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ABSTRACT. Given any discrete semigroup (S, +), there is an extension of the
operation to BS making (B8S, +) a left topological semigroup. The aim of
this paper is, among other things, to prove that there exist strictly increasing
chains of principle left ideals and of principal closed ideals in (SZ, +) .

It is a question posed to M. E. Rudin several years ago by some analysts as to
whether every point of SZ\Z = Z* is a member of some maximal orbit closure
of the shift function. Here BZ is the Cech-Stone compactification of the group
Z of integers and the “shift function” ¢ refers both to the function from Z to
Z defined by a(n) = n+ 1 and to its continuous extension from SZ to BZ.
The orbit closure of a point p of Z* is cl{e"(p): n € Z}.

A simpler question asks whether there can be any infinite strictly increasing
chain of orbit closures. Of course a negative answer to the latter question implies
an affirmative question to the former.

It is well known that, given any discrete semigroup (S, +), there is an
extension of the operation to BS making (S, +) a left topological semi-
group, with S contained in its topological center. That is to say, for each
p € BS the function 4,: S — BS defined by A,(9) = p + g is continu-
ous, while for s € S the function p;: 85 — BS defined by ps(p) =p+s
is continuous. (See, for example, [4].) In particular, in BZ we have for each
n € Z that ¢" and p, are continuous functions agreeing on the dense set
Z so that for all p € BZ and all n € Z, p+n = a"(p). Consequently
c{o"(p): n € Z} = cl{p + n: n € Z} = clAp[Z] = Ap[c1Z] = A,[BZ] = p + BZ.
That is, the orbit closure of p is the principal right ideal generated by p.
~ Consequently, the question we are addressing is: is there a strictly increasing

chain of principal right ideals in BZ? (Observe thatif p € Z then p+pZ = BZ,
so asking for an increasing chain in SZ or in Z* amounts to the same thing.)

Once the question is phrased in this fashion it immediately suggest two others:
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is there a strictly increasing chain of principal left ideals in BZ? Also, by [3]
given any p one has cl(fZ+ p) is a two-sided ideal which we call the principal
closed ideal generated by p. One can then ask: is there a strictly increasing
chain of principal closed ideals in BZ? R

In §1 we show that there is a sequence (4,)$2, of closed Gs subsets of Z*
satisfying

(1) for each n € w, AA,,H +/f,,+1 C fT,,.
(2) for each new and each p € 4,, A,y Ncl(BZ +p) = @ (and in
particular 4,1 N (p + BZ) = 2).

(Recall that w={0,1,2,...}.)

The motivation for this construction comes from the proof [2, Corollary 2.10]
that any compact Hausdorff left topological semigroup has an idempotent. This
proof begins with any compact nonempty set 4 with 4 + 4 C A and, in
effect, shrinks A4 to a point x with {x} + {x} C {x}, i.e, with x +x = x.
In a converse fashion it has recently been shown [1] that given any countable
subsemigroup 7T of BZ, each point ¢t € T can be expanded to a compact
Gs G(t) with G(¢) + G(s) C G(t + ) for all ¢, s € T. Taken together these
facts indicate that one might expect to be able to treat compact subsets of SZ
as “big points.” If we could then collapse each ff,, to a point p, we would
get for each n that p,.1 + pny1 = pn (so that p, € pp,y1 + BZ and hence
Dn + BZ C ppyy + BZ). The second part of the construction would then show
that p,,1 ¢ p, + BZ so that p, + BZ is properly contained in p,. + BZ.

Of course one does not need this much; it is enough to get points p, in 4,
and ¢, € BZ with forall n € @, ppy1+4gni1 = Pn. We conclude §1 by showing
tllat we can accomplish this in reverse order. That is, we can get p, and ¢, in
A, with g1 +DPny1 =pn forall n € . As a consequence one obtains strictly
increasing chains of principal left ideals and of principal closed ideals.

The construction of the sequences (p,)$2, and (g,)32, is based solely on the
topological-algebraic properties of the sets /f,, . We show in §2 that one cannot
hope to appeal only to such properties to obtain a strictly increasing chain of
principal right ideals in SZ.

