a complex personality, but quite consistent. In Section 1.2 we show how in
BROUWER’s early views on the foundations of mathematics topological problems
play a central role. Those views quite naturally led to his topological work. In
Section 1.3 we argue that BROUWER’s topological work is not opposed to his
early intuitionism. Although BROUWER was aware of the fact that certain proofs
would eventually have to be revised, his early intuitionism did not contradict
his topological work. In Section 1.4 we describe BROUWER’s contributions to
dimension theory. Finally, in Section 1.5, we show that only in the course of
World War I BROUWER became aware of the fact that his early intuitionism had
been immature and that a further elaboration of his intuitionistic point of view
required a rather drastic revision of classical mathematics.

1.2. BROUWER, THE PHILOSOPHER OF MATHEMATICS

1.2.1. “Life, Art and Mysticism” or BROUWER, the mystic

BROUWER, who enrolled at Amsterdam’s municipal university in 1897, was a
brilliant student, but he found mathematics as it was taught at the university
extremely boring. Many years later, in 1946, he said that the classes he attended
made him draw the conclusion that a mathematician was either “a servant of
natural science or [...] a collector of truths. Truths, fascinating by their immov-
ability but horrifying by their lifelessness, like stones from barren mountains of
disconsolate infinity” [73, p. 25] (the translation is VAN STIGT’s). BROUWER
even very seriously considered to quit his university studies. Fortunately, in 1903,
the remarkable GERRIT MANNOURY (1881-1966) was appointed as “privaat-
docent” at the university. The erudite MANNOURY was a mathematician?, but
also a sceptical philosopher, whose favourite method of philosophical investig-
ation was one of “playful doubt and questioning” [8, p. 5]. BROUWER atten-
ded MANNOURY'’s classes on the philosophy of mathematics and was fascinated
by this “ever critical and easily switching relativist” (Ibidem). BROUWER and
MANNOURY became and would remain friends, till MANNOURY’s death more
than sixty years later, which is remarkable because BROUWER was an emotional

?Actually MANNOURY was the first Dutch topologist. In [61] he proves a duality theorem
about which HOPF later wrote ([43, p. 25]): “[the theorem] fully belongs in the circle of modern
duality theorems and the fact that MANNOURY knew it in the year 1897 shows how far ahead of
his time he was. It is on the whole unfortunate that he did not continue this work, after all he was
close to Alexander’s duality theorem.”
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individualist, a loner who offered those who associated with him usually only
one choice: admiration or enmity. A friendship with him rarely lasted long [66,
p. 46-47]. As a result of MANNOURY’s classes mathematics became to BROU-
WER a challenge instead of a collection of lifeless truths and in 1904 he started to
prepare his doctoral dissertation on the subject that would be his main concern
for the rest of his life: the foundations of mathematics. As was first pointed
out by VAN STIGT in his Ph. D. Thesis [70] and later by VAN STIGT [72] and
VAN DALEN [28], BROUWER’s views on the foundations of mathematics are
closely related to the ideas that he expressed in a series of lectures that he gave
at Delft University in 1904-1905. In those lectures, that were published in the
form of a booklet, “Leven, Kunst en Mystiek” (“Life, Art and Mysticism™) [13],
BROUWER reacted to the views of BOLLAND, an arrogant but at that time quite
popular Dutch Hegelian philosopher, who revered reason and considered himself
to be its re-incarnation. BROUWER’s “Life, Art and Mysticism” is such that the
editor of BROUWER’s philosophical and foundational work, HEYTING, published
only some parts of it in Volume I of the Collected Works. VAN STIGT attempted
to persuade him that the whole of it should be included, but HEYTING must have
feared that publication of a text that is so strange and so different from a decent
piece of mathematics, “that crazy booklet” as he denoted it to VAN STIGT, might
hurt BROUWER’s reputation. The booklet, which BROUWER always remained
proud of, reveals to us a solipsist and a mystic, who views human beings as
creatures that are tragically locked up in their own mind, unable to communicate
with each other. Human reason and in particular mathematics and science are
condemned because they enable mankind to exploit the earth and each other and
in doing so man is alienated from his real self. For BROUWER salvation lies
in introspection, in insight, in intuition. He preaches asceticism, the neglect of
pleasure, possessions and honour. Striking, at least from a modern point of view,
is the fact that BROUWER dedicates several pages to describe women as inferior
beings, whose destiny it is to serve the superior male sex.

1.2.2. “On the Foundations of Mathematics”

In 1907, two years after the publication of “Life, Art and Mysticism”, BROUWER
defended his doctoral dissertation, “Over de Grondslagen der Wiskunde” (“On
the Foundations of Mathematics™) [14]. The dissertation is very much in line
with the ideas from “Life, Art and Mysticism”. In the dissertation the solipsist
BROUWER describes true mathematics as a free creation that consists of mental
constructions that are executed within the isolation of the human mind. Language
is exterior to mathematics and merely an imperfect means to communicate one’s
mental constructions to others. Logicism and formalism are rejected as solutions
to the crisis in the foundations of mathematics because they are based on an
attempt to found mathematics in language. Logic is seen by BROUWER as an
empirical science dealing with linguistic regularities. The agreement between
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“Life, Art and Mysticism” and the dissertation would have been even greater if
BROUWER’s supervisor, KORTEWEG, had not refused to accept several passages
which according to him had nothing to do whatsoever with mathematics and
its foundations. For example, the following sentences do not occur in the final
version of the dissertation: “And that is why science is only meaningful as a
factor in the struggle of men against nature for their fellowmen by counting and
measuring calculation, in other words, natural science has value as a weapon,
but otherwise does not touch life, yes, it is there as disturbing as everything
that is related to struggle. While mathematics, undertaken for its own sake, can
acquire all the harmony [...] of music and architecture and can give all the illicit
enjoyments that lie in the free unfolding of faculties without compulsion from
outside”.® N.B. BROUWER still condemns applied mathematics, like in “Life, Art
and Mysticism”, whereas the mathematics that he describes in the dissertation,
pursued for its own sake, is something entirely different.

BROUWER’s dissertation consists of three chapters. In the first chapter BROU-
WER describes how the science of mathematics can be constructed on the basis
of a basic mathematical intuition. The second chapter deals with the relation of
mathematics and experience, while the third chapter is devoted to the relation of
mathematics and logic. We will concentrate on the first chapter.

1.2.3. The basic intuition of mathematics and point sets on the continuum

At heart the basic intuition of mathematics is the continuous flow of time in which
we can distinguish different moments. In this respect BROUWER follows Kant
in whose philosophy time is an “Anschauungsform”; also for Kant the a priori
intuition of time precedes all experience. BROUWER describes this basic intuition
as “a unity of continuity and discreteness”. The intuition of continuity, of “fluid-
ity”, implies the discrete in the form of a before and an after. On the other hand,
the discreteness corresponds to the apartness of moments in time and implies the
continuous, i.e. the existence of a “between” which is never exhausted by the
insertion of new moments [14, p. 17]. It was BROUWER’s intention to show in
the first chapter of his dissertation how mathematics can be constructed on the
basis of this basic intuition. First BROUWER introduces the number system as a
potentially infinite system of signs. The intuition of the discrete, of the before and
after, yields the possibility to construct again and again a successor and thus we
obtain the potentially infinite sequence of the natural numbers. The negative num-
bers are obtained in a similar way. The rational numbers are introduced as ratios
of integers and the irrational numbers are also defined as “symbolic aggregates of

3“En daarom heeft de wetenschap ook alleen zin als factor in den strijd der mensen tegen de
natuur om hun medemensen door tellende en metende berekening, m.a.w. de natuurwetenschap
heeft waarde als wapen, maar raakt verder het leven niet, ja is er even storend, als alles wat
aan strijd annex is. Terwijl wiskunde, om zichzelf bedreven, alle harmonie [...] van muziek en
architectuur kan krijgen en al de ongeoorloofde genietingen kan geven, die liggen in de vrije
ontplooiing van faculteiten, zonder dwang van buiten” [31, p. 30]
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previously introduced numbers” [14, p. 16]. Soon, however, BROUWER relates
the numbers to point sets, which for our purposes is important. The intuitively
given continuum is the starting point. It is given in intuition and in a sense all its
points are also given in intuition because we can cut the continuum wherever we
want and in doing so we define a point on it. Yet the continuum is not given as
a set of points that can all together be constructed individually. The continuum is
like a “matrix”, as BROUWER says, that can be filled with points, not arbitrarily,
but in accordance with the nature of the continuum.

In order to handle the continuum mathematically BROUWER applies a poten-
tially infinite system of points (cuts) on the continuum that he calls the “dual
scale”. By means of this dual scale he turns the intuitively given continuum
into a “measurable continuum”. In order to construct this dual scale BROUWER
proceeds as follows. In the intuitive continuum he constructs “a sequence of
points having the order type of the positive and negative whole numbers”. This
sequence of points is potentially infinite and so is the sequence of intervals that
it yields. Each of the intervals is now cut up by means of repeated dichotomies.
BROUWER writes: “then if we add a point in every interval, then again in each
of the intervals so obtained, and so on, we obtain the order type 77 on the con-
tinuum, which in this way comes to correspond with the system of the finite dual
fractions” [14, pp. 17-18]. Those dual fractions are the elements of Q) written
in the binary system. At the time BROUWER believed that he could handle the
continuum by means of this potentially infinite scale. He remarks that such a dual
scale need not be dense everywhere, which means by definition that it does not
necessarily penetrate into every segment of the continuum. However, he says, we
can contract every segment not penetrated by the scale into one point. The result
is, says BROUWER, that by definition the scale will be everywhere dense. In this
way the scale turns the intuitive continuum into the “measurable continuum”,
which is in fact the standard-continuum and can be identified with the system
of the real numbers. Below, in §1.5.1, we will return to this kind of reasoning,
because in 1917 BROUWER would no longer be satisfied with it. However, we
will first see how BROUWER in his dissertation further described the construction
of mathematics.

1.2.4. Lie groups in the dissertation

In 1907 it was not at all BROUWER’s intention to do away with the results of
classical mathematics. On the contrary, he considered most of classical mathem-
atics as sound. He still assumed, in the words of VAN STIGT, “that the classical
treatment of "real number’ can be justified and form a sound basis for analysis
and function theory” [73, pp. 320-321]. It is interesting to see how BROUWER
introduces the arithmetical operations on the measurable continuum, whose con-
struction we described above, and how he introduces various geometries. The
answer is: by means of group theory and topological notions. Moreover, he felt
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this to be the only correct way. He wrote: “The arithmetical operations on the
measurable continuum ought tfo be defined by means of group theory” [14, p. 98]
(the emphasis is ours — T.K. & J.v.M.). Let us consider the introduction of addi-
tion. In order to give a group theoretic characterization of addition on the measur-
able continuum — with the group of translations in mind - BROUWER considers a
group of bijections (or a uniform group of transformations in BROUWERs words)
on the measurable continuum, that is

1. one-parameter continuous, “i.e. its transformations can be arranged in a
linear continuum in such a way that, if a point moves continuously in this
image-continuum, then the corresponding transformations bring about sim-
ultaneous continuous movements for the points of the continuum to which
they are applied”,

2. closed, i.e. if two denumerably infinite sequences of points A;, Ay, ..., and
By, Bs, ... have on the measurable continuum respectively the limit points
A and B, while there is a denumerable sequence of transformations that
maps A1 By on A4;B; fori = 1,2,3,..., then there is a transformation that
maps Ay By on AB.

BROUWER derives different properties of such a group of bijections. For
example, the order of the points remains unchanged under all bijections. BROU-
WER’s proof: Move continuously from the identity to transformation ¢ (prop-
erty 1). If £ would change the order of the two different points A and B then the
two points would have met each other during their continuous movement, which
would contradict the uniformity of the group (i.e. that it consists of bijections).

