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Abstract

The countable spaces whose product with the sequential fan S¢ have countable tightness are
characterized. As a consequence, it is shown that if X x S¢ has countable tightness then X has
countable tan-tightness.
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1. Introduction

The aim of this paper is to characterize the countable spaces whose product with
the sequential fan S, have countable tightness. Our results answer questions posed by
Arhangel’skil and Bella [2].

Henceforth all spaces are assumed at least 7). w denotes the set (or the discrete space)
of all the integers as well as the first infinite ordinal. ¢ denotes 2+,

Se = Upeclzn: n < w}. All the 257 are distinet and isolated in S.. If f € w* then

V() ={0}u | J{z: n > fla)}
a<c
is a basic open neighborhood of 0 in S;. Observe that the sequential fan . is nothing but
the space obtained by identifying the limit points of the topological sum of continuum
many convergent sequences.
If £ C ¢ then we put Sp = {0} UJ,cp{z0: n < w}. This notation will be used
without explicit reference later.
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A space X has countable tightness if whenever A C X and x € A, there exists a
countable set B C A such that z € B. If X and Y are spaces with X C Y then X has
countable tightness in Y if whenever A C Y and £ € AN X, there exists a countable
set B C A such that z € B.

A space X has countable fan-tighiness if for any countable family {A,: n € w} of
subsets of X satisfying = & ﬂnew A, itis possible to select finite sets K,, € A, in such
a way that z € |J,,., Kn.

Let X be a space and let p € X. We say that a family of subsets £ of X clusters at
p if for every neighborhood U of p there exists E € £ such that {E N U| > w. We say
that p is a tight point of X if for every family £ of subsets of X that clusters at p there
exists a countable subfamily F of £ that clusters at p. Observe that if p is an isolated
point of X then p is tight for trivial reasons.

2. Tight points

Let X be a space. If X has countable fan-tightness then X has countable tightness.
But not conversely. The space S, has countable tightness, but does not have countable
fan-tightness.

Proposition 2.1. Let X be a space. If every point of X is tight then X has countable
fan-tightness.

Proof. Fix p € X and subsets A4, of X forn < w such thatp € (), A,,. We assume
without loss of generality that for every n, A, is infinite and that p ¢ A,,. Let S be the
collection of all subsets S = {z,: n < w} of X such that for every n, z,, € A,. We
claim that S clusters at p. To see this, let U be an arbitrary neighborhood of p. Since
U N A, is infinite for every n, we may pick points x,, in X such that for every n,

Zn € (UNAN\{zo,.. ., Tn_1}.

Then S = {z,: n < w} belongs to &, is infinite and is contained in U.
Since p is a tight point of X, there are Sy = {zF: n < w} € S for k < w such that
{Sk: k < w} clusters at p. For every n, define

Ky ={2),z},....2}}

and K = J,,., Kn. Let U be an arbitrary neighborhood of p. Then for some k we have
that U N Sy is infinite. Since Sy \ K is finite we conclude that U intersects K. This
shows that p € K, which is as required. O

Let X be a space. If every point of X is tight, then X has countable fan-tightness
as was shown in Proposition 2.1. But the converse is not true (at least, consistently). If
p € Bw\w is a P-point then w U {p} has countable fan-tightness (see [2, Proposition 2]).
But p is not a tight point of w U {p} by our next resulit.

Proposition 2.2. Let p € Bw \ w. Then p is not a tight point of wU {p}.
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Proof. Suppose first that p is a P-point and put S = {w \ P: P € p}. We claim that S
clusters at p. To see this, let P € p and split P into two infinite sets, say Fy and P.
Without loss of generality, assume that Py € p. Then w\ Py € S and [(w\ P)) N P| = w.

Now suppose that B is a countable subfamily of S that clusters at p. Then {w\ B: B €
B} is a countable subfamily of p. Since p is a P-point, there exists P € p such that for
all B € B we have |P\ (w\ B)! < w. But then P N B is finite for every B € B, which
is a contradiction.

If p is not a P-point, then there is a partition {A4,,: n < w} of w into infinite sets such
that for every n, A, ¢ p, and if P € p then |P N A,,| = w for infinitely many n. Now
put

S = { U F,: F, C A, finite, n < w}.

nw

It is clear that S clusters at p. Assume that some countable subfamily 7 of S clusters
atp. Let T = {T};: n <w} and for every n < w, let Ty, = |, ., Fi» with F}! a finite
subset of A,, for every m. Put

K=FU(FUVFYU(FFUFUF)uU---.

Then K'NA,, is finite for every n, and as a consequence, U = w\ K € p. But |UNT,| < w
for every n, which is a contradiction. O

We now show that the points of a regular countably compact spaces of countable
tightness are tight.

