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ABSTRACT. We give an example of two locally compact countable metric spaces
X and Y which are I,-equivalent but not [;-equivalent, ie., Cp(X) and
Cp(Y) are linearly homeomorphic but Cy(X) and Cj(Y) are not linearly
homeomorphic.

0. INTRODUCTION

Let X and Y be Tychonov spaces. By C(X) (resp. C*(X)), we denote
the set of all real-valued continuous functions (resp. the set of all real-valued
bounded continuous functions) on X . We endow C(X) (resp. C*(X)) with
the topology of pointwise convergence and denote it by C,(X) (resp. C,(X)).
We define X and Y to be [,-equivalent (resp. I;-equivalent) whenever Cp(X)
and C,(Y) (resp. C;(X) and C;(Y)) are linearly homeomorphic.

In [1] Baars and de Groot obtained a complete isomorphical classification
for function spaces C,(X), where X is any locally compact zero-dimensional
separable metric space. At this moment, an isomorphical classification for the
corresponding function spaces Cj(X) is not known. From the results in this
paper it follows that such a classification must be different from the classification
for Cp(X). The main theorem in this paper states that for [;-equivalent metric
spaces X and Y we have that the scattered height of X is less than  if and
only if the scattered height of Y is less than . Together with the results
in [1], this theorem gives us an example of two I,-equivalent locally compact
countable metric spaces which are not /;-equivalent.

1. PRELIMINARIES

In this section we briefly discuss some standard terminology about derivatives
of sets and some properties of function spaces which we need in the proofs of
the results in §2.

Let X be a topological space, and let 4 C X . Recall that the derived set A4
of 4 in X is defined to be the set of all accumulation points of 4 in X . For
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every ordinal a we define X®, the ath derivative, by transfinite induction as
follows:

(a) XO=x;

(b) if '« is a successor, say a = B + 1, then X@ = (xB)d;

(¢) if a is a limit ordinal then X =, _ X® .

Note that, for every ordinal o, X(® is closed in X, and X(+) = (x()D
(obviously, (X)) is the derived set of X in X(® , whereas X(e+!) —
(X(@)4 is the derived set of X(® in X). If, moreover, B < a is an ordinal,
then X c x(@)

Let 4 be a subspace of X. A is dense in itself if 4 C A% or equivalently
A = A, This means that A contains no isolated points. A is scattered if
A contains no dense in itself subsets, i.e., every subset of 4 contains isolated
points.

By the Cantor-Bendixson Theorem (cf. [8]), for any scattered space X , there
is an ordinal a such that X(® = @ . The scattered height k(X) of a scattered
space X is defined to be the smallest ordinal « such that X® = & . It is easy
to see that if X is the ordinal space w®+ 1, then x(X)=a+1.

For a topological space X and a subset 4 of X, C;, 4(X) denotes the
subspace of C;(X) of all functions vanishing on 4.

1.1. Proposition. Let X be a metric space, and let A be a closed subset of X.
Then Cy(X) ~ Cy 4(X) x Cyp(4).

Proof. Define p: C;(X) — C;(A4) by p(f) = fl|A. Then p is a continuous
linear function. Because X is metric and A4 is closed, there is a continuous
linear function ¢: Cy(4) — C;(X) such that, for each f € CA),¢f)a=f
(cf. [4]).

Define ¢: C3(X) — C; 4(X) x C5(4) by ¢(f) = (f = (o p)(f), p(f)).
Then ¢ is a linear homeomorphism. 0O

We denote C*(X) with the topology of uniform convergence by Ci(X).
It is well known that C}(X) is a Banach space. Similar to Cy 4(X), we de-
fine the subspace Cy 4(X) of C;(X) to be the set of all elements of C2(X)
which vanish on 4. For f € C*(X) and ¢ > 0, let B(f,¢) = {g €
C*(X): sup{|f(x) — g(x)|: x € X} < &}.

In our proofs in §2 we need the Closed Graph Theorem, which states that,
for Banach spaces E and F and a linear function ¢: E — F such that the
set {(x, #(x)): x € E} is closed in E x F, we have ¢ is continuous (cf. [6]).
We use the Closed Graph Theorem, for example, in the following way: Let X
and Y be spaces, and let ¢: C;(X) — C;(Y) be a continuous linear function.
Then ¢ considered as a function from Cj;(X) to C:(Y) is also continuous.

