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Kenneth K u n e n (Madison, Wis.) and Jan v a n M i l l (Amsterdam)

Abstract. We prove that the statement: “there is a Corson compact space with a
non-separable Radon measure” is equivalent to a number of natural statements in set
theory.

1. Introduction. All spaces considered here are Hausdorff.
Suppose X is compact and µ is a Radon probability measure on X. We

say that µ is separable if the measure algebra of 〈X,µ〉 is separable (as a
metric space; equivalently, L1(µ) is separable). Haydon asked whether the
existence of a non-separable Radon measure on X implies that X can be
mapped continuously onto [0, 1]ω1 . It is open whether a “yes” answer is
consistent with ZFC, or even follows from MA + ¬CH; see Fremlin [4] for
more discussion. Under CH or some other axioms of set theory, a number
of counter-examples are known, due to Džamonja and Kunen [2, 6]. These
spaces have the additional properties of being either hereditarily Lindelöf
(HL), or hereditarily separable (HS), or both. Either of these properties
implies immediately that the space cannot be mapped continuously onto
[0, 1]ω1 (since [0, 1]ω1 is neither HL nor HS, and both HL and HS are pre-
served under continuous maps).

There are many other classes of spaces that cannot be mapped continu-
ously onto [0, 1]ω1 for some obvious reason. For such a class, say K, one can
ask whether there is a counter-example to Haydon’s question that belongs
to K. In this paper we consider the class of all Corson compact spaces. Recall
that a compact space X is called Corson compact if it can be embedded in a
Σ-product of real lines. Since every separable subspace of a Corson compact
space is second countable, it is easy to see that no Corson compact space
can be mapped continuously onto [0, 1]ω1 .
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So, we ask, can there be a non-separable Radon measure on a Corson
compact space?

It follows from results already known that the answer to this question
is independent of ZFC. There is no such space under MA + ¬CH. To see
this, let X be a Corson compact space with a Radon probability measure µ.
By removing all open subsets of X of measure 0, we may assume without
loss of generality that X itself is the support of µ—that is, all nonempty
open subsets of X have positive measure. This implies that X satisfies the
countable chain condition (ccc). But under MA + ¬CH, a Corson compact
space that satisfies the ccc is second countable (see [4]), which implies that
µ is separable. On the other hand, the HL space constructed in [6] under
CH is easily seen to be Corson compact.

In this paper, we prove that the statement “there is a Corson compact
space with a non-separable Radon measure” is equivalent to a number of
natural statements in set theory. Let MAma(ω1) denote MA(ω1) restricted
to measure algebras. We shall prove:

1.1. Theorem. The following statements are equivalent :

(1) There is a Corson compact space which has a non-separable Radon
probability measure.

(2) There is a first countable Corson compact space X which has a Radon
probability measure µ such that the measure algebra of 〈X,µ〉 is isomorphic
to the measure algebra of 2ω1 with the usual product measure.

(3) MAma(ω1) fails.
(4) 2ω1 with the usual product measure is the union of ω1 nullsets.

Observe that MAma(ω1) is much weaker than full MA(ω1). For example,
MAma(ω1) is true in the random real model, or in any model with a real-
valued measurable cardinal; in both of these models, most of the combi-
natorial consequences of MA fail. On the other hand, there are models in
which p = c = ω2 holds (which implies most of the elementary combinatorial
consequences of MA), but yet (1)–(4) of Theorem 1.1 hold as well.

Note that any X satisfying (1) or (2) of Theorem 1.1 cannot be HS, since
any separable Corson compact is second countable. Such an X could be an
L-space (HL and not HS), however; such an example was constructed in [6]
under CH. It is natural, then, to ask whether one can construct such an
X just assuming the failure of MAma(ω1). We do not know the answer to
this question. But we do know that a similar but stronger assumption, still
weaker than CH, suffices.

1.2. Theorem. Suppose that there is a family A consisting of ω1 nullsets
in 2ω1 such that every nullset N ⊆ 2ω1 is contained in some member of A.
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Then there is a Corson compact L-space X with a non-separable Radon
probability measure µ.

The hypothesis of this theorem holds, for example, in any model obtained
by adding any number of Sacks reals side-by-side over a model of CH.