Theorem 2.3. Let X be a subspace of a regular countably compact space Y. If X has
countable tightness in Y then every point of X is tight.

Proof. Let £ be a family of subsets of X that clusters at a given point p € X. For
every neighborhood U of p in Y first pick a neighborhood V(U) of p in Y such that
V(U) C U (here we use the fact that Y is regular). Next pick an element E(U) € £
such that F(U) = E(U) N V(U) is infinite. Passing to a subset of F'(U) if necessary,
we may assume that F'(U/) is countably infinite. Since Y is countably compact, we may
pick for every U an accumulation point p(U) of F(U) in Y. Put A = {p(U): U is a
neighborhood of p in Y'}. Then p € A and since X has countable tightness in Y, there
is a countable family of neighborhoods V of p such that

pe{p(V): VeV}

We claim that the family {E(V): V € V} clusters at p. To this end, let U be a neigh-
borhood of p in X and let U’ in Y be open such that U’ N X = U. There exists V € V
such that p(V') € U’. Since U’ is a neighborhood of p(V') and p(V') is a cluster point of
F(V) we have that UN F(V) = U’ N F(V) is infinite. Since F(V) C E(V) this proves
that U N E(V) is infinite, which is as required. O
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The following result is partly due to Arhangel’skii and Bella [2].

Corollary 2.4. Let X be a regular countably compact space. Then X has countable
tightness if and only if X has countable fan-tightness if and only if every point of X is
tight.

Proof. If X has countable tightness, then every point of X is tight by Theorem 2.3
which in turn implies that X has countable fan-tightness by Proposition 2.1. 0O

The following result of which we present a new proof (for another proof, see
Arhangel’skil and Bella [2]) is due to Malykhin [3].

Corollary 2.5. If p € fw \ w then w U {p} cannot be embedded in a regular countably
compact space with countable tightness.

Proof. Striving for a contradiction, assume that X is a regular countably compact space
with countable tightness which contains w U {p} as a subspace. Then every point of
X is tight by Corollary 2.5 and so p is a tight point of w U {p} which contradicts
Proposition 2.2. O

This result can be improved., as we will show in the remaining part of this section.

Proposition 2.6. Let X be a regular space with countable fan-tightness. If all closed
separable subspaces of X are Lindelif with points G then for any A C X and any
p € A\ A there exists a countable setr B C A such that p is the only accumulation point
of B.

Proof. Let A C X and p € A\ A. Since X has countable tightness, there exists a
countable set ¢ C A such that p € C. For any 2 € C \ {p} fix an open set U,
satisfying = € U, and p ¢ U, and let Y be the family so obtained. Since C' has the
Lindelsf property and p is a G point in C, it follows that even the subspace C \ {p}
has the Lindelsf property. So I/ has an open countable refinement {V,,: n < w} such
that the family {V,, N C: n < w} is locally finite in C \ {p}. For any n we have p €
U{Vin N C: m > n} and therefore we can select a finite set K,, C J{V,,NC: m 2 n}
such that p € J{K,.: n < w}. Putting B = |J{K,: n <w} we get what we want. O

Recall that, given a Tychonoff space X, a point p € X \ X is said to be far if it is
not in the closure of any closed discrete subset of X. If p € 8X \ X is not far then it is
called near.

Corollary 2.7. Let X be a Tvchonoff space whose closed separable subspaces have the
Lindeldf property and p € X \ X. If X U {p} has countable fan-tightness then p is
near.
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Malykhin’s result quoted above can now be generalized as follows:

Theorem 2.8. If X is a metrizable space and p € 3X \ X then X U {p} cannor be
embedded into a countably compact regular space with countable tightness.

Proof. Assuming the contrary, the space X U {p} must have countable fan-tightness.
Consequently, as stated in Corollary 2.7, there exists a countable closed discrete set
B C X for which p € B. But then, also B U {p} can be embedded into a countably
compact regular space with countable tightness—in contrast with Corollary 2.5. O

Recall that a space X is said to be bisequential provided that for every filter £ and
every point p in the aderence of ¢ there exists a filter » with a countable base which
converges to p and is syncronous with £. Syncronous means that for each A € £ and
each B € v the intersection A N B is not empty.

Arhangel’skif (see [1]) has shown that the product of a bisequential space with any
space of countable tightness has still countable tightness. By Theorem 3.1 below. it then
follows that each point of a bisequential space is tight. Here is a direct and easy proof
of this assertion.

Proposition 2.9. Every point of a bisequential space is tight.