If we choose some point as zero point we can denote the transformation that
maps 0 on the point @ by “+a”. The image of a is denoted by 2a, the image of
2a by 3a, etc. There is also a point between 0 and a such that the transform-
ation “+b” that carries O to b, carries b to a. BROUWER puts b = a/2. Etc. In
this way each group of transformations of the measurable continuum generates
another dual scale on the continuum. Because this scale is also dense it makes
the continuum measurable in a new way and with respect to this new measur-
able continuum BROUWER can then identify the chosen group of transformations
with the group of additions, or the group of translations. In a similar way he
concentrates on the problem to find “the most general set of two one-parameter
continuous uniform groups that can be combined to a two-parameter continuous
group” [14, p. 23] and he finds the group of addition and multiplication combined
on the scale: ' = ¢;z + ¢; [14, p. 25].

BROUWER extends this approach by means of group theory in combination
with topological notions to the different geometries. In this context he refers to
HILBERT’s famous speech at the 1900 International Congress of Mathematicians
on important unsolved problems. HILBERT’s fifth problem concerned Lie-groups.
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LIE had considered groups of transformations on R,

z; = fi(z1,Z2,...,Z0ja1,02,...,0,) (f = 1w ym).

Assuming differentiability of the functions LIE showed that if well-chosen extra
axioms are added the transformation groups corresponding to different geomet-
ries can be derived. HILBERT considered the assumption of differentiability as
unnatural and he proposed a more general approach by assuming merely continu-
ity. In the dissertation BROUWER points out that his introduction of combined
addition and multiplication on the measurable continuum constitutes a solution of
the one-dimensional case of HILBERT’s fifth problem. In 1902 HILBERT himself
had solved the case of the Euclidean or non-Euclidean motions in the plane by
considering —in BROUWER’s words — “the group of invertible uniform transform-
ations leaving invariant the connections of incidence and forming a closed system
(i.e. if there are transformations in the group which make a definite set of points
approximate another definite set of points, then there is also a transformation in
the group transforming the first set into the second), and for which every “circle”
(i.e. the set of points into which, after fixing one point, another point can still be
transformed) consists of an infinity of points” [14, p. 52]. HILBERT’s approach
was also based on a combination of group theory and topological notions; he
applied CANTOR’s theory of point sets in combination with the Jordan-curve
theorem [52]. It is not at all strange that BROUWER was fascinated by the possib-
ility to look at groups of one to one continuous mappings and define the geometry
that you want by means of the right topological restrictions. After the discovery
of non-Euclidean geometries an introduction of geometry on the basis of some
Euclidean intuition was for BROUWER out of the question. On the other hand,
the axiomatic approach, which HILBERT applied in his famous “Grundlagen der
Geometrie” — axioms are essentially arbitrary statements that implicitly define a
geometry — was radically opposed to BROUWER’s view of mathematics. HIL-
BERT’s 1902 paper showed BROUWER a different way to introduce the vari-
ous geometries starting from continuous transformations, i.e. transformations that
could be described directly in terms of the measurable continuum. Obviously, an
important object of chapter one of the dissertation was to “show the construction
of groups independent of differentiability to be essential in the construction of
mathematics” as BROUWER wrote in 1906 (quoted and translated by VAN STIGT,
[73, p. 39], — italic is ours, T.K. & J.v.M.). The result was that in the dissertation
topological notions started to play a major role in founding mathematics.

1.3. THE RELATION BETWEEN TOPOLOGY AND INTUITIONISM

1.3.1. The basic unity of BROUWER s work
Before we can turn to BROUWER’s work in topology, we must return to the
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alleged opposition between BROUWER'’s foundational views and his topological
practice. With respect to the relation of BROUWER's intuitionism and his topolo-
gical work in the period 1908-1913 we will firstly argue that his intuitionism was
still immature at that time. In the dissertation he did not suspect that a consequent
application of his constructivistic ideas would imply that the classical continuum
and the classical notion of function would have to be given up. He assumed
that classical mathematics only needed a better foundation. And, on the other
hand, he also assumed that classical logic could still be applied in mathematics
provided the argument referred directly to mathematical constructions. There is
undoubtedly some development in BROUWER’s views on this point. In a 1908
paper he restricted the application of the principle of the excluded third and it is
clear that in the period 1909-1913 he was aware of the fact that he was using non-
constructivistic methods in his topological work and that this work would have
to be revised eventually. Yet, only in 1917 BROUWER realized that intuitionistic
mathematics would inevitably deviate considerably from classical mathematics.
In §1.3.2 we will elaborate on this point.

VAN STIGT has argued that BROUWER consciously remained silent on intu-
itionistic foundational matters and turned to non-intuitionistic topology primar-
ily to establish a reputation for himself. We would rather describe the situation
that BROUWER faced in 1907, after the defense of his dissertation, as follows.
In different ways the dissertation was unfinished. On the one hand the sketch
that BROUWER gave of an intuitionistic construction of mathematics in the first
chapter was very incomplete and, for example, for BROUWER, HILBERT’s fifth
problem remained a major unsolved problem. On the other hand the intuitionistic
philosophy and the related general methodological considerations were also un-
finished. Obviously, both aspects of BROUWER'’s “research programme” required
further elaboration. However, BROUWER decided to work on the former aspect
first. The fact that he felt the need to establish a reputation for himself may
indeed have played a role. But it is clear that he was very naturally drawn into the
problem of the Lie-groups and eventually into topology. We will discuss BROU-
WER’s topological work and in particular his work in dimension theory in §1.4.
In that section we will also show that BROUWER’s work in dimension theory
is constructivistic in the sense of the first part of the dissertation. BROUWER'’s
style in topology is such that there is first of all a strong visual aspect, while
the mental images corresponding to the topological transformations are obviously
related to the intuitive continuum. BROUWER'’s topology is mental construction,
although not always in the strict sense of BROUWER's later intuitionism. The
proofs possess a great conceptual clarity based on clear images. Moreover, man-
ifolds are constructed out of simplexes, and manifolds and continuous mappings
are handled by means of potentially infinite systems of approximations similar
to the way in which in the dissertation the continuum is handled by means of
the dual scale. BROUWER’s topology is not abstract, his notions always refer to
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mathematical systems that can be considered as mentally constructed. We will
also show that the fact that there are instances in his topological work where
BROUWER sins against his own intuitionistic views, does not run counter to the
existence of a basic unity between the work in his dissertation and his topological
work.

1.3.2. Tertium non datur

In the dissertation and for several years afterwards BROUWER considered the
measurable continuum as a clear notion. Certain questions on infinite point sets,
like the continuum hypothesis, he viewed as the result of turning mathematics
into a logical system whereby the connection with mathematics is lost. He con-
demned the application of the principle of the excluded third in such situations.
But in the dissertation he wrote “Further we emphasize that the syllogism and the
other logical principles may be reckoned to hold for the language of logical reas-
onings on finite sets, on denumerably infinite sets, on domains in continua, but
in any case exclusively on mathematically constructed systems; the conviction
that we may rely on that applicability, is based on the certainty that mathematical
systems are under discussion” [14, p. 75]. Elsewhere in the dissertation he ex-
pressed himself in the same vein saying that as long as classical logic corresponds
to acts of mathematical construction classical logic can be applied. BROUWER
wrote: “herel[...] we safely apply the principles of identity, syllogism, distribution,
contradiction and tertium non datur” [14, p. 88]. When BROUWER was handling
the continuum in the dissertation he felt that by means of the dense dual scale
on the intuitive continuum he had constructively sufficiently defined the classical
continuum as it occurred in the mathematics of his time. From his later much
more strictly constructivistic point of view, BROUWER’s 1907 construction to
turn the intuitive continuum into a measurable continuum is dubious. The dual
scale in itself is a clear notion, but because of its potentially infinite character,
we cannot know precisely which segments of the intuitive continuum it will not
penetrate. When BROUWER in the dissertation contracts each segment of the
intuitive continuum that is not peneirated by the dual scale into one point (see
§1.2.3) he implicitly considers the dual scale as an actually infinite whole. In
1917 he realized that this was unacceptable. Another example of an argument that
BROUWER in 1917 could no longer accept is his proof of the theorem that says
that on the measurable continuum every bounded infinite set possesses a limit
point. BROUWER writes in the dissertation: “From the measurability we conclude
that every denumerably infinite set of points, lying in the segment determined by
two points as its endpoints, has at least one limit point, i.e. at least one point such
that on at least one of its sides in every segment contiguous to it there are other
points of the set. (For otherwise there would be a shortest distance between points
and this could be held only a finite number of times in the finite segement.)”
[14, pp. 18-19]. The argument is based on a classical proof by contradiction.
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At that time, however, because the proof refers directly to the measurable con-
tinuum, BROUWER saw no problem here.

In 1908, a year after the publication of his dissertation, BROUWER returned
to the question of the logical principles in “De onbetrouwbaarheid van de logi-
sche principes” (“The unreliability of the logical principles™) [15]. In that paper
BROUWER explicitly asks himself whether it is allowed in “purely mathematical
constructions and transformations, to neglect for some time the idea of the math-
ematical system under construction and to operate in the corresponding linguistic
structure, following the principles of syllogism, of contradiction and of tertium
exclusum, and can we then have confidence that each part of the argument can be
justified by recalling to the mind the corresponding mathematical construction?”
[15, p. 109]. In opposition to what he had assumed in the dissertation BROUWER
argues that with respect to finite systems all principles can be applied, but with
respect to infinite systems the principle of the excluded third is not reliable. Yet,
he writes, “we shall never, by an unjustified application of the principle, come
up against a contradiction and thereby discover, that our reasonings were badly
founded” ([15, p. 110]). The reason is that BROUWER accepted the principle of
contradiction which says that p and non-p cannot be true at the same time. The
conclusion p from a proof of non-non-p is unjustified intuitionistically but it can
never lead to a contradiction because non-non-p excludes non-p as a possibility.
Most of BROUWER'’s topological work done in the period 1909-1913, is perfectly
in harmony with BROUWER’s 1907 ideas. However, in that topological work
he repeatedly applies the principle of the excluded third, which he rejected in
1908. At this point there seems to be some inconsistency. Yet, several years later,
in 1919, BROUWER once more described the principle of the excluded third as
unreliable, but at the same time acknowledged its heuristic value. He also wrote
on that occasion: “In the writings quoted in note 2 (BROUWER refers here to
all his intuitionistic work from before 1917 — TK.& J.v.M.) I drew [...] only
fragmentary consequences from the [...] intuitionistic conception of mathemat-
ics, I also repeatedly used the old methods in my simultaneous philosophy-free
mathematical works, whereby, it is true, I aimed at deriving only such results of
which I could hope that, after the execution of a systematic development of the
intuitionistic set theory, they would find a place and claim a value in the new
edifice of learning, possibly in a modified form”.? In the same paper BROUWER
also wrote that in his intuitionistic work written before 1917 he had not yet

*“Von den [...] intuitionistischen Auffassung der Mathematik habe ich iibrigens in den in
Anm. 2) zitierten Schriften bloss fragmentarische Konsequenzen gezogen, habe auch in meinen
gleichzeitigen philosophiefreien mathematischen Arbeiten regelmassig die alten Methoden ge-
braucht, wobei ich allerdings bestrebt war, nur solche Resultate herzuleiten, von denen ich
hoffen konnte, dass sie nach Ausfuhrung eines systematischen Aufbaues der intuitionistischen
Mengenlehre, im neuen Lehrgebiude, eventuell in modifizierter Form, einen Platz finden und
einen Wert behaupten wiirden” [36, p. 231]
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realized the full consequences of intuitionism.”> We see no good reason not to
take these words seriously. There are no indications that BROUWER, while he
was doing his topological work, suspected that in the end his intuitionistic point
of view would force him tot give up considerable parts of classical mathematics.
Of course he knew that all his topological proofs by contradiction would have
to be reconsidered from a strict intuitionistic point of view, but the years 1909—
1913 were so fertile and his classical approach meant already such an enormous
improvement in rigour compared to the work of his predecessors in topology, that
BROUWER had to postpone the intuitionistic revision of the proofs.

