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Summary. We construct an example of a countable space A having a closed subspace A
such that no extender e : Cp(A) — Cp(A) is Borel. Arhangelsky asked for the existence of
a continuous extender. Thus our example gives a strong negative answer to this question.

1. Introduction. The vector space of continuous real-valued functions
on a space X is denoted by C(X) and Cp(X) denotes C'(X ) endowed with
the topology of pointwise convergence.

In [1, Problem 58] Arhangelsky asked whether for every countable space
X and every closed subspace A C X thereis an extender ¢ : Cpp(A4) — Cp(X)
which is linear and continuous. It can be shown that the two countable spaces
A and 11, constructed by van Douwen and Pol [4] as examples of countable
spaces not having the Dugundji Extension Property, are counterexamples
to this question. In the same problem, Arhangelsky also asked whether for
every countable space X and every closed subspace A C X there is an
extender e : Cp(A) — Cp(X) which is continuous. The aim of this note
is to present a variation of the space A which also solves this question in
the negative, in a rather strong way: there is no extender measurable with
respect to the o-algebra generated by the Souslin sets (cf. Remark 2.2).

One can interpret this example from the poiut of view of selection theory
as follows. If X is countable then C,(X ) is a linear subspace of RX, a count-
able product of real lines. As a consequence, Cp,(X) is a separable metriz-
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able locally convex vector space. In addition, if A € X is closed then the
restriction operator p : Cp(X) — Cp(A) defined by p(f) = f | Ais bounded,
linear, onto (by the Tietze Extension Theorem) and open. Arhangelsky ques-
tion askes for a continuous selection for the lower-semicontinuous set-valued
function f +— p~1(f) (f € Cp(A)). By our example, such a selection need
not exist (see Marciszewski [6] for a related result). Interestingly, a result of
Michael [7] implies that for every countable subspace C' C C,(A) there is a
continuous selection for the set-valued function [+ p=1(f) (f € C).

After this note was completed, Marciszewski found another solution of
Arhangelsky problem, based on his construction from [6]. His example dif-
fers essentially from ours because his C,(X) is Borel, hence a measurable
extender exists, (cf. Remark 2.2).

As usual, a cardinal is an initial ordinal, an ordinal is the set of smaller
ordinals, and w is the first infinite cardinal. A function will sometimes be
identified with its graph. In addition, the restriction of a function f to a
subset 5 of its domain is denoted by f [ &

2. The space A and its variations. Let D be an almost disjoint family
of infinite subsets of w, l.e. |[D| = w for all D € D and |D N D'| < w for all
distinet D, D' € D. In addition, let F be a collection of functions from w
to w and let ¢ : D — F be a surjection. Finally, let ¢ be any point not in
w % (w+ 1). Topologize

Alp) = {g} U(w x (@ +1))

as follows: w x (w + 1) is an open subspace of A{yp), carrying the usual
product topology. For finite £ C D and for n € w define

U(E,n) = {g} U ((( \Ué) x w+Du | e | E) \ (7% (w+1)).
Ee€
We identify here the functions @(£) [ E with their respective graphs. The
U(€,n)’s form a neighbourhood base for g. It is easy to see that A(y) is
regular and 7; (for details see [4]).
Let D € D. Then the subspace (D) | D C wxw C wx (w+1) converges
to ¢ in A(y). This fact will be used below in the proof of Theorem 2.1.
We will always let A denote the subspace (wx {w})U{q} of A(g). Observe
that the subspace topology that A inherits from A(¢) is independent of F.
Indeed, A\ {g} is discrete and a basic neighbourhood of ¢ has the form

{q} U ((w \ (USUW,)) X {w}) ;

for certain finite £ C D and n < w.
The space A mentioned above is the space A(y), where D is any almost
disjoint family of infinite subsets of w of cardinality ¢, 7 = w“ and ¢ : D —
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F is any surjection.

We will now describe a variation of A that will solve Arhangelsky prob-
lem. We first fix some notation. Let ¥ denote [J, ., 2", the set of finite
sequences of 0’s and 1’s. If f € 2" then n is called the length of f. For each
f € 2¥ we define

I ={f In:n<w),
the set of initial sequences of f; I(f) can be seen as the set of finite approxi-
mations to f. It is clear that

if f,g € 2% are distinct, then I(f) N I(g) is finite.
It will be convenient to identify w and ¥. Thus we think of
D= {I{f]) : f €2}
as an almost disjoint collection of infinite subsets of w.