Proof. Let X be a bisequential space and £ a collection of subsets of X which clusters
at p. Define & = {Ugee £\ F: F C E finite}. It is clear that £ is a prefilter and p is
in the aderence of £. Let I{ be a countable base of a filter ~ converging to p and which
is syncronous with £. Since v and & are syncronous, for every U € Uf there must exist
some E(U) € £ such that [U N E(U)| > w. The fact that v converges to p implies
that every neighbourhood of p contains some U € U and consequently the subcollection
{E(U): U <cU}clustersat p. O

3. The main result
We now present our main result,

Theorem 3.1. Let X be a countable space. Then X x S, has countable tightness if and
only if every point of X is tight.

Proof. Assume that X x S has countable tightness and suppose that the family &
clusters at p € X. We may assume without loss of generality that every element FE € £
is countably infinite and does not contain p. List £ as {E,: « < c¢} (repetitions are
permitted) and E,, as {e)y: n < w} (repetitions are NOT permitted). Let

A= {ten =) n<wh

a<¢
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We claim that (p,0) € A. To see this, let U and V'(f) be arbitrary neighborhoods of p
in X and 0 € S, respectively. There exists o < ¢ such that |V N E,| = w. Pick n < w
so large that €S € U N E, and n > f(a). Then

(e,zry € (U X V()N A,

n*~n

as required.
Since X x S, has countable tightness, there is a countable subset F' of ¢ such that if

B = U {{eg,z5): n < w}
aEF

then (p,0) € B. Now put F = {E,: a € F}. We claim that F clusters at p. To see
this, let U be an arbitrary neighborhood of p in X. Striving for a contradiction, assume
that for every « € F we have |U N E,| < w. For every a € F pick n, < w such that
if n 2 n, then e ¢ U. Define f € w® as follows: f(a) =ne if @« € F and f(a) =0
otherwise. Pick o € F and n < w such that (€2, 22) € U x V(f). Then % € UNE, and
s0 n < ng. However, 22 € V(f) which implies n 2 f(a) = n,. This is a contradiction.

Now assume that p is a tight point of X. We will prove that the tightness of X x S, at
(p,0) is countable. Since X is countable and every point of S, other than 0 is isolated,
this clearly suffices to prove that X x S, has countable tightness.

Let A C (X x S)\ {(p,0)} be such that (p,0) € A. Put

B={zeX: (z,0) € ({a} x S)NA}.

Assume first that p € B. Since S, has countable tightness, for every = € B there exists
a countable Sz C ({z} x S¢) N A with (z,0) € S;. Then (p,0) € |, Sz and so we
are done.

So we may assume without loss of generality that for every z € X we have

(,0) ¢ ({x} x Sc) N A.

Now let U be an arbitrary neighborhood of p in X . We claim that there exists «(U) < ¢
such that

{n<w: (Fze U)(<:c,zg(U)> cA)}

is infinite. If not, then for every o < ¢ pick 1, < w such thatif n > n, and ¢z € U
then (z,z%) ¢ A. Put f(a) = n, for every a. Then (U x V(f)) N A = §, which is a
contradiction. This proves the claim.

Pick an arbitrary € U and observe that

(z,0) ¢ ({z} x S) N A.
Since {m,zﬁ‘w)> — (x,0) (n — o0), this implies that there are only finitely many n
for which {(z, zﬁ(U)> € A. So by the above we may pick for every n < w an element
22Y) € U and an integer m(n) such that

@) if n #m then 237 £ 25",
(i) (x%’]),z;(@;) € A for every n;
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(ili) m(n) — oc (n — oc).

Put E(U) = {259 n < w}.

The family {E(U): U is a neighborhood of p} clusters at p. There consequently is a
countable family I{ of neighborhoods of p such that F = {E(U): U € U} clusters at p.
Put F = {a(U): U €U} and

B=(X x Sp)n A,

respectively. Then B is countable and we claim that (p,0) € B. To see this, let V and
V' (f) be arbitrary neighborhoods of p in X and 0 in S.. respectively. There exists U € U
such that |E(U) N V] = w. By (iii) we may pick n < w so large that

2 e EUYNV and m(n) = fa(U)).
We conclude that

<.’L‘::(U), ~"<U))> cAN (V X V(f)),

“m(n

which is as required. O
The following result answers a question in [2] in the affirmative.

Corollary 3.2. Let X be a space. If X xS, has countable tightness then X has countable
fan-tightness.

Proof. Suppose that X x S, has countable tightness. Then X has countable tightness, and
so it suffices to prove that every countable subspace of X has countable fan-tightness.
So without loss of generality, assume that X is countable. By Theorem 3.1, every point
of X is tight and so X has countable fan-tightness by Proposition 2.1. O

As mentioned in Section 2. in [2] it is shown that every countably compact regular
space with countable tightness has countable fan-tightness. Corollary 3.2 can be used to
present yet another proof of this fact. Indeed, it sufficies to take into account the well-
known fact that the product of a countably compact regular space of countable tightness
with a sequential space has still countable tightness.
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