1.4. BROUWER, THE TOPOLOGIST

1.4.1. The role of topology in mathematics and the invariance of dimension
BROUWER very clearly expressed his opinion on the importance of topology in
mathematics in his 1909 inaugural lecture, “Het wezen der meetkunde” (*The
Nature of Geometry™) [17], read when he became “privaat docent”. In the lecture
he argues that all the mathematical systems have been built up from the intuition
of time, from the “measureless one-dimensional continuum conceived by one
single subject” [17, p. 116]. In his view of mathematics, geometry plays a central
role and within geometry, defined as that part of mathematics that “in particular,
investigates and classifies sets, transformations and transformation groups in [...]
spaces” of one or more dimensions [17, p. 116], the group of analysis situs is
the most fundamental. He said also: “it is possible and desirable to give priority
to the geometrical method also in parts of mathematics where this has not been
realized” [17, p. 120] and “In the same way it will not be necessary to banish
coordinates and formulas from other theories when they have been successfully
based on analysis situs, but the treatment without formulas, the “geometrical”
treatment, will be the point of departure, the analytical method will become a
dispensable tool” [17, p. 120]. It is clear that for BROUWER topology had become
the most fundamental part of mathematics and it was inevitable that he would
work in it and that he would eventually also study the problem of dimensional
invariance.

In 1874 GEORG CANTOR had proved that the set of all real algebraic numbers
is countable while the set of all real numbers is not. A startling discovery: there
appeared to be different types of infinity. Quite naturally CANTOR started a search
for other types of infinite sets, for example by looking at higher-dimensional
figures. To his own surprise in 1877 he succeeded in proving that 1- and n-
dimensional figures can be put in a one-one correspondence. This was another
striking result, which led him to the conclusion that “the difference between
figures of different dimension numbers will have to be sought in entirely differ-

5He wrote: “In meinen in Anm.2) zitierten Schriften [...] in denen die Konsequenzen des
Intuitionismus sich noch weniger deutlich fiir mich abgezeichnet hatten” [36, Footnote on p. 234].
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ent aspects than in the number of independent coordinates, which is held to be
characteristic” [55, p. 141]. DEDEKIND with whom CANTOR was corresponding
in those years was not willing to give up the idea that the number of independent
coordinates is characteristic for the dimension of a manifold and conjectured:
A one-one correspondence between the points of two continuous manifolds of
different dimension must be discontinuous. Several mathematicians submitted
proofs of the dimensional invariance under continuous mappings and by the end
of the 19th century most people thought that the matter had been settled. This
conviction however, was based upon an underestimation of the complexity of
the situation. In 1899 JURGENS and also LUROTH published on the matter and
it became clear that the general problem was still widely open and only some
special cases had been solved (See [55] for an excellent extensive treatment
of the different proofs). This was still the situation when BROUWER held his
inaugural lecture in 1909. Two pages are dedicated to analysis situs. He wrote:
“An immediately related problem is, in how far spaces of different dimension
are different for our group. Most probably this is always the case, but it seems
extremely hard to prove, and probably will remain an unsolved problem for a long
time to come.” [17, p. 18]. It is clear that in 1909 the problem of the invariance of
dimension occupied his mind.

1.4.2. Criticism of Schoenflies

In the first decade of this century ARTHUR SCHOENFLIES had attempted to give
a thorough set-theoretic foundation of topology. We will restrict ourselves to a
few remarks about that work. For a fuller treatment we refer to [55]. In SCHOEN-
FLIES’ work a central result is Jordan’s theorem: a closed Jordan curve, i.e. the
one-to-one continuous image of a circle, divides the plane into two domains with
the image as their common boundary. A domain is an open connected set. At
certain points SCHOENFLIES work is quite subtle. For example, he distinguishes
by means of the notion of accessibility between simple closed curves and closed
curves that are not simple. By definition a point P on the boundary of a domain
Is accessible if it can be reached from an arbitrary point in the domain by a finite
polygonal path in the domain or an infinite polygonal path in the domain of which
P is the only limit point. The notion of accessibility was, according to JOHNSON,
motivated by the curve y = sin(1/z) for —1 < z < +1 together with the
limit points on the y-axis —1 < y < +1. If we connect the points (1,sin 1) and
(—1,sin —1) by means of an unproblematic curve segment that does not intersect
that point set we obtain a closed curve®. Here a closed curve is by definition a
bounded closed point set that divides the plane into two domains with the curve as
their common boundary. [67, pp. 118-120]. The above-given closed curve divides
the plane into two domains but it is peculiar in the sense that the points of it on

®Such a curve is sometimes called Warsaw circle by topologists. It would be interesting to
know when and why this usage originated.
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the y-axis are not accessible from the points of the two domains. Closed curves
that are such that all their points are accessible from the two domains are called
simple by SCHOENFLIES. An important result that SCHOENFLIES proved is the
following: simple closed curves are closed Jordan curves.” When he studied Lie-
groups, BROUWER relied on SCHOENFLIES’ work. However, in the winter of
1908-1909 BROUWER suddenly discovered that SCHOENFLIES results were not
reliable. In “Zur Analysis Situs” [18], BROUWER gave a series of devastating
counterexamples. BROUWER does not criticize SCHOENFLIES’ theory of simple
closed curves, but attacks his more general theory of closed curves. In the paper
he gave the sensational example of a closed curve that splits the plane into three
domains of which it is the common boundary. It is also the first example of an
indecomposable continuum. SCHOENFLIES® general theory of closed curves and
domains had to be rejected entirely.

1.4.3. Dimension theory: “Bewelis der Invarianz der Dimensionenzahl”

It goes far beyond the purpose of the present paper to discuss BROUWER’s entire
work in topology. We will restrict ourselves to the two major papers on dimen-
sion theory. For a more extensive treatment of BROUWER’s work in dimension
theory we refer to [56] and for BROUWER’s topological work as a whole to
FREUDENTHAL's comments in [37]%. BROUWER’s “Beweis der Invarianz der
Dimensionenzahl”, submitted in June 1910 and published in 1911 [19] marks,
according to FREUDENTHAL, the onset of a new period in topology. Although the
paper is short and merely contains a simple proof of the invariance of dimension,
“it is in fact much more than this — the paradigm of an entirely new and highly
promising method, now known as algebraic topology. It exhibits the ideas of
simplicial mapping, barycentric extension, simplicial approximation, small modi-
fication, and, implicitly, the mapping degree and its invariance under homotopic
change, and the concept of homotopy class.” [37, p. 436]. We will give a sketch
of the proof. The main problem is to prove the central

Theorem In an m-dimensional manifold the one-to-one continuous image of an
m-dimensional domain contains a domain in every neighbourhood of any of its
points.

The theorem expresses a weak form of domain invariance and it implies the
invariance of dimension. By the way, for BROUWER an m-dimensional mani-
fold is not an abstract notion. In “Uber Abbildung von Mannigfaltigkeiten” [20,
p. 462] (which goes back at least to January 1910 according to FREUDENTHAL

"This is not trivial. Because it can be proved that a closed Jordan curve dividing the plane in
two domains is accessible from both domains, we can say that closed Jordan curves are simple
closed curves and in a sense SCHOENFLIES proved the converse of Jordan’s theorem.

#Also DUDA’s well-written paper [35] on the history of the notion of dimension is worth
reading.
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[37, p. 473]) BROUWER gives a constructive definition of an m-dimensional
simplicial manifold. For BROUWER an m-dimensional simplicial manifold is
— in modern terms — a connected m-dimensional topological manifold which
possesses a locally finite simplicial subdivision. BROUWER’s terminology is the
following. He first defines an “m-dimensional element” as the one-to-one con-
tinuous image of a simplex of the m-dimensional number space B™ An m-dimen-
sional manifold is constructed out of m-dimensional elements by joining them
together in such a way that two elements are either disjoint or possess a common
p-dimensional edge (0 < p < m — 1), while in every vertex the elements meet
in the same way in which in the m-dimensional number space the simplexes of a
“simplex star” meet. Such a star is everywhere dense in some neighbourhood of
some point O, and it is the union of a collection of simplexes that do not enter
each others interiors and of which any two have at most a p-dimensional edge
(p < m) in common [20, p. 454]. BROUWER’s definition of an n-dimensional
manifold clearly shows a constructivistic style.

Let us return to the central theorem in “Beweis der Invarianz der Dimensio-
nenzahl”. It is very natural to attempt to prove it by contradiction. That is what
BROUWER did. He assumes that the mapping involved is such that there is a
neighbourhood of a certain image point in which the image set is nowhere dense®.
This means that in the m-dimensional manifold there exists an m-dimensional
cube K which is mapped by a one-to-one continuous function ¥ onto a nowhere
dense, connected, perfect set C'. The problem of the invariance of dimension is in
this way reduced to the question whether we can derive a contradiction by con-
sidering continuous mappings of an m-dimensional cube. In his proof BROUWER
considers in a m-dimensional manifold the image of of a m-dimensional cube K
under a single-valued continuous mapping « and proves the crucial

Lemma If the mapping « is such that the maximum displacement of the points
of the cube is less than half an edge, there exists a concentric and homothetic cube
that is contained entirely in the image set of the first cube.

BROUWER considers a simplicial subdivision of the cube K, he gives the
simplexes an orientation, and defines a mapping /3, which is equal to « on the
vertices of the basic simplexes and elsewhere a linear extension of a defined by
means of barycentric coordinates. Essentially BROUWER studies 3 (If B maps
some simplexes on simplexes of a lower dimension BROUWER slightly modifies
). He defines a concentric and homothetic cube K chosen small enough that the
B3-image of the boundary of K does not penetrate into it and he considers the set
K of points in K’ that under /3 are not the image of points on the edges (these
are the at most (m — 2)-dimensional simplexes that occur in the boundary of the
basic simplexes) of the simplexes. Any two points of K can be connected by

? A lies nowhere dense in B means to BROUWER that a neighbourhood of a point of A always
contains points not belonging to A.
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a polygonal path lying entirely in the set. With respect to the points P of K
that are not the images of the points of the (m — 1)-dimensional edges of the
simplexes and which BROUWER calls the ordinary points of K, he determines in
fact the degree of 3. BROUWER considers for any ordinary point P, the number
p of the positively oriented image-simplexes that cover P minus the number p’
of negatively oriented simplexes. When we cross the edge of an image simplex
this difference does not change, so ¢ = p — p' is a constant for all ordinary points
of K. Moreover, ¢ must be one, because it cannot change when (3 is changed
continuously into the identity. Because we can make the simplicial subdivision as
fine as we want, c is also equal to one for the original mapping «. This proves the
lemma.

In order to get the contradiction needed to prove the domain invariance theo-
rem, BROUWER now maps the nowhwere dense image set C' under ¢ back into
the cube. He does this also by means of simplicial approximation and barycentric
extension. The set C' is enclosed by an m-dimensional cube K and is subjected to
a simplicial subdivision by dividing it up into nm little cubes which are divided
into basic simplexes. The simplexes that contain points of C' in their interior
or onto their boundary form a set F. We now define a one-to-one continuous
mapping 1 which maps C onto a nowhere dense subset of K as follows. 17 maps
a vertex of a simplex belonging to F' to a point whose image under o lies in
one of the simplexes that posses that vertex. The (other) points of C are given
images by means of barycentric extension. Suppose now that 7 o ¥(R) = P, then
we can choose n so large that for all R the distance RP remains below a given
positive number. We can then apply the Lemma to the mapping 7 o1} and we have
a contradiction.