Theorem 1.1 is proved in §3. Theorem 1.2 is proved in §4, where we also
prove that the existence of an L-space with a “nice enough” measure implies
the existence of a family A as in Theorem 1.2.

We conclude this introduction with some additional remarks.
ThenotionofEberlein compact is somewhatstronger thanCorsoncompact.

Every ccc Eberlein compact is second countable (Rosenthal [9]), so by the
above argument, every Radon measure on an Eberlein compact is separable.

The Borel sets are the sets in the least σ-algebra containing the open
sets. The Baire sets are the sets in the least σ-algebra containing the open
Fσ sets; in a 0-dimensional compact space, this is the same as the least
σ-algebra containing the clopen sets. For a second countable compact space
(such as 2α for α < ω1), the Borel sets and Baire sets are the same, but they
are not the same in 2ω1 . In 2ω1 every Baire set depends only on countably
many co-ordinates, but this is not true for Borel sets.

The usual product measure on 2ω1 is completion regular, as is every Haar
measure on a compact group (see, e.g., Theorem 64.H of Halmos [5]). This
means that for every Borel set E, there are Baire A,B such that A ⊆ E ⊆ B
and B\A is a nullset. This implies in particular that every nullset of 2ω1 is
contained in a Baire Gδ nullset. This fact will be used in the proofs of
Theorems 1.1 and 1.2.

The hypotheses about coverings by nullsets in Theorems 1.1 and 1.2
are most frequently studied on the space 2ω (equivalently, [0, 1]). If 2ω is
the union of ω1 nullsets, then, by taking inverse projections, the same is
true of 2ω1 , but the converse need not hold; for example, it fails in the
model obtained by iterating, with finite support, adding single random reals.
However, by completion regularity, the existence of a family of ω1 nullsets
such that every nullset is covered by a nullset in the family is equivalent for
2ω and 2ω1 . (Let A be a family of ω1 nullsets of 2ω1 such that every nullset is
covered by a nullset in the family. We may assume without loss of generality
that every A ∈ A is a Gδ. Let π : 2ω1 → 2ω denote the projection. For every
A ∈ A put BA = {x ∈ 2ω : π−1({x}) ⊆ A}. Then the family {BA : A ∈ A}
is as required for 2ω.)

By a result of Cichoń, Kamburelis, and Pawlikowski [1], the existence of
such a family has a surprising consequence for dense subsets of the measure
algebra:

1.3. Lemma. Suppose that there is a family A consisting of ω1 nullsets
in 2ω1 such that every nullset N ⊆ 2ω1 is contained in some member of A.
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Then there is a family B consisting of ω1 closed positive measure Gδ sets
in 2ω1 such that every Borel set of positive measure contains some member
of B.

P r o o f. Such a family in 2α for countable α follows immediately from
[1], and the family in 2ω1 now follows by completion regularity.

2. Preliminaries. We make some general remarks here on the construc-
tion of compact spaces with non-separable Radon measures.

A complete probability measure µ on a space X is said to be Radon if it
is defined on the Borel subsets of X and has the property that the measure
of each Borel set is the supremum of the measures of its compact subsets.

Our construction is patterned after the inverse limit constructions of
Fedorchuk, Kunen, and Džamonja [3, 6, 2]. Here, in order to utilize (4) of
Theorem 1.1, we wish to keep track of an explicit measure isomorphism
between our space and the usual product measure on 2ω1 . To do this, it will
be convenient to construct our X as a proper closed subspace of (ω + 1)ω1 .
Then, the isomorphism will be induced by mapping each n ∈ ω to 0 and ω
to 1.

Definition. For each ordinal α, ϕα : (ω+1)α → 2α is defined as follows:
ϕα(f)(ξ) is 0 if f(ξ) < ω and 1 if f(ξ) = ω. λα denotes the usual product
measure on 2α. For α ≤ β, define πβα : (ω+ 1)β → (ω+ 1)α by πβα(f) = f¹α;
likewise, σβα is the natural projection from 2β onto 2α. If α ≤ ω1 and A ⊆ 2α

then Â denotes (σω1
α )−1(A) ⊆ 2ω1 .

