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ABSTRACT: We prove among other things that if G is a pseudocompact Abelian topolog-
ical group such that |G|> ¢ or ®; < w(G) < ¢ then G has a proper dense pseudocompact subgroup.

INTRODUCTION

All topological spaces considered here (in particular, all topological groups)
are assumed to be completely regular, Hausdorff spaces, i.e., Tychonoff spaces.
A space X is pseudocompact if every real-valued continuous function on X is
bounded.

It has been known for some time that there exist countably compact topologi-
cal groups G of uncountable weight having no countably compact proper dense
subgroup [2, 3.3]. This suggests the question whether every pseudocompact to-
pological group of uncountable weight has a pseudocompact proper dense sub-
group. It seems that this question was first considered in Comfort and Robertson
[2], where it is shown that the answer is in the affirmative provided that the group
under consideration is Abelian and zero-dimensional in the sense that it has a
base consisting of open and closed sets. In [3] it was subsequently shown that the
answer is in the affirmative if the group G under consideration is Abelian and
connected, and satisfies one of the cardinal inequalities wG < ¢ or |G| 2 (wG)®.
Here wG denotes the weight of G. The basic unsolved problem in [3] is whether
every dense pseudocompact subgroup G of T¢" such that |G| = ¢ has a proper
dense pseudocompact subgroup. Here T denotes the circle group.
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Several natural variations of the above problem arose while we tried to solve
it. For example, whether every topological group has a dense proper subgroup.
This is trivially false of course; one “correct” version of this question turned out
to be whether every totally bounded Abelian group G such that ® <wG <|G| has
a proper dense subgroup — see [4] for a discussion of this problem. Here a topo-
logical group G is said to be totally bounded (by some authors: precompact) if
for every nonempty open subset U € G, G is covered by a finite number of trans-
lates of U. Every pseudocompact group is totally bounded and has a proper dense
subgroup [4, Theorem 4.2].

If a topological group G has a proper dense subgroup H then it trivially has
two disjoint dense subsets, namely, H and any coset xH with x ¢ H. So a topolog-
ical group with a proper dense subgroup is resolvable, i.e., contains two disjoint
dense subsets. A space that is not resolvable is called irresolvable. These con-
cepts are due to Hewitt [8] who proved that every dense in itself locally compact
space is resolvable and also presented the first examples of dense in itself irre-
solvable spaces. So the most naive form of the original question is the question
whether every dense in itself topological group is resolvable. Initially this seems
to be of no interest because topological groups are very nice spaces and irresolv-
able spaces are very pathological. So it seems extremely unlikely that there are
irresolvable topological groups. There is, however, a striking consistent example
of an irresolvable Abelian group due to Malyhin [10]. He constructed a dense in
itself topological group G whose topology is maximal, i.e., G cannot be given a
stronger dense in itself topology. The first and the third authors of the present pa-
per will discuss the question which Abelian groups are resolvable in every dense
in itself group topology in [5]. Due to our interest in pseudocompact groups, and
because we know that they are resolvable, it is natural to ask whether an example
such as Malyhin’s can be totally bounded. Our first result shows that it cannot be.

THEOREM 1.1: Every infinite totally bounded Abelian group is resolvable.

See Proof of Theorem 1.1 for details.

A pseudocompact group with a proper pseudocompact subgroup is resolvable
in a strong sense, namely, it contains two disjoint pseudocompact dense subsets:
again consider the subgroup and one of its cosets. So if one wants to solve the
original problem, one should at least be able to solve the obvious question of
whether every pseudocompact group of uncountable weight has two disjoint
pseudocompact dense subsets. Our next result shows that in the Abelian case such
sets can always be found.

THEOREM 1.2: Every pseudocompact Abelian group of uncountable weight
has two complementary dense pseudocompact subsets.

See Proof of Theorem 1.2 for details.
Now back to the original problem: does every pseudocompact group have a
proper dense pseudocompact subgroup? Here is our main result.

THEOREM 1.3: Let G be a pseudocompact Abelian group such that |G|> ¢ or
®; <wG <¢. Then G has a proper dense pseudocompact subgroup.

See Proof of Theorem 1.3 for details.
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So for Abelian groups the only remaining case is that of groups with cardinal-
ity ¢ and weight bigger than ¢. The basic unsolved problem of [3] remains un-
solved. For emphasis, we state it here again.

QUESTION 1.4: Does every dense pseudocompact subgroup G of T such
that |G|= ¢ have a proper dense pseudocompact subgroup?