When one looks at this proof one notices the great conceptual clarity. More-
over, the approach by means of simplicial approximation is similar to the way in
which in the dissertation the continuum was handled by means of the dual scale.
In an interesting paper Dubucs has shown that in the first decade of this century
two different trends can be distinguished in topology: a Cantorian set-theoretic
current and a combinatorial current. Within the set-theoretic current topology
is developed starting from very general abstract notions, while the combinator-
ial approach is clearly constructivistic in the sense that topology is developed
starting from elementary objects like simplexes and unnecessary general abstract
notions are avoided. BROUWER’s approach by means of simplicial approxim-
ation is combinatorial and DUBUCS rightly argues that “the topological works
of BROUWER are related to his constructivistic preoccupations, although they,
obviously, were not written within a strict intuitionistic framework”.1° Illustrative
with respect to the success and influence of BROUWER’s work on this point is the
following quotation from a well-known textbook on combinatorial or algebraic

104es traveaux topologiques de BROUWER se relient A ses préoccupations constructivistes,
bien qu'ils ne soient évidemment pas menés dans un cadre intuitioniste strict.” [34, p. 134]
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topology from 1934: “Although there are extended theories about arbitrary sub-
sets of Euclidean space, we will not deal with such a general notion of figure. It
would involve us in undesirable set theoretic difficulties. Narrow enough to avoid
these difficulties and broad enough to encompass almost all interesting figures,
is the notion of complex introduced by L. E. J. BROUWER”.!! SEIFERT and
THRELLFALL exaggerate when they attribute the notion of simplicial complex
entirely to BROUWER, but the quotation shows nicely how well BROUWER's
work did fit within the combinatorial tradition, with its dislike of “undesirable set
theoretic difficulties”.

1.4.4. Dimension theory: “Uber den natiirlichen Dimensionsbegriff”

As we have seen, the notion of the degree of a mapping is implicitly present
in “Beweis der Invarianz der Dimensionenzahl”. It is explicitly given in “Uber
Abbildung von Mannigfaltigkeiten™ [20, p. 462]. In that paper, after having intro-
duced the degree of a mapping, BROUWER proves by means of it, among others,
the theorem that reads: “A continuous mapping of an n-dimensional sphere into
itself without a fixpoint possesses the degree —1 for even n and the degree +1
for odd n”” [20, p. 471]. For an even-dimensional sphere the theorem implies that
there exists a fixed point if the mapping can be transformed continuously into the
identity. BROUWER had already proved the 2-dimensional case of this theorem
in 1909 by means of methods due to CANTOR and SCHOENFLIES [16]. Let us,
however, return to dimension theory. In his “Beweis der Invarianz der Dimensio-
nenzahl” BROUWER does not use a clearly defined dimensional invariant. Yet, as
ALEXANDROFF has pointed out, implicitly there is one: for a sufficiently small
€ > (0 there does not exist a continuous mapping from the n-dimensional cube
into an (n — 1)-dimensional polyhedron which moves each point for at most &
[4, p. 618]. An exercise book and fragments from the beginning of 1910 show,
according to FREUDENTHAL, that BROUWER was acquainted with a very natural
definition that POINCARE had proposed: “A continuum is n-dimensional, if it can
be dissected in separate pieces by one or more (n — 1)-dimensional continua”.
[37, p. 548]. Probably BROUWER heard about the definition during the 1909/10
Christmas holydays that he spent in Paris. This was the leading idea of BROU-
WER’s first approach to the problem of the dimensional invariance. That first ap-
proach did not succeed. However, after the publication of “Uber den natiirlichen
Dimensionsbegriff” BROUWER returned to his first approach. The reason was
the following. The copy of the “Mathematische Annalen” in which BROUWER’s
proof of the invariance of dimension appeared contained also an elegant and

"1“Obwohl es ausgedehnte Theorien iiber beliebige Teilmengen des euklidischen Raumes
gibt, werden wir es nicht mit einem so allgemeinen Begriff der Figur zu tun haben. Es wiirde
uns in unerwiinschte mengentheoretische Schwierigkeiten verwickeln. Eng genug, um diesen
Schwierigkeiten zu entgehen, und weit genug, um fast alle interessante Figuren zu umfassen, ist
der von L.E.J. BROUWER eingefiihrte Begriff des Komplexes [...]” [68, p. 4]
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simple proof of the same theorem by LEBESGUE. BROUWER was highly irritated,
because he did not feel like sharing the honours with somebody else. Moreover,
BROUWER soon discovered that LEBESGUE’s proof was wrong, but it was cold
comfort, because the wrong proof had great intuitive appeal and the “paving
principle” on which it was based was clearly a flash of genius. BROUWER was
right and LEBESGUE was wrong but LEBESGUE’s proof had marred BROUWER’s
pleasure. There followed correspondence between BROUWER and the editor of
the Annalen, BLUMENTHAL and between BROUWER and LEBESGUE, who re-
fused to admit his mistake; instead of that he ignored BROUWER’s challenge to
give a proof of the paving principle. He promised simple proofs, which he did
not produce and he reacted on irrelevant points. The result was that BROUWER
broke off his direct contact with LEBESGUE in the middle of 1911. However,
for many years he continued to make critical references to LEBESGUE in print
(For an extensive discussion of the BROUWER-LEBESGUE dispute we refer to
[56]). The paving principle was not easy to prove. At the time BROUWER was
maybe the only mathematician who could do it. LEBESGUE succeeded ten years
later in 1921. According to his own testimony, BROUWER found a proof within a
few days and with it another proof of the invariance of dimension. LEBESGUE
phrased the paving principle as follows: “If each point of a domain D of n
dimensions belongsto at least one of the closed sets Ey, Es,...,E,, finite in
number, and if these sets are sufficiently small, then there are points common
to at least n + 1 of these sets” [56, p. 158], translation by Johnson). In the
background must have been the insight that, for example, one cannot build a
brick wall without points that belong to at least three bricks. The paving principle
implies the invariance of dimension because we can choose the E;’s in such a
way that every point of an n-dimensional Euclidean space is covered by at most
n+ 1 sets. BROUWER’s proof of the principle is based on his original approach to
the invariance of dimension by means of POINCARE’s definition. His new proof
of the invariance of dimension and his proof of the paving principle appeared in
1913 in “Uber den natiirlichen Dimensionsbegriff” [21]. In that paper BROUWER
first considers POINCARE’s definition: “A continuum is n-dimensional, if it can
be dissected in separate pieces by one or more (n — 1)-dimensional continua”
and he points out several objections to this definition. For example, a defini-
tion of a “continuum” is required. Such a definition should exclude, however, a
double cone in Euclidean space, because otherwise it would be 1-dimensional.
In order to overcome these objections, BROUWER gives a definition applicable
to “normal sets” (in the sense of FRECHET), these are separable metric spaces
with no isolated points. By definition such a normal set 7 is a continuum if for
every two of its elements m; and ms there exists a closed connected set which
is a subset of 7 and contains m; and m,. BROUWER’s definition of dimension
is based on the notion of “separating set”. In a normal set 7 two closed subsets
p and p' of 7 are separated in 7 by a third closed subset m of 7, iff p, p’ and
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71 are mutually disjoint and every connected closed subset of 7 that has points in
common with both p and p, also contains at least one point in 7r;.'? The definition
then follows POINCARE’s definition: The expression “normal set 7 possesses
the general dimension degree n”, where n is an arbitrary natural number, means
that for all choices of p and p’ there exists a separating set 7; with dimension
degree n — 1, while it is not the case that for each choice of p and p’ there
is also a separating set of lesser degree. m possesses dimension degree O if it
contains no continuum as a part. The main goal of BROUWER’s paper is then
to justify this definition and to prove that n-dimensional manifolds, in his sense
of the word (see §1.4.3), indeed possess dimension n. Because the concept of
dimension degree is a topological invariant, the invariance of dimension imme-
diately follows. BROUWER first gives his definition of dimension degree a non-
inductive form and then he breaks up the proof in two parts. In the first part he
proves that an n-dimensional manifold has a dimension degree which is at most
n and in the second part he proves that the dimension degree of an n-dimensional
manifold is at least n. BROUWER gives his definition a non-inductive form as
follows. Two persons, A and B, subject a set 7 to the following “dimension
operation”. Individual A chooses inside 7 arbitrarily two closed subsets p and
¢’ and subsequently B separates p and p’ by means of a closed subset ;. The
whole process is then repeated with respect to m;: A chooses inside m two closed
subsets p; and p} and B chooses inside 7; a subset 7, that separates p; and p}.
In this way the process is repeated indefinitely until possibly a set m;, occurs that
contains no continuum as a part. If independently of the choices of A, B can make
such choices that we always wind up with a last 7, for which & < n and, on the
other hand, if independently of the choices of the 7, A can choose the p’s in such
a way that for 7, we never have h < n, then we say that = possesses the general
dimension degree n. In the case that there exists no n such that independently
of the choices of A, B cannot push h below n, then we say that 7 possesses an
infinite general dimension degree. If a point P of 7 possesses neigbourhoods with
general dimension degree m and no neighbourhoods with a general dimension
degree less than m, BROUWER says that m possesses in P the dimension degree
m. If in every point of a set the dimension degree is the same the set possesses a
homogeneous dimension degree. BROUWER then proceeds to prove the theorem:
An n-dimensional manifold possesses the homogeneous dimension degree n.
First BROUWER proves that in the course of the repeatedly executed dimension
operation B can make such choices that h < n. The proof is based on the

“*There is a small mistake in BROUWER’s definition of separation. In the iff-clause the
“closed” should be deleted and the “connected” should be understood in the modern sense.
Freudenthal has shown that BROUWER knew about this mistake already in 1913. However, the
fact that he did not in time correct the mistake in print caused him a lot of trouble later. In 1923
Urysohn came up with a counterexample, BROUWER wrote several notes and papers correcting
the mistake and in his later quarrel with Menger this issue played an exaggerated role. See [56]
for the details.



156 TEUN KOETSIER AND JAN VAN MILL

possibility that depending on the choices of A, B can construct well-chosen
simplicial subdivisions of the 7’s. The second part is the most difficult part.
BROUWER must prove that during the repeatedly executed dimension operation
A can make such choices that h does not become less than n. This part of the
theorem is reduced to proving LEBESGUE’s paving principle for a simplex. For a
more detailed description of the proof we refer to [56].

BROUWER’s definition of the general dimension degree is very abstract and,
as JOHNSON has rightly pointed out in [55, p. 173], contrary to his intuition-
istic views of mathematics. Yet BROUWER does not argue abstractly with the
definition; the paper primarily concerns a proof of the fact that the definition
applies to n-dimensional manifolds. This proof is completely in line with the
constructivistic style of his first paper on dimension theory. It is interesting to
realize that BROUWER'’s constructivism undoubtedly prevented him from devel-
oping dimension theory any further. BROUWER’s definition of dimension was the
first one in a sequence. A decade later, in the first half of the 1920s, PAUL S.
URYSOHN and KARL MENGER came up with definitions of dimension different
from BROUWER’s. MENGER, URYSOHN, ALEXANDROFF and others then star-
ted to develop a more abstract dimension theory, which, in the words of HURE-
WICZ and WALLMAN “justified the new concept by making it the cornerstone
of an extremely beautiful and fruitful theory which brought unity and order to a
large domain of geometry” [54, p. 4]. A discussion of those contributions goes far
beyond the scope of this paper.

1.5. THE TURN OF 1917 AND AFTERWARDS

1.5.1. Intuitionist set theory

In 1912 BROUWER became professor at the University of Amsterdam. It meant
the fulfilment of a great ambition. It also coincided with a shift of interest. After
several years of intensive activity in topology BROUWER’s interest shifted back
to the foundations of mathematics. Undoubtedly his involvement with the re-
edition of SCHOENFLIES’ texts on point set theory (published as [48]) also set
him on this course. Then came the war, international communication was dif-
ficult and for some time BROUWER was not very active mathematically. Soon,
however, things changed.

