Reprinted from Papers on General Topology and Applications Volume 767 of the Annals of the New York Academy of Sciences September 22, 1995

Is $\omega^* - \{u\}$ Absolutely Countably Compact?

JAN VAN MILL^a AND JERRY E. VAUGHAN^b

^aDepartment of Mathematics Vrije Universiteit Amsterdam Amsterdam, The Netherlands and ^bDepartment of Mathematical Sciences University of North Carolina at Greensboro Greensboro, North Carolina 27412

ABSTRACT: We construct an ultrafilter $u \in \omega^* = \beta \omega - \omega$ such that the subspace $\omega^* - \{u\}$ is not absolutely countably compact, and we show that under the continuum hypothesis, for every $u \in \beta \omega - \omega$, the subspace $\omega^* - \{u\}$ is not absolutely countably compact.

INTRODUCTION

We consider the following concept.

DEFINITION 1.1: (M.V. Matveev [3]) A space X is called absolutely countably compact (acc) provided for every open cover U of X and every dense $D \subseteq X$, there exists a finite set $F \subseteq D$ such that

$$St(F, \mathcal{U}) = \bigcup \{ U \in \mathcal{U} : U \cap F \neq \emptyset \} = X.$$

Matveev proved (among other things) that

 $compact \Rightarrow acc \Rightarrow countably \ compact$

and that neither arrow can be reversed. It is well-known that removing one point from ω^* , the remainder of the Čech-Stone compactification of the integers, results in a countably compact subspace. Thus it is natural to ask the question: Are the spaces $\omega^* - \{u\}$ acc for all $u \in \omega^*$? In this paper we prove the following two results:

THEOREM 1.2: There exists $u \in \omega^*$ such that the subspace $\omega^* - \{u\}$ is not acc.

THEOREM 1.3: [CH] For every $u \in \omega^*$, the subspace $\omega^* - \{u\}$ is not acc.

Mathematics Subject Classification: 54D20, 54A35, 54G05.

Keywords and phrases: countably compact, absolutely countably compact, ultrafilters, $\beta\omega - \omega$, c by c independent matrix of clopen sets, irreducible maps.

Still open is the question of whether the statement in Theorem 1.3 is a theorem of ZFC.

2. SOME LEMMAS

We begin with deriving a few general lemmas that will be important later. Let X be a space with dense subset D. We say that a closed subset $T \subseteq X$ avoids D if there is a family U of open subsets of X such that the following conditions are satisfied:

- (1) $\bigcap U = T$,
- (2) |U| = |D|, and
- (3) for every $d \in D$ we have $|\{U \in \mathcal{U}: d \in U\}| < |\mathcal{U}|$.

Observe that if $T \subseteq X$ avoids D, then $T \cap D = \emptyset$.

Let κ be an infinite cardinal. A subset P of a space X is called a P_{κ} -set if the intersection of fewer than κ neighborhoods of P is again a neighborhood of P. A P-set is a P_{ω_1} -set and a P-point is a P-set singleton. We omit the simple proof of the following lemma.

LEMMA 2.1: Suppose that X is a compact space with weight κ . If $D \subseteq X$ is a dense subset of cardinality κ and if $T \subseteq X - D$ is a closed P_{κ} -set then T avoids D.

We now formulate and prove our main tool for recognizing spaces that are not acc. Recall that if X is a space and if $p \in X$ then $\chi(p, X)$ is the *character* of p in X, i.e., the smallest cardinality of a neighborhood base of p.

LEMMA 2.2: Let X be a compact T_2 -space. If $D \subseteq X$ is dense, $T \subseteq X$ avoids D and $p \in T$ is such that $\chi(p, T) = |D|$, then $X - \{p\}$ is not acc.

Proof: Let \mathcal{U} be a family of open neighborhoods of T that witnesses the fact that T avoids D. Let \mathcal{V} be a neighborhood base for p with $|\mathcal{V}| = |D|$. List \mathcal{V} as $\mathcal{V} = \{V_U : U \in \mathcal{U}\}$ and put

$$\mathcal{W} = \{X - T\} \cup \{U - \overline{V}_U: U \in \mathcal{U}\}.$$

Then $\mathcal W$ is clearly an open cover of $X-\{p\}$. Pick an arbitrary finite $F\subseteq D$. The family

$$\mathcal{U}_F = \{ U \in \mathcal{U} : F \cap U \neq \emptyset \}$$

has cardinality less than |D|. Pick an arbitrary point

$$x \in \bigcap \{V_U \cap T: U \in \mathcal{U}_F\} - \{p\}.$$

Observe that such a point exists because T is compact and character and pseudocharacter agree in compact spaces. We claim that $x \notin \operatorname{St}(F, \mathcal{W})$. To this end, pick an arbitrary element $W \in \mathcal{W}$ that intersects F. Since $x \in T$, we may clearly assume that W is of the form $U - \overline{V}_U$ for certain $U \in \mathcal{U}$. Then $U \in \mathcal{U}_F$ since W meets F. But since $x \in V_U$ we have $x \notin W = U - \overline{V}_U$. \square

Let X be compact, $D \subseteq X$ be dense and $p \in X - D$. Lemma 2.2 suggests the natural question of whether $X - \{p\}$ is not acc provided that $\{p\}$ avoids D. But this

is not true. Because countably compact spaces of countable tightness are acc, Matveev [3, Theorem 1.8], it follows that the ordinal space ω_1 is acc. (Alternatively, use the Pressing Down Lemma.) Now simply observe that by Lemma 2.1, $\{\omega_1\}$ avoids ω_1 in the compact space $\omega_1 + 1$.