2. THE EXAMPLE

In this section we will prove, for [3-equivalent metric spaces X and Y, that
k(X) < w if and only if x(Y) < w. The proof of this result is a generalization
of Pelant’s proof that C;(T) and C;(Q) are not linearly homeomorphic (cf.
[7]1). Here Q denotes the space of rationals and T the space N2U {0} where
each point of N? is isolated and {({n,n+1,...} x N) U {oo}}nen is a local
open base at oo. The reader should compare this result with Theorem 2.11
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in [2], which states that, for /,-equivalent separable metric zero-dimensional
spaces X and Y, k(X) < w if and only if ¥(Y) < @ (in fact, this is even
true for metric spaces; cf. [3]). Note that this theorem implies that Cp(Q) and
C,(T) are not linearly homeomorphic.

We first need the following definition, which can be found, for example, in
[5]. A family & C C(X) is equicontinuous if, for every x € X and ¢ > 0,
there is a neighborhood U of x in X such that, for each feF and ye U,
|f(x) — f(»)| < &. The following result is well known. The proof is given for
the sake of completeness.

2.1. Proposition. If & c C:(X) is compact, then F is equicontinuous.

Proof. Let x € X and ¢ > 0. The family {B(f, ¢/3): f € #} is an open
cover of F . Since F is compact, there are fi, ..., fu € F (n € N) such
that {B(f;,¢/3): i < n} covers # . Since each f; is continuous, there is a
neighborhood U of x such that, forall y € U and for every i < n, |fi(y) —
fi(x)| < &/3. Nowlet f€F and y € U. There is i < n such that f €
B(f;, ¢/3). This implies |fi(x) — f(x)| < ¢&/3 and |fi(y) — f(y)| < &/3. Since
y € U, we now have

1f(x) = fO) < 1f(x) = fio)| + 1fi(x) = i) + 1) = f)l <& O

2.2. Theorem. Let X and Y be first countable l;-equivalent spaces. Then
k(X) <2 ifand only if k(Y) <2. :

Proof. Suppose x(X) < 2 and x(Y) > 2. Since X cannot be empty, we
have x(X) = 1, which gives that X is discrete. Since x(Y) > 2, there is
y € Y which is nonisolated. Let {U,: n € N} be a decreasing open base at
y in Y. For every n € N let f, be a Urysohn function with f,(y) =1 and
f.(Y\U,) = 0. Then f, — x,} Pointwise in RY, where x(,; denotes the
characteristic function of x. Since xg3 ¢ C,(Y), {/utn € N} is closed and
discrete in C;(Y).

Now let ¢: C;(X) — C;(Y) be a linear homeomorphism. Then by the
Closed Graph Theorem, ¢: C(X) — Cy(Y) is also a linear homeomorphism.
Since C;(X) and C;(Y) are Banach spaces, there is k € N such that for
every f € C*(X) we have |fll/k < ()l < KIfIl. Let gn = ¢ (fu)-
Then || gl < k|| fxll = k. Hence {g,: n € N} C [k, k]X . Since [k, k]* is
compact, {gn: n € N} has an accumulation point g € [k, k]¥. Since X is
discrete, [-k, k]¥ C C;(X) and so g € C;(X). However, since {fn: n € N}
is closed and discrete in C;(Y), {gn: n € N} is closed and discrete in C;(X),
which is a contradiction. O

One could think for a moment that, for each n € N and for all /;-equivalent
spaces X and Y, we have x(X) < n if and only if k(Y)<n.For n=11itis
trivially true, and for n = 2 it follows from Theorem 2.2. These are, however,
the only cases in which it is true. If we take any n € N with n > 2, we can find
a counterexample. From Theorem 2.13 in [1] it follows that the ordinal spaces
w+1 and w""'+1 are [;-equivalent. Since w?* (resp. @") is the topological
sum of infinitely many copies of @ + 1 (resp. "1 + 1), it follows that w?
and " are [;-equivalent. Note that the scattered height of w? is 2 and the
scattered height of " is n.
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Surprisingly enough the ordinal w gives us again a positive answer (cf. The-
orem 2.5). Before we prove this result we need two fairly simple lemmas. One
deals with function spaces, and the other one deals with nets.