We shall see that ϕω1 will be 1-1 on X, and will induce a measure isomor-
phism between X and 2ω1 . Observe now that ϕ commutes with projection,
in that σβα ◦ ϕβ = ϕα ◦ πβα.

We now describe the construction of our space X. We shall choose Xα,
for α ≤ ω1, so that (among other things):

R1. Xα is a closed subspace of (ω + 1)α, and πβα(Xβ) = Xα whenever
α < β ≤ ω1.

R2. For every n < ω, Xn = {{0} ∪ {ω}}n.

Observe that Xγ is now determined from the earlier Xα at limit γ:

Xγ = {f ∈ (ω + 1)γ : ∀α < γ (f¹α ∈ Xα)}.
Topologically, Xγ is the inverse limit of the previous Xα.

For α ≤ β, define π̂βα : Xβ → Xα by π̂βα = πβα¹Xβ .
We also choose µα for ω ≤ α ≤ ω1 so that:

R3. µα is a finitely additive probability measure on the clopen subsets
of Xα, and µα = µβ(π̂βα)−1 whenever α < β ≤ ω1. All non-empty clopen
sets have positive measure.
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For limit γ, µγ is determined from the earlier µα, since each clopen
C ⊆ Xγ is of the form (π̂γα)−1(D) for some α < γ and some clopen D ⊆ Xα.

The measures µα, α ≤ ω1, have a unique extension to a Radon measure
on Xα, which we denote by µ̂α (see Fremlin [4, p. 279]).

Since Xω = {{0}∪{ω}}ω, we simply define µω(C) for every clopen subset
C ⊆ Xω by the formula µω(C) = λω(ϕω(C)).

We will now describe how we construct Xα+1 and µα+1 from Xα and µα
for every ω ≤ α < ω1.

R4. For every ω ≤ α < ω1 there is a sequence 〈Aαn : n < ω〉 of closed
subsets of Xα so that:

(1) If n 6= m then Aαn ∩Aαm = ∅.
(2)

∑
n<ω µ̂α(Aαn) = 1.

(3) For every n < ω and every relatively open set U ⊆ Aαn, µ̂α(U) > 0.
(4) Xα+1 = (Xα × {ω}) ∪ (

⋃
n<ω A

α
n × {n}).

Here, we identify (ω+1)α+1 with (ω+1)α× (ω+1). Observe that Xα+1 is a
closed subset of (ω+1)α+1 and that πα+1

α (Xα+1) = Xα. So the requirements
R4 and R1 are consistent. We now define µα+1. Informally, Xα+1 has two
pieces; one is a copy of Xα and one is a copy of

⋃
n<ω A

α
n, which equals Xα

modulo a nullset. Then µα+1 gives each piece measure 1/2, and distributes
the measure µα equitably over the two pieces. Formally,

R5. For every ω ≤ α < ω1 and clopen C ⊆ Xα+1,

µα+1(C) =
1
2

(
µ̂α(π̂α+1

α (C∩(Xα×{ω})))+
∑
n<ω

µ̂α(π̂α+1
α (C∩(Aαn×{n})))

)
.

It is left as an exercise to the reader to verify that µα+1 is a finitely ad-
ditive probability measure on the clopen subsets of Xα+1 and that µα =
µα+1(πα+1

α )−1. It is easy to see inductively that for every α, µ̂α gives each
point measure 0 and each non-empty clopen set positive measure. (For the
latter statement, use Requirement R4(3).)

We remark that in this construction for every ω ≤ α < ω1 there are only
three requirements for the sequence of closed sets 〈Aα+1

n 〉n, namely, R4(1),
(2) and (3). Modulo these requirements we have the freedom to pick the
〈Aαn〉n as we want. This will be exploited in the forthcoming sections.

Now put X = Xω1 , µ = µω1 , and ϕ = ϕω1¹X. As in [2, 6], the measure
algebra 〈B, µ̂〉 of 〈X, µ̂〉 is isomorphic to the usual measure algebra of 2ω1 .
In [2, 6], the isomorphism was proved to exist using Maharam’s Theorem
[7], but here, the isomorphism is induced by the explicit function ϕ (by (4)
of the next lemma).
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2.1. Lemma. For ω ≤ α < ω1:

(1) ϕα¹Xα : Xα → 2α is 1-1.
(2) If B ⊆ 2α is Borel then Xα ∩ ϕ−1

α (B) is Borel in Xα and µ̂α(Xα ∩
ϕ−1
α (B)) = λα(B).