We are interested in A = A(g), where D is as above, F = w"; the
function ¢ : D — F will be determined below. Since the subspace topology
that A inherits from A(g) is independent of F, we already know A. For
every D € D we let D, denote the subset D x {w} of A. Observe that D,
is clopen in A; we let D} € Cp(A) denote its characteristic function. Qur
choice of D easily implies that the set D* = {D : D € D} C C,(A) is
homeomorphic to the Cantor set 2¢. We now let

w: D — ¥

be a function such that for each f € w* the set {D7 : (D) = f} intersects
every Cantor set in D*. It is not hard to construct such a function. Simply
observe that the cardinality of D* is equal to c, that the family of all Cantor
subsets of D* has size ¢ and that every Cantor set has size ¢. Thus by the
Disjoint Refinement Lemma, [3, Lemma 7.5], there is a disjoint family £ of
subsets of D* such that every Cantor subset of D* contains an element of &£;
moreover, each element I € £ has size ¢. For every E € £ let @ : I} — w*
be a surjection. Now define ¢ : | J £ — w* by the rule ¢(z) = pp(z)iffz €
and extend @ over D* in an arbitrary way. Then this function is clearly as
desired.

THEOREM 2.1. Ife : D* — Cp(A) is an extender and S C D* is a dense
G s-subset then e | S is not continuous.

Proof. Striving for a contradiction, assume that there exist a subcol-
lection § of D and an extender e : D* — C,(A) such that

(i) G* = {G: : G € G} is a dense Gg-subset of D*;

(ii) e [ G* is continuous.

For every o € X, the set

D*(o)={D., €D*:0 C D}
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is a basic clopen subset of D* and consequently intersects G*. For conveni-
ence, put
G*o)=D*e)NG*H{oe E).
We will now construct a function f : ¥ — w having some special properties.
To this end, take an arbitrary ¢ € X. The value f{o) is determined as
follows. Take an arbitrary G, € G*(o). Since e(G%)({o,w)) = 1, there exists
n € w such that e(G%)({o,n)) > 1. Put f(o) = n.
For ¢ € ¥ put

(1) Ulo) = {ueCya) ulfo.w)) > 3 and ulle, f(@)) > 5.

Then (o) is clearly open and is nonempty since by construction it con-
tains e(G7). In particular, e[G*(o)] NU(o) # @, or, equivalently, (o) N
U] £ 0.

For every k € w define

(2) Uy, = U{Lf'(a) . length o > k}.

By the above and the continuity of e on G*, for every k we have that e =1 [l ]N
G* is dense and open in G*. We conclude that

m et [L/k} ng*
kEw

is a dense (Gg-subset of G*, and hence of P*, and it, therefore, contains a
Cantor set. Thus by construction, there exists

Die (Ve U] nG* with o(D) = f.
kEw
It follows that e( D7) € Uy for all k, and hence, by (1) and (2),

e(D)(o) > 5 and e(DX)({o, f(o)) > 5

for infinitely many ¢. However,

o(D3)({o,)) = D ((o,)) > ¢
implies that ¢ € D, so in fact,
(3) e(D;)({o, f(a)}) > 5

for infinitely many o € D. However e(D})(¢) = 0 and f = @(D) and so
f | D converges to ¢. By continuity of e(D}) we must consequently have
that

(4) e(DZ) (o, flo))) < 5
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for all but finitely many o € D. Conditions (3) and (4) provide a contradic-
tion, which establishes the prool.

Remark 2.2. Suppose that A C X is a closed subset of 2 countable space
X such that the function space Cp(X ) is Borel in RX. Then by the Yankov-
von Neumann Theorem the restriction map f — f [ A from Cp(X) to Cp(A)
has a selection e : C,(A) — Cp(X) (an extender) measurable with respect
to the o-algebra generated by the analytic sets in C,(A), cf. Rogers et al. [8,
p. 212] or Arveson [2, Theorem 3.4.3]. Therefore, for each £ C C,(A4) which
is a Gg-set in R4, the restriction e : & — Cp(X) is measurable with respect
to the o-algebra of sets in £ that are open modulo a first category set (in
£). As a consequence, e is continuous on a dense Gs-subset of £.

Let us now return to the space A and its closed subset A. Since D™ is
a Cantor set, by the above remarks and Theorem 2.1 it follows that C(A)
is not Borel. Also, there does not even exist a measurable extender {rom
Ch(A) to Cp(A). Tnterestingly, Cp(A) is Borel since the space A is similar
to one of the examples considered in Lutzer, van Mill and Pol [5].
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