It is natural to ask why the cardinal ¢ in Theorem 1.3 surfaces, and not for ex-
ample the cardinal ®;qg;. This will be explained in the Proof of Theorem 1.3.

Dealing with Abelian groups we find it convenient to use additive notation.
The identity element of an Abelian group is denoted by 0. If G is a group with
identity element e and n > 0 then ¢,(G) = {x € G: (3m <n) (x™=¢e)}. The order of
an element x € G is the smallest integer n for which x" =e if such an integer exists;
otherwise the order of x is . So for n > 0, ¢,(G) is the subset of G consisting of
all elements with order at most n. Finally, if n >0 then GW={peG:(3xeG)(nx
=p)}. The continuous image of a pseudocompact space is pseudocompact, so if
G is pseudocompact then so is G™ for every n > 0.

PROOF OF THEOREM 1.1

In order to prove our theorem, we first derive some preliminary results.

LEMMA 2.1: Let G be a topological group. Then G is resolvable if and only
if one of its subgroups is resolvable.

Proof: We only need to prove that if G has a resolvable subgroup H then G
is resolvable itself. So let A and B be two disjoint dense subsets of the subgroup
H of G. There is a subset S of G such that:

(1) SH=G,

(2) if x,y € § are distinct then xH nyH = @.

It is clear that SA and SB are disjoint subsets of G. We claim that they are also
dense. We need only verify that SA is dense. To this end, let V be a nonempty
open subset of G. Without loss of generality we may assume that V is of the form
xU, where U is a neighborhood of the identity element e of G and x € G. There
exist s € S and h € H such that x = sh. Then AU intersects H since it contains A.
There consequently exists an element a € hU M A. Then sa € shU N SA = xUn
SA, as required. O

COROLLARY 2.2: Let G be a topological group. If G has a subgroup that is
not closed, then G is resolvable.

Proof: Let Hbe a subgroup of G that is not closed. Then H has a proper dense
subgroup and hence is resolvable. Now apply Lemma 2.1. O

LEMMA 2.3: Let G be adense in itself topological group which is algebraical-
ly isomorphic to Z. Then G is resolvable.

Proof: We identify G and Z. The disjoint dense sets are the positive integers
P (excluding 0), and the negative integers N, respectively. Assume that N is not
dense and fix a nonempty open subset U c P U {0}. Let u denote the minimum of
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U. Then Uy= U - u is a neighborhood of 0 which misses the negative integers.
There is a neighborhood V of 0 such that VU -V ¢ U,. But since Uy misses the
negative integers, this implies that V = {0}, i.e., G is discrete, a contradiction.
This shows that P is dense, and since N =—P it also follows that N is dense. O

LEMMA 2.4: Let G be totally bounded topological group for which there ex-
ists a sequence (F,),., With the following properties:

(1) ¥ n, F, is a subgroup of G.

(2) V n, F, is properly contained in F, .

Then G is resolvable.

Proof: We will prove that H = U,Km F, is resolvable. The desired result then
follows from Lemma 2.1. Observe that H is totally bounded because G is.

Put E = U, oyen Fs1\Fp and O = FgU U, 044 Fpi1 \Fy, respectively. We claim
that both E and O are dense in H. To this end, suppose that there is a nonempty
open subset U  H that misses E. There is a finite F € H such that FU = H. There
is N e N such that F ¢ Fy. Without loss of generality assume that N is odd. Now
take a point x € Fy,\Fy. There exists y € Fy such that x € yU, say x =yu for cer-
tain u € U. Then u =y~ 'x € Fy,;\Fy, which is a contradiction because U N E = &.
This proves that E is dense, and similarly it follows that O is dense. U

Proof of Theorem 1.1: Let G be an infinite totally bounded Abelian topolog-
ical group. First observe that a subgroup of a totally bounded group is totally
bounded, and that every infinite totally bounded group is dense in itself. There-
fore, in case G contains an isomorphic copy of Z we are done because of Lemmas
2.3 and 2.1. We may consequently assume that G does not contain an isomorphic
copy of Z, i.e., G is a torsion group. For every n > 0 define

Fy={xeG:x" =e}.

