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BAIRE 1 FUNCTIONS WHICH ARE NOT
COUNTABLE UNIONS OF CONTINUOUS
FUNCTIONS

J. VAN MILL (Amsterdam) and R. POL' (Warsaw)

1. Introduction

A real-valued function f on a space X is countably continuous provided
that X can be partitioned into countably many sets Eq, E,... such that
for every i, the restriction f [ E; is continuous. Adjan and Novikov [1]
constructed (answering a question of Lusin, cf. also Keldys [6]) an upper
semicontinuous function on [0, 1] that is not countably continuous (we discuss
their construction in Lemma 4.1 and Comment 6.1(B) below). A similar
construction was used also by Sierpiski [10] (who did not address Lusin’s
question directly, but the solution is implicit in his reasoning). We thank the
referee for pointing out this fact to us.

Jackson and Mauldin [5] proved recently, using some notions from recur-
sion theory, that Lebesgue measure A considered on the space of nonempty
closed subsets of the unit interval is not countably continuous (being upper
semicontinuous). They conjectured [5, Questions 5 and 6] that in the Banach
spaces of bounded Baire 1 functions and of bounded derivatives, respectively,
the countably continuous functions form meager sets.

In this note we prove these conjectures. We also establish a universal
property of the map A on the space of nonempty closed subsets of the unit
interval, which gives in particular a direct proof of the result of Jackson and
Mauldin mentioned above.

2. Terminology

As usual, I denotes the interval [0, 1] and @ the infinite product I*°. By a
space we mean a metrizable topological space. If X = []>2, X,, is an infinite

1 This note was partly written during the second author’s visit to Vrije Universiteit
(Amsterdam). He would like to thank the Department of Mathematics of this university
for its hospitality.
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product of spaces then for every z € X and n € N the n-th coordinate of z
is denoted by z,.

Let X be a compact space. The collection of all nonempty closed subsets
of X is denoted by K(X). It can be topologized as follows. Let d be an
arbitrary admissible metric for X. If A C X and ¢ > 0 then U.(A) denotes
the open e-ball of radius € about A. The formula

dy(A,B) =inf {¢: A C U.(B) and B C U.(A)}

defines a metric on K(X), the so-called Hausdorff metric, and K(X) endowed
with the topology derived from this metric is called the hyperspace of X.
One can show that the topology of K(X) is independent of the choice of
the admissible metric d. Also, K(X) is a compact space. For details, see
Engelking [4] and [9, §4.7].

Let X and (Y,d) be spaces. For functions f,g: X — Y we define their
distance d(f,g) € [0, ] as follows:

El(f,g) = sup {d( f(z),9(z)):z € X} .

Let X be a space. A function f: X — R is called lower (upper) semicon-
tinuous if for every r € R the set f~1(r,00) (the set f~1(—o0,r)) is open. It
is clear that a function f: X — R is continuous if and only if it is both lower
and upper semicontinuous. We will use the well-known fact that for every
lower (upper) semicontinuous function f on X there exists a sequence {fi};
of continuous real-valued functions on X such that for every z € X we have
fi(z) /" f(z) (filz) \« f(z)). We will also use the fact that the functions
inf: () — I and sup: Q — I defined by

inf(¢) = inf{z,: n € N}
and
sup(z) = sup{z,:n € N}

are upper semicontinuous and lower semicontinuous, respectively. For details
and references concerning these facts, see Engelking [4, pp. 61-62].

We finish this section by establishing the following easy results which are
probably well-known.

2.1. THEOREM. Let r € [0,1). In addition, let X be a compact space
and let f: X — [0,r] be upper semicontinuous. Then there is an embedding
e: X — @) such that for each x € X we have

inf (e(z)) = f(z).

ProoF. Write N as the union of two disjoint infinite sets, say E; and E.
Since @ is universal for separable metrizable spaces ([9, Theorem 1.4.18]),
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there is an embedding &: X — [r, I]El. Since f is upper semicontinuous there
is a sequence {fi};cp, of continuous functions from X to [0,7] such that for

every z € X we have {fi(ac)}ieE2 \, f(z). Now define e: X — @ by

_ (€@ (i€ B,
= {56 Gem

Then e is clearly as required. O

We conclude that in a sense the pair (Q,inf) is “universal” for upper
semicontinuous functions. Similarly one derives that the pair (@,sup) is
“universal” for lower semicontinuous functions.