DEFINITION 2.3: A continuous function $f: X \to Y$ of X onto Y is called irreducible provided $f(A) \neq Y$ for every proper closed subset $A \subseteq X$.

The next lemma is well known (see [1, Exercise 3.1C(a)]).

LEMMA 2.4: If $f: X \to Y$ of X onto Y is continuous and X is compact, then there exists a closed set $X_0 \subseteq X$ such that $f(X_0) = Y$ and $f \upharpoonright X_0 : X_0 \to Y$ is irreducible.

Recall that the π -character of a point x in a space X (denoted $\pi \chi(x, X)$) is the smallest cardinality of a family $\mathcal U$ of open subset of X such that every neighborhood of x contains a member of U.

The next lemma is also well known; see, e.g., Juhász [2, p.64].

LEMMA 2.5: If $f: X \to Y$ is irreducible, and X is compact, then for all $x \in X$, $\pi \chi(x, X) \ge \pi \chi(f(x), Y).$

DEFINITION 2.6: An indexed family $\{A_j^i: i \in I, j \in J\}$ of clopen subsets of ω^* is called a J by I independent matrix if:

(1) the rows of the matrix are pairwise disjoint, i.e., for all distinct $j_0, j_1 \in J$ and $i \in I$ we have that $A^{i}_{j_0} \cap A^{i}_{j_1} = \emptyset$, (2) if F is a finite subset of I and $f \in J^F$ then

$$\bigcap \{A^i_{f(i)} \colon i \in F\} \neq \emptyset.$$

K. Kunen proved that there exists a c by c independent matrix of clopen subsets of ω^* (see [4, Lemma 3.3.2]).

PROOF OF THEOREM 1.2

Let D be a dense subset of ω^* having cardinality c, and put $D = \{d_{\alpha}: \alpha < c\}$. Let $\{A^{\alpha}_{\beta}: \alpha, \beta \in \mathfrak{c}\}\$ be a \mathfrak{c} by \mathfrak{c} independent matrix of clopen subsets of ω^* . For each row $\alpha < c$, pick two sets $A^{\alpha}_{\beta 0}$, $A^{\alpha}_{\beta 1}$, so that

$$(A^{\alpha}{}_{\beta_0} \cup A^{\alpha}{}_{\beta_1}) \cap \{d_{\beta} \colon \beta < \alpha\} = \emptyset,$$

and define $B^{\alpha}_{0} = A^{\alpha}_{\beta_{0}}$ and $B^{\alpha}_{1} = A^{\alpha}_{\beta_{1}}$. Thus $\{B^{\alpha}_{i}: \alpha \in \mathfrak{c}, i \in 2\}$ is a \mathfrak{c} by 2 independent matrix. Let

$$T = \bigcap \{ (B^{\alpha}_{0} \cup B^{\alpha}_{1}) : \alpha < \emptyset \}.$$

Then T avoids D. By compactness, for every $x \in 2^{\mathfrak{c}}$, we have $\cap \{B^{\alpha}_{x(\alpha)} : \alpha < \mathfrak{c}\} \neq \emptyset$, hence there is a natural mapping $f: T \to 2^{\mathfrak{c}}$ which is easily seen to be continuous and onto. By Lemma 2.4, there exists $S \subseteq T$ such that $f \mid S: T \to 2^{c}$ is onto and irreducible. By Lemma 2.5 every point in S has character c in S and hence in T. An application of Lemma 2.2 now shows that for $u \in S$ we have $\omega^* - \{u\}$ is not acc.

PROOF OF THEOREM 1.3

Assume CH, and let $u \in \omega^*$.

We first prove the theorem in the special case that u is a P-point. Since all P-points in ω^* are topologically equivalent [5, p.171], and since the density of ω^* is ω_1 , by Lemma 2.2 it suffices to construct a P-point $p \in \omega^*$ which is a nonisolated point in some nowhere dense closed P-set $P \subseteq \omega^*$. By [4, Lemma 1.4.3] there is a nowhere dense closed P-set P in ω^* which is homeomorphic to ω^* . We can therefore let p be any P-point of P.

We now use the special case to prove the general case. By [5, p.79], it follows that we can write $\omega^* - \{u\}$ as the disjoint union of two nonempty open sets U and V each having u in their closure. Since ω^* has no (ω, ω) -gaps, we may without loss of generality assume that u is a P-point in $U \cup \{u\}$. By Parovičenko's characterization of ω^* [4, Corollary 1.2.4], it easily follows that $U \cup \{u\}$ is homeomorphic to ω^* . By the previous case it now follows that U is not acc. But then clearly $\omega^* - \{u\} = U \cup V$ is not acc as well.

REFERENCES

- ENGELKING, R. 1977. General Topology. PWN-Polish Scientific Publications. Warszawa.
- Juhász, I. 1980. Cardinal functions in topology—ten years later. MC tracts 123.
 Amsterdam.
- MATVEEV, M.V. 1994. Absolutely countably compact spaces. Topology and Appl. 58: 81-92.
- VAN MILL, J. 1984. An introduction to βω. In Handbook of Set-theoretic Topology (K. Kunen & J. E. Vaughan, Eds.). North-Holland. Amsterdam.
- 5. WALKER, R.C. 1974. The Stone-Čech Compactification. Springer. Berlin.