(3) If B ⊆ Xα is Borel then ϕα(B) is Borel in 2α and µ̂α(B) =
λα(ϕα(B)).

(4) ϕ induces an isomorphism between the measure algebras of 〈X, µ̂〉
and 〈2ω1 , λω1〉.

P r o o f. (1) is proved by induction, using the fact that the Aαn are disjoint.
To prove (2) and (3), it is sufficient to consider the case when B is clopen.

First, by induction, show that if B ⊆ 2α is clopen then Xα∩ϕ−1
α (B) is Borel

in Xα, and if B ⊆ Xα is clopen, then ϕα(B) is Borel in 2α. The fact that
ϕ preserves the measure is likewise proved by induction, using the formula
which defines µα+1 from µα.

For (4), we define a measure isomorphism, Φ, from the measure alge-
bra of 〈2ω1 , λω1〉 onto the measure algebras of 〈X, µ̂〉. An element of the
measure algebra of 〈2ω1 , λω1〉 is of the form [B] (the equivalence class of B
modulo null sets), where B is a Baire set in 2ω1 . Choose an α ∈ (ω, ω1)
such that B = Ê for some Borel E ⊆ 2α, and let Φ([B]) = [ϕ−1

α (E)]. Note
that this is independent of the α chosen. By (2) and (3), Φ is a measure
isomorphism.

3. Proof of Theorem 1.1. We shall prove (4)⇒(2)⇒(1)⇒(3)⇒(4).
Note that (2)⇒(1) is trivial, so there are only three things to prove.

P r o o f o f (4)⇒(2). We aim at making X Corson compact by making
sure that points are not being split too often. We assume that 2ω1 is the
union of ω1 nullsets. Using the fact that the usual product measure on 2ω1 is
completion regular (see the introduction), we may, for every α < ω1, choose
a Gδ nullset Nα ⊆ 2α such that the collection {N̂α : α < ω1} covers 2ω1 .
We may additionally assume that for α ≤ β we have N̂α ⊆ N̂β .

Now, we impose the additional requirement on the choice of the Aαn in
the inductive construction of the Xα:

R6. For every ω ≤ α < ω1, ϕ−1
α (Nα) ∩⋃nAαn = ∅.

Since ϕ−1
α (Nα) is a nullset, we can achieve this without any problem. So, we

are done if we can verify that X is a first countable Corson compact space.
Fix any f ∈ X. Next, fix α < ω1 such that ϕ(f) ∈ N̂α. Then for

all β ∈ [α, ω1), ϕ(f) ∈ N̂β , so f¹β ∈ ϕ−1
α (Nβ), and so, by Requirement

R6, (π̂β+1
β )−1({f¹β}) contains the point 〈f¹β, {ω}〉 only. It follows that

(π̂ω1
α )−1({f¹α)} = {f}, so {f} is a Gδ subset of X. It also follows that
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∀β ≥ α (f(β) = ω). Thus X is first countable (all points are Gδ sets), and
X is a subset of the Σ-product

{f ∈ (ω + 1)ω1 : (∃α < ω1) (∀β ≥ α) (f(β) = ω)},
and hence Corson compact.

P r o o f o f (3)⇒(4). Let B be any abstract measure algebra, and sup-
pose, for α < ω1, Dα is dense in B, but no ultrafilter meets all the Dα. We
prove that 2ω1 is the union of ω1 nullsets. First, by Maharam’s Theorem [7],
we may assume that B is the measure algebra of some 2κ with the usual
product measure. Next, since B is ccc and the equivalence classes of closed
Gδ sets are dense in B, we may choose, for each α, an Aα ⊆ Dα such that
Aα = {[Kn

α ] : n ∈ ω}, Aα is a maximal antichain in B, and each Kn
α is a

closed Gδ. Since Aα is a maximal antichain, Nα = 2κ \⋃n∈ωKn
α is a nullset.