2.2. THEOREM. Let v € (0,1]. In addition, let X be a compact space
and let f: X — [r,1] be lower semicontinuous. Then there is an embedding
e: X — Q such that for each x € X we have

sup (e(x)) = f{&):

3. A universal property of Lebesgue measure

In this section we formulate and prove that the pair (K([—l,l]),/\)
is “universal” for upper semicontinuous functions. In §6.1 we will present
several “explicit” examples of upper semicontinuous functions that are not
countably continuous. In view of Theorem 3.1 below this implies that A is
not countably continuous.

3.1. THEOREM. Let X be a compact space and let f: X — 1 be upper
semicontinuous. Then there is a topological embedding e: X — K([-1,1])
such that for every x € X we have

Me(z)) = f(z).

Proor. We will construct a function a: X — K([—1,0]) and a function
3:X — K([0,1]). The desired embedding e will then be defined by the
formula e(z) = a(z)U B(z) (z € X).

Claim 1. There is an embedding a: X — K([—1,0]) such that for every
z € X we have /\(a(x)) =0

This is easy. Pick points a, and b, in [—1,0] such that
ag<bi<ag<by<---<a,<b, <~ /0.

Acta Mathematica Hungarica 66, 1995



292 J. VAN MILL and R. POL

Let @ = TI%%,[an,b,]. Define an embedding ¢: Q — K([-1,0]) by ¢(z) =
= {0} U{zn:n € N}. Clearly, A(¢(z)) = 0 for every ¢ € §. The desired

result now easily follows because Q & @ is universal for separable metrizable
spaces ([9, Theorem 1.4.18]).
We now come to the interesting part of the proof.

Claim 2. There is a continuous function 8: X — K(I) such that for every
z € X we have A\(4(z)) = f(z).

Since f is upper semicontinuous we may pick a sequence {fi}; of contin-
uous functions from X to I such that for every z € X, fi(z) \\ f(z). Define
§1: X — K(I) by &(z) = [0, fa(z)]. Then & is clearly a continuous func-
tion and has the property that /\(fl(m)) = fi(z) for every z € X. Define
£2: X — K(I) as follows:

1 1 1 1
&) = [0.5500)] U 3000 3400) + S50)]
Then &; is clearly a continuous function. Observe the following;:

(1) Ifz € X then the intervals [0, 3 f2(z)] and [1f1(z), 2 f1(2) + 3/2(2)]
overlap in at most one point because fy(z) < fi(z), so that

M&(e)) = (@) + 3 fo(2) = fulw)

(2) If z € X then &(z) C & (). (Again because f(z) < fi(z).)
(3) If z € X then

N[ =

dr(64(2),&:(2)) = 5 (fi(2) ~ fol2) <

(Here d is the euclidean metric on I.)

We now continue in the obvious way and obtain a sequence of continuous
functions &,: X — K(I) having the following properties:

(1) For every z € X, &1(2) 2 &(2) 2 ---.

(2) Forevery z € X and n € N, /\(fn(:z:)) = JulB ¥

(3) For every n € Na 3H(fns§n+l) § 27",
We conclude that the sequence (¢,), is Cauchy and that the formula

Bz) = lim £&.(2) = () &u(2)

defines a continuous function from X to K(I). Also,

A(B(z)) = inf {AM&a(z)):in e N} = f(2)
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for every z € X. This completes the construction of 3.
As announced, we now define e: X — K([-1,1]) by

e(z)=a(2)UB) (2 € X).

Then e is clearly as required. |

4. Typical bounded Baire 1 functions are not countably
continuous

Before we explicitly formulate and prove the result indicated in the title
of this section, we shall introduce some terminology which will allow us to
apply the original idea of Sierpiriski, Adjan and Novikov in the more general
situation that we are dealing with.

Let k € N. X(k) denotes the collection of all strings o = (iy,...,i,),
where every 4; is a natural number < k and p < k; the length of o is p and
the empty string which has length 0 is denoted by (). For convenience, put
Y= Ui (k). If 0 = (i1,...,iy) € T and i € N then 6”7 denotes the
string (21,...,14p,1).

Let X be a space. Given a compact set C € X, we fix a countable basis
B1(C), By(C),... for the open sets in C' with lim,_ ., diam BAC) = D.

Let kX € N. A k-system S(k) in X consists of:

(1) a collection of Cantor subsets { C(c):0 € Y(k)} of X,

(2) a collection of Cantor subsets { D(c):0 € Y(k)} of X,

(3) a sequence {s(o): o€ E(k‘)} of positive numbers,
such that the following conditions are satisfied:

(i) C(9) = D(9);

(ii) Vo,07i,077 € S(k):

(a) C(0™i) € D(0™i) € Bi(C(0));
(b) C(¢™1) has empty interior and D(o"4) is clopen relative to C(o);
(c)if i # j then C(67i) N C(07j) = §.