Observe that every F, is a subgroup of G (here we use that G is Abelian), that

n<w Fn=G, and that for every n, F, < F,,;. We distinguish between two subcas-
es. If there are infinitely many n for which F, . # F,, then we are done because
of Lemma 2.4. If this is not the case, then for some n, F,, =G, so G is a torsion
group of bounded order. But this means that for every finite subset F G, the sub-
group generated by F is again finite (here we again use that G is Abelian).
Since G is infinite, it is therefore a triviality to construct a strictly increasing
chain of subgroups of G. So we are again in the situation where we can apply
Lemma 2.4. O

REMARK 2.6: We do not know whether Theorem 1.1 is also true in the non-
Abelian case. But we do know that a counterexample is rather peculiar. To see
this, let G be an infinite totally bounded group which is irresolvable. As in the
proof of Theorem 1.1 it follows that G is a torsion group. A group H is called lo-
cally finite if for every finite subset A of H the subgroup of H generated by A is
also finite. Clearly, an infinite locally finite group contains a strictly increasing
chain of finite subgroups. So Lemma 2.4 implies that G is not locally finite. Since
infinite subgroups of irresolvable totally bounded groups are also irresolvable by
Lemma 2.1, this implies that G contains an irresolvable (countably infinite) sub-
group Gp which is generated by a finite set. Assume that G is of bounded order.
Then so is its Weil completion Gy. It was announced by Zel’manov at the Inter-
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national Algebra Conference in Algebra honoring A. 1. Mal’cev, held in Novosi-
birsk in 1989, that every compact torsion group of bounded order is locally finite.
Since subgroups of locally finite groups are locally finite, this implies that G is
locally finite and we know that this is not the case. So G is not of bounded order.
In conclusion, the counterexample G (if it exists) must contain a torsion group G
of unbounded order which is generated by a finite set. Unfortunately (for us) such
groups exist, see [15] for details. (We are grateful to James D. Reid for this ref-
erence.)

PROOF OF THEOREM 1.2

A subset A of a topological space X is said to be Gg-dense in X if A intersects
every nonempty Gg-subset of X. Every Gs-dense subset of a space is dense, but
not conversely.

A dense pseudocompact subspace is necessarily Gg-dense, but the converse
fails. (If D is an uncountable discrete space then D is Gg-dense in its one point
compactification.) But in the realm of topological groups these concepts are
equivalent, as the next result makes clear.

THEOREM 3.1: (Comfort and Ross [6]) Let G be a topological group. Then the
following statements are equivalent:

(1) G is pseudocompact.

(2) BG can be given the structure of a topological group having G as a sub-
group.

(3) G is a Gs-dense subgroup of some compact group.

(4) If G is a subgroup of a compact group H then G is Gs-dense in its closure
in H.

So if G is a compact group and H is a dense subgroup of G then H is pseudocompact if
and only if H is Gz-dense in G. This particular consequence of Theorem 3.1 was recently
generalized as follows.

THEOREM 3.2: (Herndndez and Sanchis [7]) A dense subspace A of a compact
group G is pseudocompact if and only if A is Gg-dense in G.

COROLLARY 3.3: Let G be a pseudocompact topological group and let A ¢ G.
If A is Gg-dense in G then A is pseudocompact.

Proof: By Theorem 3.1, BG is a topological group in which G is Gg-dense.
Obviously, A is Gs-dense in BG. Now apply Theorem 3.2. O

REMARK 3.4: (Added July, 1993.) The referee has pointed out that statements
stronger than Theorem 3.2 and Corollary 3.3 were implicit in the literature some
years before the appearance of [7]. For example, Skepin [13, Section 6] has
shown that every (locally) compact group is regularly x-metrizable, hence is per-
fectly k-normal [12] in the sense that each of its regular-closed subsets is the
zero-set of a continuous, real-valued function. (The same conclusion was estab-
lished earlier by Ross and Stromberg [11].) And according to Tkadenko [14], ev-
ery Gs-dense subspace of a perfectly k-normal space is C-embedded. (The same
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conclusion is immediate from earlier work of Blair [1, 1.1 and 5.1].) It is then
clear that a space A as in 3.2 and 3.3 is indeed pseudocompact, and for the fol-
lowing strong reason: A is C-embedded in a certain pseudocompact space.

If G is a topological group then A(G) denotes the collection of all closed, nor-
mal, Gg-subgroups of G.

Let X be a space. The Gg-topology on X is the topology generated by the Gs-
subsets of X. By X® we mean X endowed with its Gs-topology. Observe that A ¢
X8 is dense if and only if A € X is Gs-dense. If G is a topological group then so is
G, ie., the algebraic operations on G are also continuous in the Gs-topology on
G. Every Gg of G containing the identity contains also an element of A(G) (see
[9, (8.7)]). This useful fact will be used several times without explicit reference
in the remaining part of this paper.