Let {Mγ : γ < ω1} list all finite intersections from {Kn
α : n < ω, α < ω1}

which happen to be nullsets.
We claim that 2κ is covered by the Nα,Mγ (α, γ < ω1). If not, pick a

point p which is not covered. For each α, choose nα such that p ∈ Knα
α . Then

every finite intersection from F = {[Knα
α ] : α < ω1} has positive measure

(since p is not in any Mγ), so F would extend to an ultrafilter which meets
all the Aα, and hence all the Dα.

So, 2κ is covered by ω1 closed Gδ nullsets. Since each of these nullsets is
a Baire set, and therefore has countable support, 2ω1 is also covered by ω1

nullsets.

P r o o f o f (1)⇒(3). We assume that MAma(ω1) holds, let µ be a Radon
measure on the Corson compact X, and prove that µ is separable. Without
loss of generality, we may assume that every non-empty open subset of X
has positive measure. With this assumption, we now show that X must be
second countable, which implies that µ is separable.

First, applying the definition of Corson compact, we assume that X ⊆
[0, 1]λ and for each f ∈ X, {α ∈ λ : f(α) 6= 0} is countable. Let J = {α ∈
λ : ∃f ∈ X (f(α) 6= 0)}. If J is countable, then X is second-countable, so we
assume J is uncountable and derive a contradiction. Choose distinct αξ ∈ J
for ξ < ω1. For each ξ, let πξ be the projection onto the coordinate αξ:
πξ(f) = f(αξ). Choose εξ such that Uξ = π−1

ξ (εξ, 1] 6= ∅.
Applying MAma(ω1), there is an uncountable L ⊆ J such that {Uξ :

ξ ∈ L} has the finite intersection property. L exists because MA(ω1) for
a ccc partial order implies that the order has ω1 as a precaliber. Here the
order in question is the measure algebra of X.

Now, choose f ∈ ⋂ξ∈L Uξ. Then f(αξ) > 0 for all ξ ∈ L, contradicting
that {α ∈ λ : f(α) 6= 0} is countable.
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The referee points out a fifth equivalent to (1)–(4):

(5) There is a compact space X and a finite Radon measure µ on X such
that all non-empty open subsets of X have positive measure and X does
not have caliber ω1.

To see the equivalence, note that (5)⇒(3) is like (1)⇒(3), and (4)⇒(5)
follows from the proof of (4)⇒(2).

4. Proof of Theorem 1.2. First, using ideas from [6], we state some
abstract conditions on X,µ which will imply that X is an L-space.

4.1. Lemma. Suppose that X,µ satisfy :

(1) X is compact , and µ is a finite Radon measure on X.
(2) All non-empty open sets have positive measure.
(3) All points have measure 0.
(4) For all closed nowhere dense Gδ sets K ⊆ X, µ(K) = 0 and K is

second countable.

Then:

(5) For all Borel B ⊆ X, the following are equivalent :
(a) µ(B) = 0.
(b) B is second countable.
(c) B is separable.
(d) B is nowhere dense.

(6) X is an L-space.

P r o o f. X is ccc (by (2)), so every nowhere dense set is a subset of a
closed nowhere dense Gδ set. Applying (4), we get (d)⇒(a) and (d)⇒(b).
Also, (b)⇒(c) is trivial.

To prove (a)⇒(d), we may assume that B is a Gδ nullset, and we let
Un ↘ B, where each Un is open and µ(Un) ↘ 0. Suppose B were dense
in some non-empty open set V . For each n, V \Un is nowhere dense, so
µ(V \Un) = 0 (by (d)⇒(a)), so µ(V \B) = 0, contradicting (2).

To prove (c)⇒(d), suppose that S is a countable subset of B and S is
dense in B. By (3), µ(S) = 0, so, by (a)⇒(d), S is nowhere dense. Hence,
so is B.

To prove (6) observe that X is not separable by (5). To prove X is HL,
let K be any closed set, and we prove K is a Gδ. Since the measure is Radon,
there is some closed Gδ H ⊇ K with µ(H) = µ(K). But then H\K is a
nullset, and hence second countable by (5), so K is a Gδ.