We say that a (k + 1)-system S(k + 1) eztends a k-system S(k) if the
objects in S(k + 1) associated with the strings in %(k) coincide with the
corresponding objects in S(k).

We say that a function f: X — R is compatible with a k-system S(k) in
X if for any string o € X(k),

(*)  sup{f(z):z € D(c)\C(0)} +¢(0) < inf {f(z):z € C(a)}.
For such an f we put
n(f) = min{inf{f(x):r €C(0)} —e(o)-
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—sup { f(z):z € D(o)\ C(o)}:o€ E(k)}

We call a function f: X — R of Sierpiriski-Adjan-Novikov type, if there exists
a sequence of k-systems S(1),8(2),...,8(k),... such that for all k € N,

(1) S(k + 1) extends S(k);

(2) f is compatible with S(k).

Observe that if ¥ € X and f: X — R has the property that f1Y:Y - R
is of Sierpifiski-Adjan—Novikov type then so is f.

The following lemma is implicit in Adjan and Novikov [1]. Since their
paper is in Russian we include a proof for the convenience of the reader.

4.1. LEMMA. If f: X — R is of Sierpiniski-Adjan—Novikov type then it
s not countably continuous.

ProOOF. Let us fix a sequence S(1),8(2),...,8(k),... of k-systems com-
patible with f such that for every k the system S(k + 1) extends S(k). Define

B = ﬂ U {C(0): 0 has length p}.

Write E as Eq U B U ---. We claim that for some p € N and o € X the set
(*%) E,NC(o)is dense in C(0).

Otherwise (using (ii)(a)) we could choose inductively numbers ¢y, 1, . .. such
that for every p € N, E, N C(i1,...,i) = . But then the non-empty set
Mgy C(it, . .., 1p) is contained in E \ U2, Ei, which is a contradiction.
With p and ¢ as in (%x), choose any z¢ € E, N C(0). By the definition
of E there exists i € N with zg € C(c7%). By (ii)(b) and (x) we can find a
sequence z, € (E, N D(071)) \ C(07%) converging to zo. But then

f(o) > f(an) +€(07)

for all n, demonstrating that f[ £, is not continuous at zo. O

4.2. REMARK. An inspection of the proof of Lemma 4.1 shows that
condition (%) above is much more than we need. It suffices for example if
for every o € X(k), k € N, there is a relatively open set G(o) & D(o)\ C(0)

such that C(o) € G(o) while moreover

() sup { f(z):2 € G(0)} +¢(0) < inf { f(z):z € C(o)}.

By abuse of terminology we call functions satisfying such conditions also of
Sierpifiski-Adjan—Novikov type. The point is that the precise condition is
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not so important, as long as it is strong enough for the arguments in the
proof of Lemma 4.1 to work. For the time being the definition of Sierpinski—
Adjan—Novikov type is the one with the above condition (*). We will warn
the reader when it is time for a change.

A function f:I — R is of first Baire class if it is the pointwise limit
of a sequence of continuous functions. The set B;(I) consists of all bounded
functions of the first Baire class and is endowed with the supremum norm. It
is well-known that with this norm, By(I) is a (non-separable) Banach space.

4.3. THEOREM. Bi(I) contains a dense Gs-subset consisting of func-
tions of Sierpiniski-Adjan—Novikov type.

Consequently, by Lemma 4.1 we obtain the following corollary.

4.4. CorROLLARY. The set of all countably continuous functions in B;(I)
s meager.

Before presenting the proof of Theorem 4.3 we derive the following pre-
liminary results.

4.5. LEMMA. Let S(k) be a k-system. Then the set
{f € Bi(I): f is compatible with S(k)}

is open in Bi(I).

Proor. Let §(k) = (C(0), D(0),e(0))sex (k). In addition, let f be com-
patible with S(k). It is easy to verify that if g € By(I) and ||f — g|| < n(f)/3
then g is compatible with S(k). O

4.6. LEMMA. Let K C I be a Cantor set, u € B1(I) and C1. € K a
Cantor set with empty interior in K. Then if U is a nonempty open subset
of K and 6 > 0 then there are a Cantor set C C U \ C; having empty interior
in K, a clopen neigborhood D of C' in K and a nonempty open subset W C
€ {v e Bi(I):||lu—v|| < 6} such that for all w € W:

sup {w(z):z € D\ C} +g<inf{w(z):w60}.