2.3. Lemma. Let X be a metric space with k(X) < w. There is a metric space
Y such that k(Y)=x(X) and C;(X)~ C; ,(Y) where A=Y,

Proof. We prove the lemma by induction on x(X). If x(X)=1,let Y = X.
So suppose the lemma has been proved for metric spaces X with x(X) < n
(n > 1). Let X be a metric space with x(X) = n, and let B = X, Then,
by Proposition 1.1, C3(X) ~ C;(B) x C; p(X). Since k(B) = n — 1, there
is by the inductive hypothesis a metric space Z such that x(Z) = k(B) and
Cy(B) ~ Cy (Z) where C = Z). Then C;(X) ~ C; (Z) x C; (X) =
G, puc(Z @ X) (the symbol “ & ” stands for topologicai sum). Let Y =Z o X .
Then Y1) = BUC and k(Y) = k(X). This finishes the proof of the lemma. O

2.4, Lemma. Let X be a space and B an infinite set. For every b € B let
f» € RX such that, for every x € X, {b € B: fy(x) # 0} is finite. Furthermore
let ¥ = {S C B:S is finite} and define a relation < on # as follows: If
S1,8 € then S <8, if S| CS,. Forevery S € define fs=3,c5/p-
Then {fs: S €} isanetin RY and limses fs =3 4cp fo-

Proof. 1t is easily seen that . is directed by <. Since every S € . is finite,
fs € RX; hence, {fs: S €.} isanetin RY.

Now let ¢ > 0 and P C X be finite. For every p € P let S, = {b €
B: fy(p) # 0} and Sp = U,cpSp- Then Sp € . Let § > Sp, p € P, and

S =3 4epfp- Then

=0<e.

Y S0 =Y (o)

beS, bES,

1/ (0) = fs()l = |>_ fol2) = D folp)| =

beB bes

Hence, limge s fs=f. O
We now come to the result announced in the introduction of this section.

2.5. Theorem. Let X and Y be l;-equivalent metric spaces. Then k(X) < @
ifand only if k(Y) < .

Proof. Suppose x(X) < w and x(Y) > w. By Lemma 2.3 we may assume
Cy 4(X) ~ C;(Y) where 4 = X, Let ¢: C; ,(X) — C;(Y) be a linear
homeomorphism. Then, by the Closed Graph Theorem ¢: C; 4(X) - C(Y)
is also a linear homeomorphism. So there is k € N such that for every f €
Cy 4(X) we have |fll/k < [[¢(/)Il < kI|f]l. Let B = X\A4. Since every
element of B is an isolated point in X, we have for each x € B that f, =
Xx} € C; 4(X), where x(} is the characteristic function of x. Notice that,
for each f € G, 4(X), S =Y epaxfx»where ay = f(x). For each x € B,

let 8x = ¢(f;c) .
Forevery yeY,let C, = {x € B: gx(y) # 0}.

Claim 1. C, is finite for every y € Y.
Suppose C, is infinite for some y € Y. Find an infinite subset {x,: n € N}
in C,. For n € N, define 4,: X - R by h, =[1/8x,(¥)]* fx,. Then h, €
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C; 4(X) and hy, >0 (n—o0) in C; _4(X). Now
d(hn)(¥) = [1/8x, )]+ ¢(f,)¥) = [1/8x, (V)] 8x,(¥) = 1.

Hence, ¢(hn) » 0 (n— o0) in C;(Y), which gives a contradiction, so Claim
1 is proved.

Now define b: Y — R by b(y) = > ,cplex(¥)|. Notice that, for every
YEY, b(y)=Ysec, |gx(¥)|; hence, b is well defined.

Claim 2. ||b|| < 2k.

For ye Y, let Cf = {x € B: gx(y) >0} and C; = {x € B: gx(y) < 0}.
Notice that || Exec; gxll = ||¢(erc+ Foll<k-| Exec+ x|l = k. Similarly we
can prove that || szCy_ gl <k. So

<2k,

> &)

x€C,”

Z & ()| +

x€Cy

Z 8x(v) — Z &) <

xeCy x€Cy

which proves the claim.
Now for P C B finite let #p = {3 cpoxfi:|ax| <k for x € P}. Notice

that #p = [[,cpl—k, k] % [Tex\p{0} -

Claim 3. Forevery y € Y, P C B finite, and ¢ > 0, there is a neighborhood
U(y, P,e) of y in Y such that, for each z € U(y, P, ¢) and f € ¢(A#p),

If() - f(z) <e.

Notice that .#p is compact in C; ,(X). Since P is finite, it easily follows
that .#p is compact in Cj A( ) and so ¢(#p) is compact in C;(Y). Hence,
by Proposition 2.1, ¢(#p) is equicontinuous, from which the claim follows.