LEMMA 3.5: Let G be a pseudocompact group of uncountable weight. Then
G® is dense in itself.

Proof: Suppose that G?® is not dense in itself, i.e., is discrete. Then {e} is
open in G® and hence {e} is a Gsin G and hence, by pseudocompactness of G and
[3, Lemma 2.5], is a G5 in BG. But BG is a topological group by Theorem 3.1, and
hence has countable weight because its identity element is a Gg. This shows that
G has countable weight, a contradiction. O

Proof of Theorem 1.2: Let G be a pseudocompact Abelian group. Then Gd is
an Abelian topological group, which is dense in itself by Lemma 3.5. If G has a
subgroup that is not closed, then it is resolvable by Corollary 2.2. So we may as-
sume without loss of generality that every subgroup of GY is closed. Let H be the
subgroup of G consisting of those elements whose order is a power of 2. Then H
cGlisa subgroup, hence is closed. We distinguish between two subcases. We
first assume that H has nonempty interior in G®, hence is clopen. Then for some
N € A(G) we have Nc H. Then N as a subgroup of G is a pseudocompact [3, The-
orem 2.7(d)] torsion group. Then N is of bounded order by [2, Lemma 7.4], hence
is zero-dimensional by [2, Lemma 7.1]. Hence G has a proper dense pseudocom-
pact subgroup by Proposition 4.10 below. So we are done in this case. Assume
therefore that H has empty interior in G% Then G®=G¥%Hisa group having no
points of order 2. By [5, Theorem 5.2] every Abelian topological group with only
finitely many elements of order 2 is resolvable. So let A and B be complementary
dense subsets of G°. Since the natural quotient map ¢: G® - G¥H is open [9,
Theorem 5.17], it easily follows that both (p'l[A] and (p_l[B] are complementary
dense subsets of G®. Then A and B are complementary Gg-dense subsets of G, and
hence they are pseudocompact by Corollary 3.3.

PROOF OF THEOREM 1.3

In this section we present the proof of our main result.
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Tools

Let G be a pseudocompact group. If N € A(G) then G/N is a compact metriz-
able space [2, 6.1], and, therefore, has cardinality at most ¢. We conclude from
this that if N € A(G) then N has at most ¢c-many cosets. This means, in particular,
that if A = N is a Gs-dense subgroup in N then the union of at most ¢-many cosets
of A is Gs-dense in G. If B < G has cardinality at most ¢ then the subgroup gen-
erated by B has cardinality at most ¢, so there is even a subgroup E of G of car-
dinality at most ¢ such that A + E is Gs-dense in G. Combining this observation
with [3, Lemma 2.13(b),(c)], we obtain the following key lemma.

LEMMA 4.1:

(a) Let G be a pseudocompact Abelian group such that G = U:;] A,, with
each A, a subgroup of G. Then there are N € A(G) and n € N such that A,
N N is Gs-dense in N.

(b) Let G be a pseudocompact Abelian group, let N € A(G), and assume that
D c N is Gg-dense. Then there is a subgroup E of G such that
(1) |E|<¢, and
(2) D + Eis Gg-dense in G.

The strategy of the proof of Theorem 1.3 will be roughly speaking to write G
as the union of a carefully selected countable subfamily of subgroups, i.e., the
A,’s. Having established that, Lemma 4.1 gives us the desired pseudocompact
proper dense subgroup, i.e., (A, " N) + E. We try to keep (A, " N) + E proper by
identifying a “direction” in G of cardinality ¢* which is “orthogonal” to A, N N.
Then ¢-many cosets of A, n N cannot cover G.

We also will use the method of proof in [2]. It is shown there that every zero-
dimensional pseudocompact Abelian group G with wG > © has a proper dense
pseudocompact subgroup. By applying the method of proof in that paper, the fol-
lowing two results can be derived. Although these results at first glance seem to
be rather technical, they are precisely what we need later on.

PROPOSITION 4.2: Let G be a pseudocompact Abelian topological group. As-
sume that for some n € N,

w(G/ G > .

Then G has a proper dense pseudocompact subgroup.