PROOF. Since u is of the first Baire class, there is a point p € V = U\ Cy
at which u[ K is continuous ([2, Theorem 8.3.1]). Let D € V be a clopen
neighborhood of p in K such that

|u(x) - u(p)| < g (z € D).
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Let C € D be a Cantor set containing p and having empty interior in K.
Define v € B1(I) as follows:

L ue) (g0,
”("’)‘{u<p>+§a (z €C).

Clearly v € B1(I) and |ju — v|| < 4. Also,

inf {v(z):z € C} —sup {v(z):z € D\C} =

[\]

:u(p)—l—%é—sup{v(z):mED\C} 2 4.

5
So if W is a sufficiently small neighborhood of v then for every w € W,
inf{w(m):xEC}—sup{w(w):xED\C}>%. a

By a repeated application of Lemma 4.6 one obtains:

4.7. CorROLLARY. Let f € By(I) be compatible with the k-system S(k).
Then for any a > 0 one can extend S(k) to a k + 1-system S(k + 1) and one
can find a function g € By(I) in the a-ball about f such that g is compatible
with S(k + 1).

We are now in a position to present the proof of Theorem 4.3.

4.8. ProOF OF THEOREM 4.3. Let U be a family consisting of pairwise
disjoint nonempty open subsets of B;(I) such that

(1) VU € Uy: diam(U) < 271,

(2) U, is dense in By(I).
For every U € U; pick an arbitrary element f} € U. Then every ff is
compatible with the 0-system. So by applying Corollary 4.7 we find for
every U € Uy a 1l-system S and a function g4 € U compatible with SE.
By Lemma 4.5, for every U € U; we may pick an open neighborhood Viy &
C U of g}; such that every function in Vi is compatible with S}. Without
loss of generality we may assume that every Vi has diameter less than g
For every U € U enlarge {Viy} to a pairwise disjoint family Vy consisting
of nonempty open subsets of U of diameter less than 272 and dense union.
Let U; denote the collection UUea1 V7. Observe that there are two types
of sets in Uy. Now we repeat the same procedure. The sets in U, that are
“compatible” with a 1-system are being replaced by smaller sets that are
“compatible” with a 2-system that extends the 1-system. Next, the sets that
are “compatible” with the 0-system are being replaced by smaller sets that
are “compatible” with a 1-system. Finally, we add sets that are compatible
with the 0-system in order to get a family U3 with dense union. Then we
again repeat the same procedure but now at three levels. At the end of the
construction each function in the dense Gs-set (oo, [ JU, is of Sierpinski—
Adjan—-Novikov type. O
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5. Typical bounded derivatives are not countably continuous

The approach in this note provides also an answer to another question
in Jackson and Mauldin [5].

5.1. THEOREM. In the Banach space of bounded derivatives on I the
countably continuous functions form a meager set.

Let us indicate which modifications in the proof of Theorem 4.3 are nec-
essary to obtain this result. Our terminology and facts from differentiation
theory are all taken from Bruckner [3].

(A) We use here the definition of Sierpifiski-Adjan—Novikov function with
condition (*) in §4 replaced by condition (') in Remark 4.2.

(B) We construct the Cantor sets C(¢) in such a way that additionally
each nonempty relatively open set in C'(¢) has positive Lebesgue measure.

(C) Because of (B), we can define the subsequent Cantor sets C(o) and the
relatively open sets G(o) so that there exists an approximately continuous
function h:I — I (hence a derivative by [3, Ch. II, Theorem 5.5(a)]) such
that h(z) 2 2 on C(c) and h(z) = 0 on G(0). The jump in condition ()
can then be created by using the function u + § - h instead of v, where § and
v are as in Lemma 4.6.

Only (C) needs some additional justification. To this end, let C' be a
Cantor set in I such that nonempty relatively open sets in C have positive
Lebesgue measure. Let K C C be a Cantor set of positive Lebesgue measure
such that G = C'\ K is dense in C, and let E be the set of Lebesgue density
one points of K ({3, Ch. II, Theorem 5.1]). Removing a set of measure 0 if
necessary, we can assume that E is as in [3, Ch. II, Theorem 6.5]; let f:1 —
— I be the function described in that theorem. For every n, let E, = {z €
€ E:f(z) 2 1} and pick n such that E, has positive Lebesgue measure.
There is a Cantor set L C F, having the property that all its nonempty
relatively open subsets have positive measure. Then L<f(z)<1onLand
f(z) =0on G. Finally, set h = £o f, where £: I — I is a continuous function
with £(0) = 0 and £[1,1] C [2,1]. Then A is approximately continuous by 3,
Ch. II, Theorem 5.4].

