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DENSE EXTREMALLY DISCONNECTED SUBSPACES

A. DOW AND J. van MILL

(Communicated by Franklin D. Tall)

ABSTRACT. We prove that every compact Basically Disconnected space of -
weight w; has a dense Extremally Disconnected subspace. In Boolean algebraic
terms: every o-complete Boolean algebra B with density w,; carries an ultra-
filter which generates an ultrafilter in the completion of B . The statement that
every compact Basically Disconnected space of weight ¢ has a dense Extremally
Disconnected subspace is shown to be equivalent to CH .

1. INTRODUCTION

Three closely related classes of zero-dimensional spaces are the Extremally
Disconnected (the clopen algebra is complete), abbreviated ED, the Basically
Disconnected (the clopen algebra is g-complete), abbreviated BD, and the P-
spaces (the clopen algebra is closed under countable unions and intersections).
The question of when certain spaces have dense P-spaces has been extensively
studied. We are looking for dense Extremally Disconnected subspaces. As
can be seen from the discussion below, for zero-dimensional spaces this is the
same as finding ultrafilters on Boolean algebras which generate ultrafilters on
the completion.

A point in a space is a A-point (for a cardinal A) if there are A disjoint open
sets each with the point in the closure. A space is ED if and only if no point of
the space is a 2-point. Call a point which is not a 2-point an ED-point.

A point p € BX\X is called a remote point of X if p is not in the closure
of any nowhere dense subset of X . Close connections have been established
between remote points, ED spaces, and 2-points. For example, Woods [Wo071]
established that the set of remote points of a space X embeds homeomorphi-
cally (and canonically) into the (ED) Gleason space of fX. More detailed
connections between remote points and 2-points are explored in van Douwen’s
paper [vD81]. In particular, every remote point of X is an ED-point of SX .
The converse is false because if X is ED then BX is ED at every point. It is
easily seen that a space has a dense ED subspace if and only if it has a dense
set of points which are not 2-points.
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In the first section we prove that every compact BD space of m-weight w;
has a dense ED subspace. This is somewhat surprising because the usual way
to construct ED-points, i.e., via remote points, does not work here; indeed, it
follows trivially from Dow [Dow83] that if CH fails there is a BD space with
n-weight w; which has no remote points. We also construct an example of a
compact BD space with weight max{w,, ¢} and m-weight w, in which every
point is a 2-point. Therefore the statement that every compact BD space of
weight ¢ has a dense ED subspace is equivalent to CH. It has already been
shown that the BD space consisting of the uniform ultrafilters on w; (which has
weight 2¢1) does not have a dense ED space (see Balcar and Simon [BaSi82]).

2. COMPACT BD SPACES OF m-WEIGHT X; HAVE DENSE ED SUBSPACES

Recall that a 7m-base for a space X is a collection % of nonempty open
subsets of X such that every nonempty open subset of X contains a member
of & . The n-weight, n(X), of X is the smallest cardinality of a n-base for
X . In the proof of the following result we will make use of ideas in Chae and
Smith [CS80] and van Douwen [vD81].

Theorem 2.1. Every compact BD space with n(X) < w, has a dense ED sub-
space.

Proof. Let X be a compact BD space with 7n-base & = {B,: a < w;}. We
may assume without loss of generality that % consists of clopen sets. Let 7"
be the family of all nonempty open subsets of X . For each W € 7" put

HW)={a<w;: B,CWorB,NnW =g2}.
Note that W — W is nowhere dense, for W € 7", hence {B,: a € H(W)} is

again a 7-base for X. For W € #" set u(W) < w; to be a nonzero ordinal
with the property that

(VB < u(W))(3a < u(W))B, C Bg and a € H(W).
The following closing off argument shows that there is such an ordinal u(W):
w(Ww,1)=minH(W),
(W, m+1)=min{a < w; : [V < u(W, m)[3 € HW)Na]lB; C Bgl}.

Then u(W) =sup{u(W, m):1<m < w} has the desired property.

For each W € # let Uy = U{Ba: « € HW) N u(W)}, note that Uy is
an open F;.

Fact 2.2. If & € [#Z']<® then there is an a < max{u(W): W € &} such
that B, C nWG? Uw .

We will prove the fact by induction on n = |&|. For n = 1, it is ob-
vious from the definition of u(W). So assume the fact to be true for n,
and consider arbitrary W, ..., Wy € #° . We may assume that for all
i <n+1 we have u(W;) < uw(Wyy1). By our inductive hypothesis, there is
an o < max{u(W;): 1 < i < n} such that B, C _; Uw, . Since o < u(Wp+1)
there is f < u(Wy1) with Bs C B, and B € H(Wy.1). Then By C (N2 Uw,
and B < max{u(W;): i <n+ 1}, so we are done.

We conclude that in particular the collection {Uy: W € 7’} has the finite
intersection property. So by compactness of X we may pick a point x in

nWGWf Uw.
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Fact 2.3. x is not a 2-point.

To the contrary, assume that x is a 2-point. Then there is an open W of
X such that

xXeEW and xeX-W.