In 1917 BROUWER decided to publish some “Addenda and corrigenda” [22]
to his (at that time ten years old) dissertation. Why? Let us return for a moment to
the dissertation. In the dissertation point sets on the continuum are constructed by
means of cuts. BROUWER wrote: “We can construct on the continuum discrete,
individualized sets of points which are finite, of order type w, of order type 7
or can be obtained from such sets of points by alternation or subordination. The
number of these points is always denumerable, and likewise the number of inter-
vals determined on the continuum by pairs of points from the set is denumerable.
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In each of these intervals, and also in its totality, the set may be dense or not
(by dense we mean: of the order type 7 after every well-ordered or inversely
well-ordered set has been contracted to a single point)” [14, p. 45]. In order to
clarify the situation further BROUWER considers a dense dual scale constructed
on a segment (which is considered as a unit segment). The complete dense dual
scale corresponds to a (potentially infinite) tree that ramifies into two branches
at all vertices. This tree can be used to handle the whole segment. An arbitrary
point set on the segment, however, corresponds to a (potentially infinite) subtree.
BROUWER draws the following figure

Figure 1

and writes: “If in this structure we cut off every branch which ceases to branch
we are left either with nothing or with a continually multiplying dual branch-
ing. In the latter case the set is dense in the interval under consideration, in
the former it is not.” [14, p. 46]. Because the sets that can be constructed in
this way are for an intuitionist the only well-constructed sets, the theorem that
says that every closed point set can be divided into a perfect and a denumerable
set (CANTOR’s fundamental theorem) according to BROUWER needs no further
proof for an intuitionist. In a review of the dissertation MANNOURY had already
criticized BROUWER, saying that BROUWER's reasoning with respect to infinite
sets now and then suffers from a certain vagueness [60, pp. 236-237]. BROUWER
had not accepted that criticism. However, in 1917 he implicitly admitted that
MANNOURY had been right. He wrote that the above described constructions of
point sets are based upon “two essential suppositions, namely in the first place
that the set can be constructed in such a way that it is individualized, i.e. so that
the different infinitely proceeding branches of the tree produce different points
and further that the individualized point set can be internally dissected, i.e that
the process of breaking off branches which do not ramify any more, which must
terminate after a denumerable number of steps, really can be effected. Now it
is true that from the intuitionistic point of view the unrestricted comprehension
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axiom cannot be used [...]; therefore it is impossible to avoid special hypotheses
about the way in which the point sets under consideration are constructed, and
thereby about the limitation of the domain of set theory.” [22, p. 146]. And he
added the following revealing sentences: “This implies the right to consider, as
contained in the construction principles, such hypotheses as are desirable for the
viability of the theory. However it has lately become clear to me, as I hope to
explain in a paper that will shortly appear, that the limits of set theory can be
extended leaving out the two suppositions, mentioned above, on the construction
principles, whilst preserving the viability of the theory* (the emphasis is ours —
T.K. & J.v.M.). Obviously BROUWER had become aware of the fact that his 1907
point set theory was based on implicit assumptions that are not intuitively clear.
Rejecting the mathematics based on those assumptions would endanger the viab-
ility of the theory and that is how he defended his early work. It is a weak defense
and BROUWER must have known that. Assumptions added ad hoc in order to
preserve the “viability of the theory” are at heart unacceptable in intuitionistic
mathematics. Although it is not clear from his writings the problem must have
bothered BROUWER considerably. Anyway, he solved it. Once more BROUWER
brought about a revolution, this time in his own work. Before 1917 BROUWER
had defended an intuitionistic philosophy of mathematics, but his mathematics
had still been quite classical. Abour 1917 BROUWER created intuitionistic math-
ematics. BROUWER’s first results are in a long 70 page paper “Begriindung der
Mengenlehre unabhangig vom logischen Satz vom ausgeschlossenen Dritten”.
The first part appeared in 1918 [23], the second part in 1919 [24]. [11] contains
an introduction to those papers. It became clear that intuitionistic mathematics
would be different from classical mathematics, not only with respect to meth-
ods but also with respect to its contents. After 1917 “CANTOR’s fundamental
theorem” was wrong [11, p. 234]. Before 1917 it had been evidently true (see
[12, p. 140]). BROUWER explained this by saying that [12] was one of the early
papers in which he was not fully aware of the consequences of intuitionism
[11, p. 234, footnote]. There are no signs that BROUWER experienced the con-
sequences as dramatic. Yet that is what they were, and not only in mathematics,
also in BROUWER's personal relations with other mathematicians.

1.5.2. After 1917

We will not elaborate upon BROUWER’s intuitionistic mathematics and restrict
ourselves to a few remarks'?, The intuitive continuum disappears from the scene.
The generating processes of the order types of w and n are explicitly extended
to include free choices and a new notion of set, the “BROUWER species” is

" Also ARZARELLO [6] argues that BROUWER’s topological work and his intuitionism are
related. He attempts to show how the topological work influenced BROUWER’s later post 1917
intuitionistic mathematics.
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introduced. Real numbers are introduced by means of choice sequences and as
a result classical real analysis has to be sacrificed to a considerable extent. Illus-
trative is the fact that in intuitionistic real analysis every full function is uniformly
continuous. A full function is a function defined on a closed unit interval. This
theorem is nowadays called the Fundamental Theorem. BROUWER found it diffi-
cult to find a satisfactory intuitionistic proof. But, also elsewhere, for example in
dimension theory the consequences were tremendous. In 1928 BROUWER wrote
that so far in fact only the contents of “Uber den natiirlichen Dimensionsbegriff”
from 1913 had been intuitionistically rephrased in “Intuitionistische Einfuhrung
des Dimensionsbegriffes” [25]. BROUWER said it as follows: “Because the acute
investigations of URYSOHN, MENGER and ALEXANDROFF mainly possess a
purely formal character, the intuitionistic (that is meaningful) part of dimension
theory hardly extends beyond what had been reached in 1913”'“. Nota bene that
in this quotation most of dimension theory is discarded as meaningless. VAN
STIGT describes the decade following the publication of BROUWER’s intuition-
istic foundation of set theory as the most productive stage of BROUWER’s intu-
itionistic campaign. In terms of productivity that period was successful, but the
success had a price. VAN STIGT writes: “It is a time when BROUWER took the
centre stage as one of the chief contenders in the great Foundational Debate;
a time of heated controversy which often turned into personal feuds and led to
alienation from friends and fellow mathematicians.” [73, p. 77). Indeed. Very
dramatic was BROUWER’s conflict with HILBERT, the uncrowned king who ruled
from Gottingen, at that time the centre of the mathematical world. At first BROU-
WER’s intuitionistic mathematics did not attract much attention internationally.
However, in the 1920s BROUWER's papers on intuitionistic mathematics started
to appear in international journals. As a result the relationship between HILBERT
and BROUWER, which had been cordial for many years — in 1919 HILBERT
had even offered BROUWER a chair in Géttingen — rapidly deteriorated. HIL-
BERT, who greatly respected BROUWER as a mathematician, realized that the
intuitionistic attack on the principle of the excluded third was an attack on a
substantial part of classical mathematics. He experienced BROUWER’s work as
a serious threat and he decided to act. HILBERT formulated his programme of
metamathematics to prove the consistency of the classical mathematical theories.
The confrontation of the two mathematicians reached a climax in 1928 when
HILBERT was ill and worried that after his death his fellow-editor of the Ma-
thematische Annalen, BROUWER, would gain too much influence. HILBERT dis-
missed BROUWER from the board of the Annalen. For an extensive treatment of
the “Crisis of the Mathematische Annalen” we refer to [29]. BROUWER was a

1 “Weil indessen die scharfsinnigen Untersuchungen von Urysohn, Menger und Alexandroff
grossenteils einen bloss formalistischen Charakter besitzen, reicht der intuitionistische (d. h.
sinnvolle) Bestand der Dimensionstheorie heute kaum ueber denjenigen von 1913 hinaus.” [26,
p-954]
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sensitive man. The Annalen affair hurt him very much and it was followed by
a period of despair and deep depression. Until his death in 1966 BROUWER’S
life had ups and downs. Although there were some successes and although he
went on to publish about intuitionistic mathematics until 1955, the last part of
his life was not very happy. Maybe one can say that through his personality
and the course that he had set out for himself BROUWER was predetermined to
live unhappily. With respect to his personality the following story is illustrative.
According to VAN DALEN [30, p. 23], the topologist J. DE GROOT once told
that after a meeting he drove BROUWER home. Underway BROUWER summed
up all colleagues with whom he had at the time a bad relationship. Suddenly he
said: But you and I also still have an unfinished quarrel! DE GROOT suggested to
BROUWER not to pursue the matter any further.

1.6. CONCLUSIONS

It should be clear by now that it is quite possible to view BROUWER’s founda-
tional and mathematical work as a unity. A serious opposition between BROU-
WER'’s topological and foundational work can only be constructed if one abstracts
from the chronology and if one opposes BROUWER’s topological work from
before 1917 with his foundational views from after 1917. This is, however, what
one should not do. If one follows BROUWER’s intellectual development chrono-
logically one notices that before 1917 BROUWER’s intuitionism was immature.
It was a not yet fully developed view of the foundations of mathematics, which
opposed other views of the nature of mathematics but which did not attack or
doubt the bulk of classical mathematics. BROUWER’s early intuitionism did not at
all exclude his topological work. On the contrary, in the “construction of mathem-
atics” as BROUWER viewed it in his 1907 dissertation, topological notions played
a major role and BROUWER's topological work can be seen as a necessary con-
sequence of this fact. To a large extent the topological papers are constructivistic
in the style of the dissertation and there is a basic unity between that early intu-
itionism and the topological work. In this respect it is interesting that, although,
on the one hand, BROUWER’s foundational interest led him towards topology,
on the other hand, in the case of dimension theory his constructivistic views,
undoubtedly, prevented BROUWER from developing the theory any further. In
1917 the situation changed. BROUWER became aware of the full implications
of intuitionism and he realized that mathematics had to be rebuilt completely
and that is what he set out to do. At that moment his mathematics started to
deviate seriously from the mainstream. Actually it is very fortunate that mature
intuitionism was not born in 1907 from BROUWER’s head like Pallas Athena
from the head of Zeus. Because in that case his contribution to topology would
probably have been much smaller.
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Part I1: Dutch Topology after L. E. J. Brouwer and de Groot’s
Compactification Problem

2.1. TOPOLOGY IN THE NETHERLANDS AFTER BROUWER

2.1.1. Introduction

In this part the emphasis is on Dutch contributions to dimension theory after
BROUWER. However, we will first provide some background. We will make
some introductory remarks on topological work in The Netherlands between the
two world wars'®. Those remarks will necessarily be incomplete, in particular
with respect to applications of topology in other areas of mathematics. We will
show that although BROUWER himself no longer actively contributed to topo-
logy, through his presence and the fact that great mathematicians often visited
him, he nevertheless exerted considerable influence on Dutch topology. As for
the developments after World War II we will restrict ourselves even further and
we will merely briefly discuss the role of DE GROOT. Finally we will describe
the history of DE GROOT’s compactification problem.

2.1.2. Between the world wars

In the first part of this paper we saw that at some time before 1917 BROUWER
stopped working in topology and turned his attention to an intuitionistic founda-
tion of mathematics. Yet after World War IT he ranked among the first mathem-
aticians and he was frequently visited by foreign scholars. Moreover, in particu-
lar, Urysohn’s dimension theory as it appeared in the first part of his “Mémoire
sur les multiplicités cantoriennes” (Fundamenta Mathematicae, volumes 7 and 8)
fascinated BROUWER [5, p. 116]. It seems to be precisely the kind of topology
that he would have approved of if he had taken his intuitionism less seriously.
The result was that in the period 1925-1926 P. ALEXANDROFF, MENGER and
VIETORIS stayed with BROUWER. Their stay was influential. MENGER brought,
for example, WITOLD HUREWICZ (1909-1956) from Vienna to Amsterdam.
HUREWICZ, who became BROUWER’s assistant, did his pioneering research in
topology, for example on the theory of homotopy groups, in Amsterdam. In 1937
he left for the United States.