6. Comments

6.1. Ezplicit ezamples of functions that are not countably continuous.
We present here two explicit examples of first Baire class functions that are
not countably continuous. Each, combined with Theorem 3.1, (re)proves the
result of Jackson and Mauldin quoted in the introduction.

(A) Let C C I be the Cantor set. Since C is canonically homeomorphic
to {0,1}* it follows that C is canonically homeomorphic to C*®. The
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continuous function &:C x C — [—1,1] defined by &(z,y) = = — y is easily
seen to be surjective. Consequently, there is an explicit map from C? onto
[—1,1]. By taking the infinite product of this map, we conclude that there
is an explicit map from C'* onto . Consequently, there is an explicit map
from C onto Q, say f. (This is well-known of course.)

Define the functions £,u: @ — I by

{(z) = min f~'(2) (ze@)

and
u(z) = max f~1(z) (z €Q),
respectively.

6.1.1. THEOREM. { is lower semicontinuous and v is upper semicontin-
uous. Moreover, £ and u are not countably continuous.

Proor. We will prove that £ is lower semicontinuous. The proof that
u is upper semicontinuous is similar and is left to the reader. To this end,
let r € R and z € {71(r,00). Then £(z) > r and so f~!(z) € (r,0). By
compactness of I we have that the function f is closed. Consequently, there
exists a neighborhood V of ¢ in Q such that f=1[V] C (r,c0). Now for every
y € V we have £(y) > r which proves that V' € £71(r,00). We conclude that
{~1(r,00) is open.

We will next prove that £ is not countably continuous. The proof that u
is not countably continuous is similar and is left to the reader. To this end,
assume that Q = F; U EoU ---. Since @ is not the union of countably many
zero-dimensional subspaces ([9, Corollary 4.8.5]) and every finite-dimensional
separable metrizable space is the union of finitely many zero-dimensional
subspaces ([9, Corollary 4.4.8]), it follows that for some ¢, dim E; = oo. We
claim that £[ E; is not continuous. Observe that the composition

follE;

is the identity on F; and that f is continuous. But then if £ [ E; were continu-
ous this would imply that £[ F;: E; — {[F;] is a topological homeomorphism
which is impossible because E; is infinite-dimensional and every nonempty
subspace of C is zero-dimensional. O

6.1.2. CoROLLARY. sup:Q — I is lower semicontinuous but not count-
ably continuous. In addition, inf:Q — 1 is upper semicontinuous but not
countably continuous.

Proof. The function 3¢+ 3:Q — [1,1] is lower semicontinuous but not
countably continuous (Theorem 6.1.1). The result for sup now easily follows
from Theorem 2.2. The result for inf can be proved analogously. ad
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6.1.3. QUESTION. Is there a homeomorphism a: K(I) — @ such that for
every A € K(I) we have

A(A) = inf ((4)),
Le., are the pairs (K(I), A) and (Q,inf) topologically equivalent?

(B) The second example is a reformulation of the original construction
of Adjan and Novikov. Again, let C S I be the Cantor set and let D =
= {dy,d3, ...} be a countable dense set in C. Define ¢: C — I by the formula

0 (xeC\D),
«={1 olu

K3

and let f:C' X C X -+- — I be defined by

oC

fler,2,..) = D 27 (1) - ().

=

The reasoning of Adjan and Novikov that was reproduced by us in the proof
of Lemma 4.1 shows that f is not countably continuous. It is easily seen that
f is upper semicontinuous.

Notice that one can identify C' x C x C' X --- with C in I which, as can
easily be seen, provides a corresponding example defined on I.

6.2. Zero-dimensional spaces. In the special case of zero-dimensional
spaces it is possible to derive Theorem 6.1.1 from well-known selection the-
orems. To see this, let X be a compact zero-dimensional space and let
f: X — I be upper semicontinuous. Put

G = {(z,4) € X x K(I): f(z) = A(A)}.

Then G is a Gg-subset of X X K(I), and hence is completely metrizable.
From the upper semicontinuity of the function f one readily concludes that
the multifunction F which assigns to each z € X the vertical section of
at z is lower semicontinuous. There exists a continuous selection B for F by
a selection theorem of Kuratowski and Ryll-Nardzewski [7] or Michael [8].
This function is what was needed in Claim 2 of the proof of Theorem 3.1.

Let us finally notice that the second function considered in §6.1 is defined
on a zero-dimensional compact space.
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