Put A=UynNW and B = Uy — W , respectively. Observe that both these sets
are open Fy’ssince A =J{Bg: p < u(W) and Bg C W} and B = J{Bs: B <
w(W) and BgNW = 2}. Now A is disjoint from the open set X — W , hence
sois A. Since A4 is clopen it is also disjoint from X — W . Therefore x cannot
be a member of 4. Similarly B is disjoint from W , hence x is not a member
of B. However this contradicts that x € Uy c AUB.

We conclude that X is somewhere ED. But the same reasoning can be applied
to every nonempty clopen subspace of X . So it follows that X contains a dense
ED subspace. 0O

Observe that the above proof can be generalized. If X is a compact zero-
dimensional space of m-weight x such that the union of fewer than x clopen
sets has clopen closure, then X has a dense ED subspace.

Corollary 2.4. If CH holds then every compact BD space of weight ¢ contains a
dense ED subspace.

Two questions naturally arise. Is CH (or its full strength) needed to prove
Corollary 2.4? Can the hypothesis m(X) < w; be (consistently) weakened
in Theorem 2.1? In fact, only the parenthetical questions are open. Indeed,
Balcar and Simon have shown that U(w;) does not have a dense ED subspace
[BaSi82]. This space is BD and has zn-weight at most 2% . In the next section
we prove that both 2.1 and 2.4 are best possible in the sense that the statement
in Corollary 2.4 is equivalent to CH.

3. A sMALL BD SPACE WITH NO DENSE ED SUBSPACE

In this section a g-complete Boolean algebra i of cardinality w; - ¢ is con-
structed whose Stone space is shown to have the property that every point is a
2-point, hence there is no dense ED subspace.

For every space X, let RO(X) denote the complete Boolean algebra of reg-
ular open subsets of X. If &/ C RO(X) then its supremum in RO(X) is
intcl(J.%). For more information on RO(X) we refer the reader to Porter
and Woods [PW88].

Notation 3.1. For an s € <?w,, let [s] = {x € Yw,: s C x}. In addition, put
6 ={[s]: s € ~“w,}.

For convenience we treat members of <“w, as ordered sequences of ordinals.
In particular, s~y denotes the obvious extension of s.

We endow @, with the discrete topology and “?w, with the product topology,
i.e., the topology having & as a basis. Observe that if [s] and [¢] are in &
and if [s]N[¢] # 2 then [s] C[t] or [f] C [s].

Definition 3.2. Let U € RO(“w;). Then &4 is the collection of all countable
sets Ay C w;, such that for any s € <?w,, either U N[s"y] is empty for all
y ¢ Ay,or [s"y]CU forall y ¢ Ay. Let U be the set of all U € RO(“w,)
for which & # .
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Proposition 3.3. il is a g-complete subalgebra of RO(®w,) that contains S .

Proof. 1t is immediate that i is closed under complements (in RO(“w,)).
Suppose that {U,: n € w} C U4 and let U =V, U, = intcl(U,¢,, Un). For
each n, let Ay, witnessthat U, isin { andlet 4 =|J, Ay, . Fixany s € <“w;
and let y ¢ A. Suppose that U N[s"y] # @. Then there is an n such that
U.N[s"y] # @. It follows that [s™d] Cc U, for all 6 ¢ Ay,. Therefore
[s76]c U forall 6 ¢ A, hence U € 4.

It is routine to check that 42> &. O

It will be useful to find an explicit description of the elements of I.

Remark 3.4. Let us emphasize that if U € 4 and s € <?w, and if for some
yo ¢ Ay € Ay, [s”p]NU # 2 then [s7y] C U forevery y ¢ Ay.

If U € 4 then we put By = (& . We will show that By € & (see
Corollary 3.10). Define a function ¢y: <?(By) — 2 as follows:

pu(s)=1& (Vy ¢ By)([s"y1<c U).
Proposition 3.5. Let U € 4. Then

(J(Is™71: s € <“(Bu), v ¢ By, and py(s) =1}

is dense in U .
Proof. Suppose that V = J{[s"y]: s € <®(By), ?» ¢ Bu, and ¢y(s) = 1}
is not dense in U. Pick a nonempty [¢f] € & such that [t] C U\V. We
may assume without loss of generality that the last element of ¢ is not in By
(because if it is, then we can replace ¢ by ¢~y for an arbitrary y ¢ By). Let
y be the first member of ¢ that does not belong to By . Write ¢ in the form
t=1ty"y"t . Observe that ¢ € <?(By).

Claim 3.6. oy(to) =1.

Pick an arbitraryAJ ¢ By . There exist elements Ay, /TU € & such that
0 ¢ Ay and y ¢ Ay. Since @ # [t] C [to"y] N U, it follows by Remark 3.4
that for cocountably many & we have[fp™¢] C U. Now if [t{,"J] were not
contained in U then it would follow again by Remark 3.4 that for cocountably
many 7 we have [tp"n]N U = @ ; this is clearly impossible. So we conclude
that [tp"0]C U.

