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ABSTRACT: We construct an ultrafilter u € w* = fw — w such that the sub-
space ®* — {u} is not absolutely countably compact, and we show that under the
continuum hypothesis, for every u € fpw — w, the subspace w* - {u} is not abso-
lutely countably compact.

INTRODUCTION

We consider the following concept.

DEFINITION 1.1:  (M.V. Matveev [3]) A space X is called absolutely countably
compact (acc) provided for every open cover U of X and every dense D C X, there
exists a finite set F C D such that

S(F, Wy =UY{UeU:UNF =D} =X

Matveev proved (among other things) that
compact = acc = countably compact

and that neither arrow can be reversed. It is well-known that removing one point
from w*, the remainder of the Cech-Stone compactification of the integers, re-
sults in a countably compact subspace. Thus it is natural to ask the question: Are
the spaces w* — {u} acc for all u € w*? In this paper we prove the following two
results:

THEOREM 1.2: There exists u € w* such that the subspace w* — {u} is not
acc.

THEOREM 1.3: [CH] For every u € w*, the subspace w* - {u} is not acc.
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Still open is the question of whether the statement in Theorem 1.3 is a theorem
of ZFC.

2. SOME LEMMAS

We begin with deriving a few general lemmas that will be important later. Let
X be a space with dense subset D. We say that a closed subset T C X avoids D if
there is a family U of open subsets of X such that the following conditions are
satisfied:

M Nu-=T,

@) |U| - |D], and

(3) forevery d €D we have [{UEU:d € U}| < |U]|.

Observe that if T C X avoids D, then TN D = .

Let x be an infinite cardinal. A subset P of a space X is called a P-set if the
intersection of fewer than x neighborhoods of P is again a neighborhood of P. A
P-set is a P -set and a P-point is a P-set singleton. We omit the simple proof of
the following lemma.

LEMMA 2.1: Suppose that X is a compact space with weight x. If D CX is a
dense subset of cardinality x and if T C X — D is a closed P,-set then T avoids D.

We now formulate and prove our main tool for recognizing spaces that are not
acc. Recall that if X is a space and if p € X then x(p, X) is the character of p in
X, i.e., the smallest cardinality of a neighborhood base of p.

LEMMA 2.2: Let X be a compact T,-space. If D C X is dense, T C X avoids D
and p € T is such that x(p, T) = |D|, then X - {p} is not acc.

Proof: Let U be a family of open neighborhoods of T that witnesses the fact
that T avoids D. Let V be a neighborhood base for p with | V| = |D|. List "V as
V = {Vy: UEU} and put

W={X-TYU{U-V,:UeU}.
Then W is clearly an open cover of X — {p}. Pick an arbitrary finite F C D.
The family
Up={UEU:FNU=U}

has cardinality less than |D|. Pick an arbitrary point

x€MN{Vy N T:UE U} - {p}.

Observe that such a point exists because T is compact and character and
pseudocharacter agree in compact spaces. We claim that x & St(F, W). To this
end, pick an arbitrary element W EW that intersects F. Since x € T, we may clear-
ly assume that W is of the form U - Vi, for certain U €U. Then U € Uf since W
meets F. But since x EVywe havex & W=U-Vy Q

Let X be compact, D C X be dense and p €X —D. Lemma 2.2 suggests the nat-
ural question of whether X — {p} is not acc provided that {p} avoids D. But this
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is not true. Because countably compact spaces of countable tightness are acc,
Matveev [3, Theorem 1.8], it follows that the ordinal space w; is acc. (Alterna-
tively, use the Pressing Down Lemma.) Now simply observe that by Lemma 2.1,
{w1} avoids wq in the compact space wq + 1.

DEFINITION 2.3: A continuous function f: X —= Y of X onto Y is called irre-
ducible provided f(A) = Y for every proper closed subset A C X.

The next lemma is well known (see [1, Exercise 3.1C(a)]).

LEMMA 2.4: If f: X — Y of X onto Y is continuous and X is compact, then
there exists a closed set Xy C X such that f(Xg) = Y and f | Xo: Xg — Y is irreduc-
ible.

Recall that the m-character of a point x in a space X (denoted my(x, X)) is the
smallest cardinality of a family U of open subset of X such that every neighbor-
hood of x contains a member of U.

The next lemma is also well known; see, e.g., Juhdsz [2, p.64].

LEMMA 2.5: If f: X — Y is irreducible, and X is compact, then for all x € X,
mx(x, X) = nx(f(x), Y).

DEFINITION 2.6:  An indexed family {Aij: i €1, j€EJ} of clopen subsets of w*
is called a J by I independent matrix if:
(1) the rows of the matrix are pairwise disjoint, i.e., for all distinct jg, j; €J
and i €1 we have that A%, N A’ = &,
(2) if F is a finite subset of I and f € JF then

K. Kunen proved that there exists a ¢ by ¢ independent matrix of clopen subsets
of w* (see [4, Lemma 3.3.2]).

PROOF OF THEOREM 1.2

Let D be a dense subset of w* having cardinality ¢, and put D = {d,: a < c}.
Let {Aaﬁ: o, B €C} be a ¢ by ¢ independent matrix of clopen subsets of w*. For
each row a < ¢, pick two sets A“ﬁo, A“Bl, so that

(A%, UA% ) N {dy: B < a} = B,

and define B".‘O = Aaﬁo and B% = Ao‘ﬁl. Thus {B%;: a €¢, i €2} is a ¢ by 2 inde-
pendent matrix. Let

T={(B% UB%): a<c}.

Then T avoids D. By compactness, for every x € 2% we have N {B“x(a): a<c}
= &, hence there is a natural mapping f: T — 2° which is easily seen to be con-
tinuous and onto. By Lemma 2.4, there exists S C T such that f|- S: T— 2%is onto
and irreducible. By Lemma 2.5 every point in S has character ¢ in S and hence in
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T. An application of Lemma 2.2 now shows that for u €S we have w* - {u} is not
acc.

PROOF OF THEOREM 1.3

Assume CH, and let u € w*.

We first prove the theorem in the special case that u is a P-point. Since all P-
points in w* are topologically equivalent [5, p.171], and since the density of w*
is wy, by Lemma 2.2 it suffices to construct a P-point p € * which is a noniso-
lated point in some nowhere dense closed P-set P C w*. By [4, Lemma 1.4.3]
there is a nowhere dense closed P-set P in w* which is homeomorphic to w*. We
can therefore let p be any P-point of P.

We now use the special case to prove the general case. By [5, p.79], it follows
that we can write * — {u} as the disjoint union of two nonempty open sets U and
V each having u in their closure. Since w* has no (w, w)-gaps, we may without
loss of generality assume that u is a P-point in U U {u}. By Parovicenko’s char-
acterization of w* [4, Corollary 1.2.4], it easily follows that U U {u} is homeo-
morphic to w*. By the previous case it now follows that U is not acc. But then
clearly w* - {u} = U U V is not acc as well.
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