P r o o f o f 1.2. As in the proof of (4)⇒(2) in Section 3, we let Nα ⊆ 2α

be a Gδ nullset such that N̂α ⊆ N̂β whenever α ≤ β. Now we can assume
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that the Nα cover all nullsets—not just points. So, assume that whenever
M ⊆ 2ω1 is a nullset, there is an α ∈ (ω, ω1) such that M ⊆ N̂α.

Furthermore, by Lemma 1.3, we may fix closed positive measure Bα ⊆ 2α

for ω ≤ α < ω1 such that whenever S ⊆ 2ω1 is a Baire set of positive
measure, there are unboundedly many α ∈ (ω, ω1) such that B̂α ⊆ S. Now
we add one more requirement to our construction:

R7. Whenever ω ≤ α < ω1, Aα0 ⊆ ϕ−1
α (Bα).

There is no problem with this, since Bα has positive measure. We are
now done if we can verify that the X that we construct satisfies condition
(4) of Lemma 4.1. So, fix a closed nowhere dense Gδ set, K ⊆ X. Then, fix
a γ < ω1 such that K = (π̂ω1

γ )−1(H) for some H ⊆ Xγ .
We first verify that µ(K) = 0. If not, then µγ(H) > 0, so λγ(ϕγ(H)) > 0,

hence we may fix an α ∈ (γ, ω1) such that Bα ⊆ (σαγ )−1(ϕγ(H)), and so, by
R7, Aα0 ⊆ ϕ−1

α (σαγ )−1(ϕγ(H)) = (π̂αγ )−1(H). But then (π̂ω1
α )−1(Aα0 ) ⊆ K,

which is a contradiction, since (π̂ω1
α )−1(Aα0 ) has non-empty interior.

Now, since H and K are nullsets, λγ(ϕγ(H)) = 0, so we may fix a
δ ∈ (γ, ω1) such that (σδγ)−1(ϕγ(H)) ⊆ Nδ, and hence (σαγ )−1(ϕγ(H)) ⊆
Nα for all α ∈ (δ, ω1). But then, applying R6, π̂ω1

δ is 1-1 on K, so K is
homeomorphic to H, and hence is second countable.

We now proceed to prove a partial converse to Theorem 1.2—namely,
that the existence of an L-space with the properties of Lemma 4.1 implies
a family of ω1 nullsets covering all nullsets. Recall that the weight of X,
w(X), is the least cardinality of a basis for X. As a first preliminary, we
prove

4.2. Lemma. Suppose that X,µ satisfy (1)–(4) of Lemma 4.1. Then
w(X) = ω1.

P r o o f. Clearly, w(X) ≥ ω1. Let U be the family of all open U ⊆ X such
that w(U) ≤ ω1. If

⋃U is dense in X, then by HL plus (4), w(X) = ω1,
so we assume that

⋃U is not dense and derive a contradiction. Let V be
a non-empty open set such that V is disjoint from

⋃U . Since separable
sets are nowhere dense, there is a left-separated ω1-sequence S such that
K = S ⊆ V . Since K is not second countable, there is a non-empty open
W ⊆ K. So, W is disjoint from

⋃U . Say S = {sα : α < ω1}. For β <
ω1, let Kβ = {sα : α < β}. Then Kβ is second countable, so (applying the
Tietze Extension Theorem), there is a countable Fβ ⊆ C(X, [0, 1]) which
separates points in Kβ . Then

⋃
β<ω1

Fβ is a family of ω1 functions which
separates points in K =

⋃
β<ω1

Kβ , so w(K) = ω1. But then W ∈ U ,
a contradiction.
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As a second preliminary, we prove

4.3. Lemma. Suppose that X is completely regular and that µ is a Radon
probability measure on X such that µ({x}) = 0 for every x ∈ X. Let K be
any compact subset of X such that µ(K) > 0. Then there is a continuous
f : X → [0, 1] such that µf−1 is Lebesgue measure and f(K) = [0, 1].

P r o o f. We may assume without loss of generality that X is compact. If
it is not, replace it by βX, with the same measure µ (supported by X).