Remarkable is the winter 1925-26, when EMMY NOETHER spent the Christ-
mas holidays in Blaricum, the village where BROUWER lived. NOETHER lectured
there too and according to ALEXANDROFF the beginning of her group theory (her
homomorphism and isomorphism theorems) reached its final stage in Blaricum
[5, pp. 120-121]. Also the young BARTEL L. VAN DER WAERDEN participated
in the discussions. It was there that NOETHER developed the view that group
theory should be the foundation for combinatorial topology, and that numerical
invariants like the Betti-numbers should be replaced by homology-groups, an

""For a more extensive treatment of topology in the Netherlands between the two world wars
we refer to FREUDENTHAL [43].
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idea which was finally accepted generally, although, for example, LEFSCHETZ
was rather sceptical [5, p. 121].

The seminars organized on the occasion of the presence of the foreign guests
also exerted influence on young Dutch mathematicians. For example, in 1925
in Amsterdam, DAVID VAN DANTZIG (1900-1959) attended a seminar led by
BROUWER where ALEXANDROFF, MENGER, VIETORIS and HUREWICZ were
present. It stimulated him to make a systematic study of topological groups, rings
and fields from a unified point of view. He called this unified theory “Topological
algebra”. In 1931, at the University of Groningen, VAN DANTZIG defended a
doctoral dissertation on topological algebra [32]. VAN DANTZIG discovered the
solenoid. For a further discussion of VAN DANTZIG’s work by VAN DER WAER-
DEN we refer to [9, pp. 231-233]. It is remarkable that VAN DANTZIG’s work was
totally independent of BROUWER’s work. The later development of topological
algebra is sketched in [74].

VAN DANTZIG’s dissertation was written under the supervision of B. L. VAN
DER WAERDEN (born in Amsterdam in 1903), who from 1929 to1931 was pro-
fessor of mathematics in Groningen. From 1927 to 1929 VAN DER WAERDEN
had been “Privatdozent” in Gottingen. D. J. STRUIK once recalled how EMMY
NOETHER used to walk the streets of Gottingen accompanied by two young men,
who were called in jest “die Unterdeterminanten”. One of the “Unterdetermi-
nanten” was VAN DER WAERDEN. He became internationally famous after he
published his “Moderne Algebra I and “Modeme Algebra II” in 1930 and 1931.
VAN DER WAERDEN was very much aware of the importance of topology. He
studied special problems in topological groups and also applications of topology
to enumerative geometry. VAN DER WAERDEN left the Netherlands in 1931, but
between the two world wars he considerably stimulated topology in the Nether-
lands. VAN DER WAERDEN also stimulated EGBERTUS R. VAN KAMPEN (1908—
1942), who obtainded his doctoral degree in 1929 at Leiden University under the
geometer W. VAN DER WOUDE with a dissertation on combinatorial topology
[57]. To vaN KAMPEN, who left the Netherlands for the United States in 1931,
we owe the (Seifert-)Van Kampen theorem for fundamental groups. The original
proof is in [58]. For a discussion by SINGH VARMA we refer to [9, pp. 244-249]
. VAN DER WAERDEN's influence is also clearly present in GERRETSEN’s 1938
dissertation on the topological foundation of enumerative geometry [44].

Another highly talented mathematician attracted by BROUWER’s genius was
HANS FREUDENTHAL (1905-1990), who came from Berlin to Amsterdam be-
cause of intuitionism. BROUWER had visited Berlin in the winter of 1926/27 and
FREUDENTHAL was fascinated by BROUWER’s foundational ideas. BROUWER
invited FREUDENTHAL to come to Amsterdam. FREUDENTHAL became BROU-
WER’s other assistant next to HUREwWICZ, who had come to Amsterdam because
of topology. FREUDENTHAL succeeded IRMGARD GAWEHN, an intriguing Ger-
man lady. She had written an excellent Ph. D. thesis on topology with ROSEN-
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THAL in Heidelberg: she found a purely topological characterization of all 2-man-
ifolds without boundary. (Independently, similar results were obtained by several
other mathematicians.)'® FREUDENTHAL was a student of HOPF and he had
written a dissertation on topology dealing with the so-called Freudenthal-ends
of topological spaces [40]. In 1937 FREUDENTHAL became “conservator” at the
University of Amsterdam. About to be naturalized when the second world war
started, FREUDENTHAL became stateless and in 1940 he lost his position. Soon
after the war FREUDENTHAL became professor of geometry at the University
of Utrecht. He would stay in the Netherlands until his death in 1990. He left a
lasting impression on Dutch mathematics through his mathematical, pedagogical
and historical work. Although FREUDENTHAL came because of BROUWER’s
intuitionism, he for some time continued to work in topology. He proved, for
example, the suspension theorems in HUREWICZ' theory of homotopy groups
[41]. For a discussion by LEMMENS of FREUDENTHAL'’s contributions in this
respect we refer to [9, pp. 336-340].

FREUDENTHAL’s work stimulated A. vAN HEEMERT to write a doctoral
dissertation on the R, -adic generation of general-topological spaces with ap-
plications on the construction of non-separable continua [51]. Another pupil of
FREUDENTHAL was J. DE GROOT who wrote a doctoral dissertation on compact-
ifications [45]. On July 28, 1945, FREUDENTHAL wrote to HOPF: “I have a very
industrious pupil, J. DE GROOT. He has done very beautiful topological things”
(Freudenthal Archive, Box 60, Correspondence with Hopf 1928-1954). It is inter-
esting that GERRETSEN, VAN HEEMERT and DE GROOT all defended their dis-
sertations at Groningen University. The theses were supervised by G. SCHAAKE,
a clever geometer, but not a topologist. In the case of GERRETSEN, this is not
strange. GERRETSEN provided a rigid foundation for many results in enumerative
geometry that SCHAAKE had obtained. In the case of VAN HEEMERT and DE
GROOT it is remarkable. One is tempted to suppose that the reason will have
been a combination of two things. BROUWER had turned to intuitionism, VAN
DER WAERDEN had left the Netherlands for Leipzig and in 1939 FREUDENTHAL
was only “conservator” at the University of Amsterdam without the “jus pro-
movendi”, while during the war he was even unemployed. A student interested in

'8 Later FREUDENTHAL said about GAWEHN: “She was a particularly beautiful woman, who
had written a brilliant topological doctoral thesis with ROSENTHAL in Heidelberg. Later she
showed up in philosophical circles in Berlin and also in that area she was considered to be a
genius. However, in the Netherlands it soon became clear that she did not know anything about
mathematics nor philosophy. [...] During the war she died in a mental institution. A possible
explanation is that she possessed the capacity to identify to an exceptional degree with someone
else with whom she was in love, a mathematician in Heidelberg and a philosopher in Berlin.”
[3, p. 118]. GAWEHN’s topological dissertation was published in the Mathematische Annalen.
FREUDENTHAL was rarely wrong in his judgement, but had a rather acute way of expressing
himself. It seems probable that FREUDENTHAL's statement “she did not know anything about
mathematics” is at least exaggerated. To our knowledge there is no proof whatsoever that
GAWEHN did not write her dissertation herself.



164 TEUN KOETSIER AND JAN VAN MILL

a Ph. D. in topology was, obviously, forced to turn to a non-topologist for formal
supervision. Moreover, it seems that VAN DER WAERDEN had left a positive
climate in Groningen with respect to topology.

2.1.3. After World War II: Johannes de Groot

Because BROUWER had stopped working in topology, after 1930 FREUDENTHAL
was in a sense topologist number one in the Netherlands. In spite of the positive
influence that he exerted on the development of the subject in the Netherlands, for
VAN DER WAERDEN topology was not a main concern. Moreover, he soon left
the country. As for FREUDENTHAL, although he continued to work in topology
for some time, his interests were not exclusively topological. He also worked
in the foundations of mathematics, in geometry and in other areas. That is why
after World War II, the author of the above-mentioned thesis on compactification,
JOHANNES DE GROOT (1914-1972), took over the role of leading Dutch to-
pologist. DE GROOT almost exclusively concentrated on topology, with great
success. After World War II, DE GROOT dominated Dutch topology for more
than two decades. In 1948 he was appointed full professor at the Technological
University of Delft. From 1952 until his death in 1972 he was professor at the
University of Amsterdam. For an extensive survey of his work, a list of publica-
tions and a list of doctoral dissertations written under him, we refer to BAAYEN
and MAURICE [7]. He was an impressive personality, creative, hardworking, fair
and reliable, with in certain respects an aristocratic life style. He liked expensive
hotels, expensive port wine and he drove a Mercedes two-seater. Many a young
topologist remembers being transported by DE GROOT after having undergone a
continuous transformation to fit in the back-space of the Mercedes. Internation-
ally he became quite well known. DE GROOT was always full of ideas which he
would share with everyone. It is characteristic of DE GROOT that when he felt
that his death was near, he dictated to his wife his last mathematical instructions
for his students. The fact that ten of DE GROOT’s Ph. D. students afterwards pur-
sued academic careers (not necessarily in topology) illustrates on the institutional
level his positive influence on Dutch mathematics. They are: P. C. Baayen, T.
J. Dekker, J. Ch. Boland, H. de Vries, T. van der Walt, M. A. Maurice, A. B.
Paalman-de Miranda, J. M. Aarts, E. Wattel and A. Verbeek.

2.2. DE GROOT’S COMPACTIFICATION PROBLEM

2.2.1. Dimension functions

A complete survey of DE GROOT’s work is given in [7]. We will restrict ourselves
to one example: the compactification problem. In order to be able to discuss
that example it is necessary that we briefly mention some results from modern
dimension theory. Throughout the remaining part of this paper, all topological
spaces are assumed to be separable and metrizable.
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Dimension functions in some sense measure the topological complexity of
a topological space. A space with dimension 2 is more complex than a space
with dimension 1, etc. Different dimension functions measure different things and
some dimension functions are more interesting than others. To begin with, we
briefly review some important facts from dimension theory.

As we saw above, the first definition of a dimension function was given by
BROUWER [21]. His concept refers to the notion of a partition of a topological
space. If A and B are closed subsets of a topological space X then a closed
subset C' of X is called a partition between A and B if there exist open subsets
U,V C X such that

ACUBCV,UNV=0and X\C=UUV.

We also say that C' separates A and B. Motivated by the simple observation of
POINCARE [64] that solids can be partitioned by surfaces, surfaces by lines, and
lines by points, BROUWER’s definition of the Dimensionsgrad, Dimgrad X, of a
space X in fact is the following:

Dimgrad X =0 < every subcontinuum of X is a point,

Dimgrad X <n (> 1) < every pair A, B of disjoint closed subsets
of X can be separated by a set S with
Dimgrad S <n — 1,

Dimgrad X =n & Dimgrad X < nand Dimgrad X £ n—1,

Dimgrad X = o0 < Dimgrad X > nforn=-1,0,1,....

It is easy to see that if X and Y are homeomorphic spaces then Dimgrad X =
Dimgrad Y, i.e., Dimensionsgrad is a topological invariant. BROUWER showed
that Dimgrad I = n from which it follows that I" is not homeomorphic to I if
T,

Examples of spaces X with Dimgrad X = 0 are the rational numbers @Q, the
irrational numbers P and the Cantor middle third set C. It is easily seen that every
product of spaces with Dimensionsgrad 0 has Dimensionsgrad 0. So, in particular,
Q°°, the product of infinitely many copies of @, has Dimensionsgrad 0.