Proof: Observe that H = G/G"™ isa pseudocompact torsion group (in fact,
each element of H has order at most n). By the proof of [2, Theorem 7.3] there is
prime number p such that

w(H/ HP ) > @;

here, H?) denotes the closure of HP) in H. Put Hy=H/ HP). Then Hyis a
pseudocompact, Abelian, elementary p-group of uncountable weight. So by [2,
Theorem 5.8] it has a proper dense pseudocompact subgroup E. We assume with-
out loss of generality, enlarging E to a maximal proper subgroup of H if neces-
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sary, that |[Hy/E|=p. Let ¢: H—> Hgand y: G — H be the natural projections. We
set

F=(poy) \(E).

Then F is a subgroup of G such that |G/F|=p. We claim that F is pseudocompact,
and dense in G. If F is not dense then from |G/F|=p it follows that F is closed
(here we use that p is prime), and hence open. But then (poy)(F) =E is open and
closed in Hy because @ and y are both quotient maps (these maps are even open).
This is a contradiction.

In two steps we will prove that F is pseudocompact. First define F0=cp“(E).
Note that F2 ker(o) = H® and consequently, Fy/ H® and E are topologi-
cally isomorphic. So Fyis pseudocompact by [2, Theorem 6.3] because H® s
pseudocompact. By repeating the same procedure replacing £ by Fy, it now easily
follows that F is pseudocompact. 0

Let G be a pseudocompact Abelian group, let n >0 and let N € A(G). Then N

c N=Nand so N™ < N. So it makes sense to consider the quotient group
N/ N

PROPOSITION 4.3: Let G be a pseudocompact Abelian group such that for
some N € A(G) and some prime number p, w(N/ NP> (the closure is taken
in G). Then G has a proper dense pseudocompact subgroup.

Proof: In this proof G denotes the Weil completion of G. In our case G =BG
because G is pseudocompact (Theorem 3.1). If A £ G then A will denote the clo-
sure of A in G.

Observe that by [9, Theorem 5.35],

E/N(p)
a([’) /N(I’)

H=G/G" =

Also, by the proof of [2, Theorem 7.3],
w(G/NP) > wN/NP) > .

Notice that w(GPY N") = » because N € A(G) by [3, Theorem 2.7(c)] and the map
x — px from G onto G s open. This clearly implies that w(H) > o for if w(H)
=, (1) would imply that w(G/ N")) =, proving that {0} is a Gg-subset of G/ N\
which violates (2). Now again apply the proof of [2, Theorem 7.3] to conclude
that G has a proper dense pseudocompact subgroup. 0

Groups of Cardinality Greater Than ¢

The following result is the main new tool in our proof.

PROPOSITION 4.4: Let G be a pseudocompact Abelian topological group. Suppose
that there exist subgroups V,,, n € N, of G such that

(1) VigVyac o

2) VameNITk>m: |V, /{xeVinxeV,}|>cC
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Then G contains a proper dense pseudocompact subgroup.

Proof: PutV= U‘;’:l V,,. Let A be a subgroup of G which is maximal with respect to
the property that A n V= {0}. For all n,m put

A"={xeG:nx e A+V,}.

Then clearly, every A,” is a subgroup of G. We first claim that U:f:] LE A"
= G. This is easy. First observe that for every m, A € A|™. Take an arbitrary x ¢
A. Then by the maximality of A we have ({4 U {x})) "V #{0}, so there are n >0
and a € A such that

nx+a=heV\{0}.

Then since h#0 and A " V= {0} we have n#0. Pick m such that » € V. Then x
e A", as required.

By Lemma 4.1 there exist m,n and a subgroup E < G with |E|<¢ such that the
group A =A,"+ E is Gs-dense in G. We claim that A is proper.

Let k>m be such that |V, /{x e Vi nx e V,}|>¢,andlet: V), -V, /{x e Vg
nx € V,} be the natural homomoprhism. We prove that A is proper by proving
that n[ A N V,] is a proper subgroup of V,/{x € V;: nx € V,,}. To this end, fix ¢ €
E and pick two elements x,y € A" such that both x + e and y + e both belong to
Vi. Thenx—y e Vy. Also, nx,ny e A+ V,,son(x-y)e(A+V,)nV,=V,. Sox
—y is in the kernel of m, which implies that

nx+e)=n(x+(y—x)+e)=mn(y + e).

We conclude that [n[(A,™ + {e}) N V,]| <1, and so, because e € E was arbitrary,
that [n[ A nV]|<c. O

COROLLARY 4.5: Let G be a pseudocompact Abelian topological group con-
taining an isomorphic copy of @, +Z,. Then G has a proper dense pseudocom-
pact subgroup.

COROLLARY 4.6: Let G be a pseudocompact Abelian topological group such
that |G/t(G)|>¢. Then G has a proper dense pseudocompact subgroup.