Since ¢y(tp) = 1 and y ¢ By it now follows that [/"y] C V. But
this clearly contradicts the fact that [f] and V' do not intersect because [¢] C

[to"7]. O

Corollary 3.7. Let U € i and s € <?(By) and let B = By . Then

pu(s) =0« (Vy ¢ B)([s"yInU = 2).
Proof. Suppose that ¢y(s) = 0. Pick an arbitrary y not in B, and assume
that [s"y]N U # 2. By Proposition 3.5 there exists ¢t € <?B with ¢y(¢) =1
and y; ¢ B such that [s"y]N[t"y] # 2. Consequently, [s~y] C [t"y1] or
[t"y1] € [s"y]. Since both s and ¢ belong to <“B and both y and y; do
not belong to B, it follows that s =¢ and y = y; . But this is a contradiction
because ¢y(s) =0 and ¢y(¢t)=1. O

To every U € {4 we assigned a function ¢y . We now aim to show that this
function completely determines U .
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Lemma 38. If U, V e, and U # V then oy # ¢y .

Proof. We may assume that the domains of ¢y and ¢y agree. Since U # V
by Proposition 3.5 we may also assume without loss of generality that there
exists s € <“(By) with py(s) =1 and y ¢ By such that [s"y] intersects the
complement of V. But since the domains of ¢y and ¢y agree, this implies
that gy (s) = 0 because otherwise [s"y]C V. O

Since for each countable B there are ¢ functions from B into 2 and there
are w5 = c-w, countable subsets of w,, this lemma implies that 4| <c¢:w,.

Proposition 3.9. If B C w, is countable and ¢: <?B — 2 is any function, then
U =intcl (U{[s“y]: SE<?B,y ¢ B, and ¢(s) = 1})

isin Y and B € & .

Proof. We prove that B € & . To this end, pick any arbitrary ¢ € &. Assume
that there exists y ¢ B such that [t"y]NU # @. Pick s € ?B with ¢(s) =1
and an element y; ¢ B such that [t"y]N[s"y,] # @. Then [t"y] C [s" ]
or [s™y] C[t"y]. If ¢~y is an initial sequence of s~y; then since y ¢ B it
follows that ¢t =s and y =y, . But then [t~d] C U for everyd ¢ B. Suppose
therefore that s~y; is an initial sequence of ¢~y. We may assume without
loss of generality that y; comes before y because otherwise we are again in the
situation that s = ¢t. So s7p; is an initial sequence of ¢, which implies that
every extension of ¢ is contained in [s"~y;]C U. O

Corollary 3.10. Let U e . Then By € ;.
Proof. This follows easily from Propositions 3.5 and 3.9. O

Although we do not need it, let us remark that 4 is the smallest o-complete
subalgebra of RO(“w;) that contains & .

We have shown above that the cardinality of 4 is no more than w;-c. It
also contains & which has cardinality w; . Since the cardinality of 4 is an w-
power by the result of Comfort and Hager [CH72] it follows that its cardinality
is w; - ¢. This also follows easily from Proposition 3.9.

We will proceed to prove that each point of S(i) is a 2-point.

Definition 3.11. For each a < w;, let E be the set of even ordinals in w, and
O = w)\E, and define

Wo = | J{Is1: 3n)(s(n) € E\aAs | n € "a)}

and
Vo =|J{[s]: @n)(s(n) € O\aAs | n€ma)}.

We now come to the main result in this section.

Theorem 3.12. Every point of the Stone space of { is a 2-point.

Proof. Let p be an arbitrary ultrafilter on { and assume that it is not a 2-point.
Let S(4) denote the Stone space of . Observe that for every o both W, and
V, are unions of elements of i(; moreover, W, NV, = @. So the sets W,
and V,, correspond in a natural way to disjoint open subsets, say W* and V*,
of S({). Observe that p is in the closure of W) if and only if UN W, # &
for every U € p. Similarly for V*.
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So, since p is not a 2-point, there is, for each a < w,, a U, € p such
that U, is disjoint from either W, or V,. By definition of { there is, for
each o € w;, 4, € &,. Choose an increasing sequence, {A:: ¢ € w;}, so
that 4;, C Ag for each { < w;. Let 4y, be the supremum of the sequence
{A¢: € € w1} . Choose a < w; so that 4;,, NAw, € 4q. Let s € <?w; be such
that [s] is contained in U; N U, - Since, without loss of generality, U; NW},
is empty, there is a minimum k& such that s(k) > A, ; else any extension of s
by a sufficiently large even ordinal witnesses that U; meets W,.

We will show that s(k) € 4;, N Aso, > which is a contradiction since 4; N
A3, S Ao N 4;,, € Aq > and yet s(k) > 4, .

We first prove by contradiction that s(k) € 4, . Observe that [s | K]NUj,, #
@ . Apply Remark 3.4 to see that for all but countably many y, [(s | k)"y] is
contained in U, . But now since s | k € <“4, it follows that some of these
clopen sets are contained in W,_.

The proof that s(k) € 4,, 1is identical. O
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