Let £2 denote separable HILBERT space and put

E = {x € £% : z; is rational for every i}.

This is called Erdds’ space (see ERDOS [39]). We will show that Dimgrad E = 0.
To this end, let K C E be a continuum. The inclusion i: £2 < R* is injective and
continuous and so [ K] is a subcontinuum of Q°; in addition, i[K] has the same
cardinality as K. Since the Dimensionsgrad of Q°° is 0, it follows that |i[K]| = 1
and so |K'| = 1. We conclude that Dimgrad E = 0.

There is something pathological about E. It can be shown that if U C F is
open and bounded (in the sense that the set {||z|| : z € U} is bounded) then
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U is not closed (ERDOS [39]; see also ENGELKING [38, 1.2.15]). So the open
neighbourhood {z € E : ||z|| < 1} of 0 in E does not contain an open and closed
neighbourhood of 0 in E. This distinguishes E from spaces such as @, P and C.
In modern terminology, E is not of dimension 0, but @, P and C are. To make this
precise, for a space X define its large inductive dimension (or BROUWER—Cech
dimension), Ind X, as follows:

Ind Xr=-=1 o X =4,

Ind X <n(>0) < every pair A, B of disjoint closed subsets of X
can be separated by aset S with Ind S < n — 1,

IndX =n < IndX <nandInd X £€n—1,

Ind X = < IndX >nforn=-1,0,1,...

This dimension function is obviously similar to the Dimensionsgrad but is
better since it distinguishes between spaces such as P and E. It is easy to show
that IndQ = IndP = IndC = 0 but, interestingly. Ind E # 0 (in fact,
Ind E = 1, see [38, 1.2.15]).

We saw (cf. footnote 9) that BROUWER claimed that he meant his defini-
tion of Dimensionsgrad to read exactly as the definition of the large inductive
dimension; that it read otherwise was caused by a clerical error. Going into the
heated discussions that were the result of this claim, would triple the length of this
article and we will therefore not do it. It turns out that for locally compact, locally
connected spaces (including the Euclidean spaces k") the Dimensionsgrad and
the large inductive dimension take the same value.

There are two other strongly related dimension functions that are of interest,
namely, the small inductive dimension (or Menger—Urysohn dimension), and the

covering dimension (or LEBESGUE covering dimension). The small inductive
dimension ind X of a space X is defined as follows:

ind X = -1 & X=§,

ind X <n(>0) < every singleton subset {z} of X and every closed
subset A C X with z € A can be separated by a
set S withind S <n —1,

ind X =n < indX <nandind X €n —1,
ind X = o0 < indX >nforn=-1,0,1,....

This dimension function is obviously very strongly related to the large induct-
ive dimension,

In the first part of this paper we saw that quite a different dimension func-
tion was introduced by LEBESGUE. Before we will present its formal definition,
we give some background. Let us try to cover the square I? with finitely many
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“small” rectangles in such a way that as few of the retangles as possible have
points in common. At first one might come up with something as shown in the left
part of Figure 2, where no more than four of the rectangles intersect. A moments
reflection shows however that we can do better since the covering in the right part
of Figure 1 shows that it can be done in such a way that no more than three of the
rectangles intersect. Interestingly, this is how far one can go, even if one replaces
“rectangle” by “arbitrary closed set”, or by “arbitrary open set”. This observation,
the paving principle, is the basis for LEBESGUE’s dimension function.

Figure 2

Let I{ be a cover of a space X and let n > —1. We say that the order of U/ is
at most n, ord(U/) < n, if forevery z € X,

WUel:zeU) <n+l.

If I is a cover of a space then a cover V of X is called a refinement of I/ provided
that for every element VV €} there exists an element U €l{ such that V' C U. Now
for a space X we define its covering dimension (or Cech-LEBESGUE dimension)
dim X as follows:

dimX <n (> -1) < for every finite open cover U of X there ex-
ists a finite open refinement V of I{ such that

ord(V) < n.
dimX =n < dimX <nanddimX £ n—1,
dim X = oo < dim X £ nforeveryn > —1.

This dimension function differs from the previous three because it is not
inductively defined. But interestingly, it turns out that for a given space X the
dimension functions Ind, ind and dim take the same value. This result is known
as the coincidence theorem.

Theorem 2.2.1 For every separable metrizable space X we have
ind X = Ind X = dim X.

For a proof of this theorem, see ENGELKING [38, 1.7.7].
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The following result due to BROUWER, LEBESGUE, MENGER and URY-
SOHN, is known as the fundamental theorem of dimension theory.

Theorem 2.2.2 For every natural number n we have
ind R* = Ind R* = dim k" = n.

We will finish this section by presenting a particularly simple and transparant
proof of the fact due to BROUWER that if n # m then I" 2 1™,

A family of pairs of disjoint closed sets 7 = {(A;, B;) : ¢ € G} of a space
X is called essential if for every family {L; : ¢« € G}, where L, is a partition
between A; and B; for every 4, we have (), L; # 0; if 7 is not essential then it
is called inessential.

Consider I and for 7 < n its faces

We will show that the collection of opposite faces {(A;, B;) : ¢ < n} of I"is
essential.

Theorem 2.2.3 If C; is a partition between A; and B; for every i then
D
1=1 1

PROOF: Assume that C; is a partition between A; and B; for ¢ < n such that
"1 Ci = 0. For each i < n we can find a continuous function &:I" — I such
that
&i(4:) = {0}, &(B) = {1} and &7 (1/2) = Ci.

Define f:1" — I" by f(z) = (&1(),...,&(z)). Then f is continuous and does
not take on the value (1/2,...,1/2). Forevery z € 1"\ {(1/2,...,1/2)} the ray
from (1/2,...,1/2) through x intersects the “boundary” B = J&, A;UU™, B;
of I" in precisely one point, say r(x). The function r: 1"\ {(1/2,...,1/2)} = B
is easily seen to be continuous. The function g = 7 o f: 1" — B has the following
properties:

g((0,1)*) N (0,1)™ = @, and for every i < n, g[4;] C B; and g[B;] C A;.
Therefore, g has no fixed-point, which contradicts the BROUWER fixed point
theorem.

So Theorem 2.2.3 shows that I"™ has an essential family of pairs of disjoint
closed sets of cardinality n. The question naturally arises whether the number n
is best possible.

Theorem 2.2.4 Let n € N. Then every family consisting of at least n + 1 pairs of
disjoint closed sets of 1™ is inessential.
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PROOF: Let A and B be disjoint closed subsets of I" and let 2 C R be dense.
We claim that there is a partition D in R™ between A and B such that

D C{zeR": (3 <n)(z € E)}.

This is easy. Every point z € A has a neighbourhood of the form []"_, (a;, ;)
with a;,b; € E for every i < n such that [T ;[a;,b] N B = . There is a finite
family J of these neighbourhoods whose union covers A, and the boundary D of
this union is contained in the union of the boundaries of the elements of 7. We
conclude that D is the required partition between A and .

Now let 7 = {(A;, B;) : © < n + 1} be a family consisting of n + 1 pairs of
disjoint closed subsets of I". There exist n + 1 pairwise disjoint dense subsets of
R. By the above there exist partitions D; in R between A; and B; such that

D;C{zeR":(F <n)(z € E)} (t<n+1).

Since the E; are pairwise disjoint, a straightforward verification yields
ﬂ?:l D’t = @

Observe that in Theorems 2.2.3 and 2.2.4 we formulated a topological prop-
erty of I" shared by no I for m # n. In particular we obtain:

Corollary 2.2.1 (Brouwer [21]) Let n,m € N. If n # m then I" is not homeo-
morphic to I,

These remarks suggest the following definition: for a separable metrizable
space X define its partition degree, part X € {—1,0,1,...} U {c0}, by

part X <n (> —1) < every family of n + 1 pairs of disjoint closed
subsets of X is inessential,
part X =n & part X <nandpart X £n —1,
part X = co & part X € nforeveryn > —1.
In view of Theorems 2.2.3 and 2.2.4 it follows that partI" = n for every n.

The following result (ENGELKING [38, Theorem 1.7.9]) therefore comes as no
surprise.

Theorem 2.2.5 For every separable metrizable space X we have

dim X = part X.

This concludes our survey of dimension theory. For more information and
historical comments, see HUREWICZ and WALLMAN [54] and ENGELKING [38].
We can now turn to the compactification problem.
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2.2.2. The compactification problem
In his thesis, DE GROOT [45] posed an interesting problem in dimension theory.
For a very accurate treatment of the problem and for many historical comments
see the recent book by AARTS and NISHIURA [2].

In order to phrase DE GROOT’s problem, let us again look at the definition of
the small inductive dimension ind:

indX =—1 & X =0,

ind X every singleton subset {z} of X and every closed
subset A C X with 2z € A can be separated by a
set S withind S <=n —1,

indX =n < indX <nandindX £n-—1,
ind X = o0 < indX >nforn=-1,0,1,....

A
=
v
&
o

The definition of ind starts with assigning the value —1 to the empty space
and then proceeds inductively. In a sense, the empty set is negligible or uninter-
esting and therefore serves as the basis for the inductive definition. What happens
if one replaces the empty set by another space that for some reason is considered
to be negligible or uninteresting and then defines a similar dimension function
with that space as the starting point? One should be cautious here because we
certainly want the new dimension function to be fopological, i.e., to have the
property that homeomorhic spaces have the same dimension. (Since there is only
one empty set, for ind we have no problem.) Once a space is uninteresting, so is
every space topologically homeomorphic to it. What we really want is to think
of a whole fopological class'” of spaces to be negligible and to assign to every
element of that class the dimension -1. Let us play with this idea a little bit. Let
us take for our class of uninteresting spaces those spaces that contain at most one
point'®. The dimension function that we get from this class does not differ very
much from the small inductive dimension. The real line R has dimension 1, R?
has dimension 2, etc. There is only one difference: a space containing precisely
one point has dimension —1 instead of dimension 0 in the case of ind. So this new
dimension function should not be considered because there is no real difference
with ind. DE GROOT [45] took the class C consisting of all compact spaces
as the starting point of a new dimension function!?. He wanted to measure the
“degree of compactness™ of an arbitrary topological space. So in this setting,
compact spaces are “uninteresting”. The dimension function one obtains in this
way is called the compactness degree cmp X of a topological space X: it is the
dimension of a space modulo the class of all compact spaces, and is formally
defined as follows:

'TA class of spaces C is called topological if whenever X € C and X ~ Y then Y € C.
Such spaces are quite uninteresting.
*This class is topological of course.
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cmpX = —1 & X is compact,

empX <n(>0) < every singleton subset {z} of X and every closed
subset A C X with z ¢ A can be separated by a
set S withcmp S <n — 1,

cmpX =n < cmpX <nandecmpX £n —1,

cmp X = oo < cmpX >nforn=-1,0,1,...

So the first class of “uninteresting” separable metrizable spaces are those
spaces X for which cmp X = 0, and they are precisely the noncompact spaces
that have a base B for the open sets such that the boundary of every element
B € B is compact. Those spaces are called rimcompact in the literature. So every
locally compact space has cmp < 0; in particular, cmp R* = 0 for every n.
So cmp is very much different from ind, although it is defined in a very similar
way. One easily proves by induction that for every separable metrizable space X
cmp X < ind X. So the equality cmpR® = 0 shows that the gap between cmp
and ind can be arbitrarily large.

Not every space is rimcompact as the space

12\ ({1} x (0,1))

shows. The question therefore naturally arises whether there are spaces with ar-
bitrarily large compactness degree.

Lemma 2.2.1 For every n let X, be the space Q x I™. Then cmp X, = n.

See AARTS and NISHIURA [2, Example 5.10(d)] for details.