Let B denote the collection of all open subsets B of X such that µ(B \
B) = 0. First note that B is a base at every closed set H. To see this, fix
a neighborhood U of H. Then there is function ξ : X → [0, 1] such that
ξ(x) = 0 for all x ∈ H and ξ(y) = 1 for all y 6∈ U . Now, fix a t ∈ (0, 1)
such that ξ−1({t}) is a nullset (this must be true for all but countably many
t ∈ (0, 1)). Then ξ−1([0, t)) is a neighborhood of H in B which is a subset
of U .

Now, we shall construct a countable dense set D in [0, 1] and for every
d ∈ D an element Bd ∈ B such that:

(1) If d, e ∈ D and d < e then Bd ⊆ Be.
(2) For every d ∈ D, µ(Bd) = d.
(3) If d, e ∈ D and d < e then µ(Bd ∩K) < µ(Be ∩K).

Assuming this can be done, define f : X → [0, 1], as in the proof of Urysohn’s
Lemma, by the formula

f(x) = inf{d ∈ D : x ∈ Bd}.
By (1), f is continuous. For every d ∈ D, f−1([0, d)) =

⋃
e<dBe, so

µ(f−1([0, d))) = d by (2). This implies that µf−1 is Lebesgue measure. We
next claim that f(K) is dense in [0, 1]. To this end, pick arbitrary d, e ∈ D
with d < e. By (3), there exists x ∈ K such that x ∈ Be \Bd. For this x we
clearly have d ≤ f(x) ≤ e. As a consequence, f(K) is dense because D is.
By compactness, f(K) = [0, 1].

Note that the lemma makes no claim about the measure induced by f¹K,
and all we needed from (3) was that Bd ∩K is a proper subset of Be ∩K.
The stronger assumption in (3) just facilitates the inductive construction of
D and the Bd, which we construct together, in ω steps, as follows. Suppose
that we already constructed Bd and Be, where d < e, while moreover no Bc
is constructed for any element c between d and e. We aim at finding c in the
middle third subinterval of [d, e] and Bc ∈ B so that (1)–(3) are satisfied.
Since the measure is non-atomic and Bd \ Bd is a nullset, there is a Borel
set E such that Bd ⊆ E ⊆ Be and

µ(E) = 1
2 (µ(Bd) + µ(Be)) = 1

2 (d+ e);

µ(E ∩K) = 1
2 (µ(Bd ∩K) + µ(Be ∩K)).
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Using the fact that µ is inner and outer regular, we may now find a compact
H with Bd ⊆ H ⊆ E, and then an open U with H ⊆ U ⊆ U ⊆ Be such
that E \H and U \H have arbitrarily small measures. In particular, we may
ensure that

2
3d+ 1

3e < µ(U) < 1
3d+ 2

3e;

µ(Bd ∩K) < µ(U ∩K) < µ(Be ∩K).

Also, since B is a base at H, we may assume that U ∈ B. So, we add
c = µ(U) to D, and set Bc = U .

We do not know whether Lemma 4.3 is new, but there are related results
in the literature; see, e.g., Mauldin [8].

4.4. Theorem. Suppose that X,µ satisfy (1)–(4) of Lemma 4.1. Then
there is a family A consisting of ω1 nullsets in 2ω1 such that every nullset
N ⊆ 2ω1 is contained in some member of A.

P r o o f. We shall in fact find such a family of nullsets in [0, 1] with
ordinary Lebesgue measure. This is equivalent to finding such a family in
2ω or (as pointed out in the Introduction), in 2ω1 .

Since the measure on X is non-atomic, fix a continuous f : X → [0, 1]
such that µf−1 is Lebesgue measure (Lemma 4.3).

By Lemma 4.2, w(X) = ω1, so let {sα : α < ω1} be a dense subset of
X. Let Kβ = {sα : α < β}. Then, by Lemma 4.1, each Kβ is a nullset. For
β < ω1, let

Nβ = {x ∈ [0, 1] : f−1({x}) ⊆ Kβ};
observe that Nβ is a nullset since Kβ is.

We claim that A = {Nβ : β < ω1} is as required. To prove this, let
N ⊆ [0, 1] be a nullset. We may assume without loss of generality that N is
Borel. Then f−1(N) is a nullset and is Borel, and hence is second countable
by (5) of Lemma 4.1. But this implies that for some β < ω1, f−1(N) ⊆ Kβ ,
and hence N ⊆ Nβ .
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