Now find N € N such that 3(N +1)/4k > 2k .

Claim 4. There are yg,...,yn€Y, Py, ..., Py C B finite, and Uy, ..., Uy
neighborhoods of yg, ..., yn respectively, such that
(1) forevery i< N:C),, CPF;,
( ) PyC P C---C Py,
(3) U>U; D---D Uy,
(4) forevery i< N:U;cU(yi, P;, 1/4), and
(5) forevery i < N:y; € YN~
We will prove this claim by induction. Since x(Y) > w, we can find
yo€ Y™, Let Py = Cy, and Uy = U(yo, Po, 1/4). Suppose o, ... ,y,,,
Py,...,P,,and Uy, ..., U, arefound for 0 < n < N. Since y, € Y"=" and
N—-n> 1, wecan find y,,+1 € U\{yi: i < n}nYW=0+D) | Let P,y = P,UG, .,
and
n+1 UnﬂU(yn+l, n+1> 411)
This completes the inductive construction and hence the proof of the claim.
Now let g: Y — [—1, 1] be a continuous function such that g(y;) = (- 1)!

for 0<i< N. Then ||g|| =1,s0 ||¢~'(g)|| < k; hence, ¢71(g) = X cpaxfs
with |ax| < k. Notice that 3, p ayfc € Mp, forevery 0<i<N.

Claim5. g=73 cpax8x-
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Indeed, let ¥ = {S c B: S is finite}, and for every S € & let fs
ers axfy. By Lemma 2.4 ¢7!(g) = limgesy fs and > cpax8&x
limge o Y c5@x&x - SO

8= 607 (8) = ¢ (lim 5) = lim 5) = imy s = T acsi

X€EB

and the claim is proved.
Let 0<i< N. Since Cy, C P; (Claim 4(1)), we have, by Claim 5,

1= Y angx (i) = D axge(yi).
x€EB x€EP;

By Claim 4(3) and (4), yv € U(y;, P;, 1/4). Furthermore Yy p ax8x €
¢(#p,) , s0, by Claim 3,

Z ax&x(Yn) — Z axg&x (il < %

X€EP; XEP;

If i >0, we have by Claim 4(2)

3 axgvn)| = | axsxvn) = D axgx(n)
xX€EP\Pi_, XEP; X€P;i—
= |2 axgyw) — (1 + (1)1 = Y axgx(yn) £2
X€EP; x€P;_,
>2- (> axge(yn) = Y axgx(yi)
XEP; X€EP;
3
| Y aaln)— D axgx(vi-)| > e
X€EP;_; X€P;_
If i=0 and P_; = @, then
1 3
3 argvw)| =D axgxlyw) = D ax&po) + 1) > 1-7 =7
XEP\P;_, XEPy xXEP
So by Claim 4(2)
al 3
Z |axgx(yN)! > Z z axgx(Yn)| > Z(N+ 1);
X€EPy i=0 XEP,'\P,'_l

hence,

Qy 3
Talow)| > g (N +1) 2 2k,

byn) =Y lexom = Y

XEPy Xx€Py

which gives a contradiction with Claim 2. O
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2.6. Example. There are /,-equivalent countable metric locally compact spaces
which are not /;-equivalent.

Proof. Let X and Y be the ordinal spaces @w? and w® respectively. Then
k(X)=2 and k(Y) = w, so, by Theorem 2.5, X and Y are not /;-equivalent
spaces. However, by Theorems 2.13 and 3.14 in [1], X and Y are /,-equiva-
lent. O

In the proof of Theorem 2.5 the Closed Graph Theorem is applied to get
a linear homeomorphism between the Banach spaces Cj; ,(X) and Ci(Y).
However, the proof also depends essentially on properties of the topology of
pointwise convergence, so it does not give us a theorem for linear homeomor-
phisms between Cj(X) and C;(Y). Consequently we cannot conclude that
C!(w?) and C}(w®) are not linearly homeomorphic. It remains an open ques-
tion whether C}(w?) and C}(w®) are linearly homeomorphic or not.

Recall that a prime component is an ordinal number of the form w* for any
ordinal x. Motivated by Theorems 2.2 and 2.5 and the remark after Theorem
2.2 we state the following:

2.7. Conjecture. Let X and Y be l;-equivalent metric spaces, and let o be a
prime component. Then

(a) k(X)<a ifandonly if kK(Y) < a, and

(b) k(X)<a+1 ifandonly if k(Y)<a+1.
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