Proof:  One easily constructs an isomorphic copy of @, +Z, in G. O
So we now have to deal with groups G for which |G/#(G)|<c¢.

PROPOSITION 4.7:  Let G be a pseudocompact, Abelian group having the fol-
lowing property: there exists N € N such that Vn € N: [¢,32(G)/1,)(G)| > ¢. Then
G has a proper dense pseudocompact subgroup.

Proof: Put& =Nandé&,, = E2?'. Thensince N>1 we have n< &, <€, for
all n. We first claim that for all m,n € N, n-&,, | € ,,ns1. Indeed, for all n,m,

nbp<E, &, SEL.,

$0 & | Epmyr-
For every n put V,, = 1 (G). Observe that V; € V, C - because &;[&y| .
Take m,n € N. Then

{(xeVyppinxeV,}={xeV, 0:n-E, x =0}
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< Vnm+1'

Since £2,,,; divides &, this implies that
|Vms2/ (% € Vamaa : nx € Vid | 21V a2/ Vi | > €

So now apply Proposition 4.4. O

We are now ready to complete the proof of the first part of Theorem 1.3.

THEOREM 4.8: Let G be a pseudocompact, Abelian topological group with
|G|>¢. Then G has a proper dense pseudocompact subgroup.

Proof: We may assume by Corollary 4.6 that |G/t(G)|<¢, which implies that
| 1(G)|> ¢ because |G|>¢. There exists N € N such that 1y(G) has cardinality great-
er than ¢. Now let n be a multiple of N.

First assume that |¢,2(G)/1(G)| < ¢. Then there is a subset K c t,2(G) of cardi-
nality at most ¢ such that K + £,(G) = 1,2(G). Pick an arbitrary point g € G, and
assume that ng € t,(G). Then nzg =0, so g € 1,2(G). There consequently exist k €
K and y € 1,(G) such that g =k + y. But then ng =nk € nK. Since |[K|<¢, we con-
clude that |GY"” N 1,(G)| < c. By Proposition 4.2, we may assume without loss of
generality that G™  isa Gg-subgroup of G. Moreover, G" is pseudocompact.
As before, find a subgroup E of G of cardinality at most ¢ such that G™ + E is
Gg-dense in G. Now since |G n1,(G)| < ¢ and | 1,(G)| > ¢, it follows that £,(G)
cannot be covered by ¢-many cosets of G or fewer. So we conclude that G"™ +
E is proper.

We may therefore without loss of generality assume that for every multiple n
of N we have |t,2(G)/1(G)| > ¢. So we are in a position to apply Proposition 4.7,
to get a proper dense pseudocompact subgroup of G. O

Groups of Weight at Most ¢

We now turn our attention to the second part of Theorem 1.3.

THEOREM 4.9: Let G be a pseudocompact Abelian topological group with o,
<w(G) <¢. Assume, moreover, that YN € A(G): |[N/tN|2c¢. Then G has a proper
dense pseudocompact subgroup.

Proof: This is a direct consequence of the proof of [3, Theorem 4.2]. O

PROPOSITION 4.10: Let G be a pseudocompact Abelian topological group of
uncountable weight such that for some N € A(G), N is zero-dimensional. Then G
has a proper dense pseudocompact subgroup.

Proof: By [3, Theorem 2.7(d),(e)], N is pseudocompact and w(N) > ®. By the
proof of [2, Theorem 7.3] there is prime number p such that

w(N/ NP > o.
Now apply Proposition 4.3. O

We are now ready to present a proof of the second part of Theorem 1.3.



COMFORT ET AL. : PSEUDOCOMPACT ABELIAN GROUPS 247

THEOREM 4.11: Let G be a pseudocompact Abelian group with o <w(G) <c.
Then G has a proper dense pseudocompact subgroup.

Proof: By Proposition 4.10, we may assume that no N € A(G) is zero-dimen-
sional. We claim that for every N € A(G) we have |[N/tN|>c¢. Indeed, fix N € A(G).
Then since N is Abelian and not zero-dimensional, there is a continuous character
%: N — T such that ¢[N] is uncountable. Since N is pseudocompact [3, Theorem
2.7(d),(e)], this means that ¢[N] is an uncountable closed subgroup of T, hence is
T. But since ¢T is countable, and |T|=¢ we obviously have |T/¢tT|=¢ and in turn
that |[N/tN|=c¢. Now apply Theorem 4.9. O
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