Let X be a space. It is sometimes useful to study X as a subspace of a larger
compact space Y. If X is dense in Y then we call Y a compactification of X.
The set Y \ X is called the remainder of the compactification Y. If X' is not
compact then there are many ways to compactify it. The largest compactification
of X, its Cech-Stone compactification X, is an interesting object to study but
it is very large (in fact, it is not metrizable unless X is compact and metrizable).
For a locally compact space X, its Alexandrov one-point compactification aX
is the “smallest” compactification and it is metrizable iff X is separable and
metrizable. For our purposes, aX is a “good” compactification. Since the class of
spaces that can be compactified with one point coincides with the rather special
class of all locally compact spaces, the question naturally arises what spaces can
be compactified by adding a “small” object. An interesting partial result was
obtained by ZIPPIN [75].

Theorem 2.2.6 Let X be a separable metrizable space. Then X is rimcompact
and topologically complete if and only if X has a compactification yX such that
vX \ X is countable.
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So every topologically complete rimcompact space X has a compactification
X for which v X'\ X is “small” because it has countably many points only. There
are other interesting concepts of smallness besides having small cardinality. In
dimension theory, a space is “small” if it has “small” topological complexity, i.e.,
has small dimension. So the “smallest” spaces in dimension theory are the zero-
dimensional spaces.

It can be shown that a countable space is zero-dimensional. This follows e.g.
from the Countable Closed Sum Theorem (ENGELKING [38, Theorem 1.5.3]),
but it can also be seen directly. Indeed, let X be countable and let A and B be
arbitrary disjoint closed subsets of X. There is a Urysohn function f: X — I such
that f[A] = 0 and f[B] = 1. Since f[X] is countable, there exists r € T\ f[X].
Then f~([0,7]) is an open and closed subset of X that contains 4 but misses B.

So ZIPPIN’s Theorem 2.2.6 in dimension theoretic terms says in particular
that a rimcompact topologically complete separable metrizable space can be com-
pactified by a adding a zero-dimensional set. In the framework of dimension
theory it is therefore very natural to ask for a characterization of those spaces
X which admit a compactification vX for which vX \ X has zero-dimensional
remainder. This question was answered by DE GROOT [45] in his thesis (see also
AARTS and NISHIURA [2, §VL3]).

Theorem 2.2.7 Let X be a separable metrizable space. Then X has a compact-
tfication Y such that Y \ X is zero-dimensional if and only if X is rimcompact.

(This result, in a slightly different setting, is also true for non-metrizable
spaces. See FREUDENTHAL [42] and AARTS and NISHIURA [2, §VI.3] for more
details.) This result is very satisfying since the “external” property of having
a compactification with zero-dimensional remainder can be characterized by an
“internal” property, namely, the property of being rimcompact.

As we said before, DE GROOT wanted to measure the “degree of compact-
ness” of an arbitrary topological space. The rimcompact spaces have compactness
degree < 0 and are therefore close to being compact. This can now also be
expressed in another way: the rimcompact spaces can be compactified by adding
a set with low topological complexity, namely, a zero-dimensional set.

Since not every space is rimcompact, the question question naturally arises
whether the spaces X with a compactification vX such that dim(vX \ X) < 1
can be characterized internally. This motivates the following definition.

Definition 2.2.1 Let X be a space. The compactness deficiency def X of X is
defined by

def X = min{dim(yX \ X) : vX is a compactification of X }.

It is clear that def X too measures a “degree of compactness” of an arbitrary
topological space X. If def X is large then it is impossible to compactify X by
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adding a set of small topological complexity, i.e., X is far from being compact.
Notice that in order to compute def X for a given space X one needs to consider
the outside world (def X is external), while to compute cmp X one needs to
perform computations in the space X itself (cmp X is internal). DE GROOT [45]
conjectured that both invariants agree for all spaces.

Conjecture 2.2.1 (de Groot) For every separable metrizable space X we have
cmp X = def X

This conjecture has puzzled several generations of topologists, both in and
outside the Netherlands. Observe that a compact space has only one compactifi-
cation (itself) so that Theorem 2.2.7 can be reformulated as follows:

Theorem 2.2.8 If X is a separable metrizable space then cmp X = —1,0 if and
only if def X = —1,0.

So the conjecture looks very promising. The following inequality (which can
be proved rather directly) supports it even more (DE GROOT [45], [2, Theo-
rem 5.8]):

Theorem 2.2.9 For every separable metrizable space X,
cmp X < def X.

There were several attempts to resolve DE GROOT’s Conjecture. One was
to split the compactification problem. That is, new invariants were introduced
that take their values between cmp and def and natural questions that came
up were tried to be answered. We will not list all the different attempts, that
would lead us too far. We will focus instead on the following invariant that
turned out to be fundamental later. If A is a subset of a topological space then
9(A) denotes its topological boundary, i.e., d(A) is the closure of A minus its
interior. The following concept is due to SKLYARENKO [69] who proposed it in
1960 as a candidate for the problem of finding an internal characterization of the
compactness deficiency.

Definition 2.2.2 Let n € {—1,0,1,...}. A separable metrizable space X has
Skl < n if X has an indexed base B = {B; : i € N} for the open sets such
that for every subset F' C N with n + 1 elements the intersection

() a(B;)
tEN
LS compact.

By elementary arguments, one can prove that Skl takes its values between
cmp and def (AARTS and NISHIUARA [2, Theorem 6.9]):
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Theorem 2.2.10 For every separable metrizable space X,
cmp X < Skl X < def X.

So the state of the art in 1960 was that there were (at least) two related
concepts that were candidates for finding an internal characterization of the com-
pactness deficiency. The first real breakthrough came in 1982 when PoOL [65]
gave an example that answered the at that time fourty years old compactification
problem of DE GROOT in the negative.

Example 2.2.1 (Pol’s example) There is a separable metrizable space X with
cmp X = 1 and def X = 2.

In an unpublished paper, HART [49] modified POL’s construction and for
every n obtained a space X, with cmp X,, = 1 and def X,, > n. The second
breakthrough came in 1988, when KIMURA [59] proved that SKLYARENKO’s in-
variant for the problem of finding an internal characterization of the compactness
deficiency is the right one.

Theorem 2.2.11 (Kimura’s theorem) For every separable metrizable space X,
Skl X = def X.

This is pretty much the complete story of an interesting compactification
problem posed by DE GROOT in 1942 and finally solved by PoL in 1982 and
KIMURA in 1988.

Of the interesting generalizations of DE GROOT’s problem, we will mention
the following one only. As we said before, cmp is dimension modulo the class
consisting of all compact spaces. It is possible to define various other interesting
dimension functions by varying the class of spaces that one considers uninterest-
ing. If we take the class of all topologically complete spaces then we arrive at a
particularly interesting situation. Define the completeness degree icd X of a space
X as follows:

ied X = -1 X is topologically complete,

=4
icdX <n(>0) < every singleton subset {z} of X and every closed
subset A C X with z ¢ A can be separated by a
set S withicd § <n —1,

icdX =n & edX <nandicd X €n—1,
icd X =00 & iedX >nforn=-1,0,1,...

This dimension function measures the “degree of completeness” of a topolo-

gical space. In a similar way one can define the completeness deficiency cdef X
of X by

cdef X' = min{dim(6.X \ X) : 6X is a completion of X};
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DE GROOT’s problem can be revived by asking for the relation between icd and
cdef. This does not look very promising since in the compact case equality does
not hold. Interesting, in the complete case, equality does hold, as was shown by
AARTS.

Theorem 2.2.12 (Aarts [1]) For every separable metrizable space X,
icd X = cdef X.

For more detailed information and historical comments on DE GROOT’s con-
jecture and its ramifications, see AARTS and NISHIURA [2].

2.2.3. Metric characterizations of dimension

In the Netherlands some work was also done on characterizations of dimension in
terms of special metrics. This work was initiated by DE GROOT. A metric p on a
set X is called non—Archimedean if

p(z,2) < max{p(z,z), p(y,2)}
for all z,y,z € X. The following result was proved by DE GROOT [46] in 1956,

Theorem 2.2.13 Let X be a separable metrizable space. Then the following
statements are equivalent:

1. dim X <0,
2. X has an admissible non-Archimedean metric.

The same result was obtained earlier by HAUSDORFF [50]. Far reaching gen-
eralizations of it were found by NAGATA [62],[63].

Another interesting result in the same spirit was published by DE GROOT [47]
in 1957.

Theorem 2.2.14 Let X be a separable metrizable space. Then the following
statements are equivalent:

1. dim X < n,
2. X has an admissible totally bounded metric p such that for every n + 3
POINtS T, Y1, - .., Ynt2 in X there are indices i, j, k such that i # j and

plyi yi) < plz,yx)-

2.3. PH. D. THESES ON DIMENSION THEORY IN THE NETHERLANDS

In the Netherlands, at least six Ph. D. theses were written on dimension theory:
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| Title l Year | Supervisor

J. de Groot | Topologische Studién 1942 | G. Schaake

H. de Vries | Compact spaces and compactifications | 1962 | I. de Groot

J. M. Aarts | Dimension and deficiency in general 1966 | J. de Groot
topology

J. Bruijning | Some characterizations of topological | 1980 | I. L. Nagata
dimension

I. J. Dijkstra | Fake topological Hilbert spaces 1983 | J. van Mill
and characterizations of dimension
in terms of negligibility

P. Borst Transfinite classifications of weakly 1986 | J. van Mill
infinite-dimensional spaces

We already discussed the problem that was posed in DE GROOT’s thesis in
detail in §2.2.2. The thesis of DE VRIES dealt among other things with weight
and dimension preserving compactifications. In AARTS’s thesis the completeness
degree was introduced (among other things); the first proof of Theorem 2.2.12
was published there. After DE GROOT’s sudden and untimely death in 1972, he
was succeeded at the University of Amsterdam by Professor J. I. NAGATA, an
expert in dimension theory. BRUIINING’s thesis, written under supervision of
NAGATA, dealt with several combinatorial characterizations of dimension (see
also BRUIINING and NAGATA [27]). DUKSTRA did his undergraduate work un-
der NAGATA at the University of Amsterdam; he wrote his thesis on dimen-
sion theory and infinite-dimensional topology under VAN MILL when NAGATA
left Amsterdam to return to Japan (see also DIJKSTRA and VAN MILL [33]).
For BORST similar remarks apply. He also did his undergraduate work under
NAGATA at the University of Amsterdam, and continued his research on infinite-
dimension theory under VAN MILL (see also BORST and DIJKSTRA [10]).

From the relatively small number of Ph. D. theses written on dimension theo-
ry in the Netherlands, we see that it was never very popular there. But it is fair to
say that dimension theory in the Netherlands was alive ever since the pioneering
work of BROUWER and that the contributions of Dutch topologists to it were
substantial.

2.4. CONCLUSION

We did not tell the complete story of Dutch topology. We concentrated on general
topology and in particular dimension theory and even there we had to restrict
ourselves. The complete history of the Dutch contributions to topology and its
applications remains to be written. Such a history would, of course, also have to
encompass work outside of general topology, but related to it. Our story shows
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that, although BROUWER stopped working in topology after World War I, without
his presence The Netherlands very probably would have contributed considerably
less to the development of topology. We also saw how important FREUDENTHAL
and DE GROOT were. As a matter of fact without BROUWER’s intuitionism
FREUDENTHAL would not have come to The Netherlands and without FREUD-
ENTHAL DE GROOT’s work would have gone into another direction. It is re-
markable that the first part of our paper shows that without his intuitionistic
views BROUWER possibly would not have turned to topology at all, while the
second part shows that without BROUWER’s intuitionism FREUDENTHAL would
not have exerted his great influence on Dutch topology. In other words we reach
the surprising conclusion that without intuitionism the history of topology in The
Netherlands would have been totally different.

Acknowledgements: We are indebted to Professors Baayen, Maurice, Engelking
and van Stigt for reading (parts of) an earlier version of this paper and comment-
ing critically on it.
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