We take the points of SZ to be the ultrafilters on Z, the principal ultrafilters
being identified with the points of Z. Given p and ¢ in BZ the operation +
is characterized by

A€ep+q ifandonlyif {n€Z:A-nep}egq.

The topology of BZ is characterized by the fact that for 4 C Z, p € clA4 if
andonlyif A€p.

Jan van Mill and Petr Simon are grateful to K. H. Hoffmann for finding an
error in an earlier version of this manuscript.

1. INCREASING CHAINS OF PRINCIPAL LEFT IDEALS
AND PRINCIPAL CLOSED IDEALS

For AC Z, by @,.,4 we mean the set of all sequences in 4 with only
finitely many nonzero terms.
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1.1. Definition. (a) For m, n € w,

0,',"={Eie@w: %:2% and min{iew:a,-;éO}zm}.

n<w i=0

(b) (¢n)n<w is some sequence in w\{0] such that for all 7 € @ ,

n
én+1 > Z 2i+1 * éi-

i=0
(c)For n, mew,

A,’ln = {Za,{i: ac 0'111+m} .

i=0
Observe that each A" is infinite and that A C A™ if m' <m.

; +1
1.2. Lemma. For each m and n in o, Ay + AR C At

Proof. Let x, y € A, and pick 4, b e 0;‘1{"“ with x = 7% a;& and
y = 320bi&i. Foreach i < w let ¢; = a; + b;. Then x +y = Y2l
so it suffices to show that ¢ € 67+m+!  Certainly min{i € w: ¢; # 0} =
min({i € w:a; # 0} U{i € w: b; # 0}) > n+m+ 1. Further ¥°) ¢;/2" =
Ym0 @i/2 + X720 bi/28 = 1/2%1 4 127+ = 1/27 as required. O

1.3. Lemma. Let @, b € @D,<oZ such that for each i < o, |a;| < 2 and
,b,l <2, If Zfioaiéi = 21020 bi&;, then a=0»b.
Proof. Suppose @ # b. Since @ and b have each only finitely many nonzero

values we may pick the largest n such that a, # b,. Then Yioanén =
Siobnén. Without loss of generality, we have a, > b,. Then &, <

(@n = b)én = Y17 (b — ai)&; < "L 21+1E < &, a contradiction. O

1.4. Definition. For each n < w, A4, = Npeo C1AT .
We now show that the sets 4, are as promised.

1.5. Theorem. For each n < w,
(a) ,:1\,,“ + /f,,H gAff,, , and R
(b) Foreach p € Ay, cl(BZ+p)NAp =2.

Proof. (a) Let p, q € /f,,ﬂ. To see that p +q € ff,, , let m € @ be given.
We must show 42 € p + q. But by Lemma 1.2 we have immediately that
A7y € {x € Z: A7*'—x € p} and hence that A7**! € p+¢. Since A™+! C A"
this suffices. R

(b) Suppose we have some r € A,.; Ncl(BZ+p). Then A% er so cldl,
is a neighborhood of r so (clAgH) N(BZ + p) # @. Pick q € BZ with
g+pecldl ,ie, A% €q+p. Let B={x € Z: A%, —x € q}. Then
B € p sopick x € BN AY). Pick @ € 6" with x = Sooaiéi and let m =
1 + max{i € w: a; # 0}. Since A™ € p, pick y € BN A?" and pick be gn+m
with y =377 b;&;. Since x and y arein B, pick z € (A%, —x)N(49,,-»).

Since z+x and z+y arein A2+1 ,pick & and d € 0;‘111 with z+x = 372 cié;
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and z +y = Y ;2,di&;. Note that for each i each of a;, b;, ¢; and d; is
in {0,1,...,2}. Now y —x = Y2,(b;i — ai)éi = Yiop(di — ¢i)&i, so by
Lemma 1.3 we have for each i that b; —a; = d; — ¢;. Now b e or+tm so
bi =0 for i < n+m. Thus 1/2" = Y20 b;/2" = ¥ 72,,,, bi/2". Since
a; =0 for i > m we have foreach i > n+m that d;—c¢; = b, —a; = b;
and hence d; = b; + ¢;. But then 1/2™! = Y22 d;/2" > Y2, di/2" =
S wem(bi+ci)/20 > Y2, L, bi/2) =1/2", a contradiction. O

1.6. Corollary. For each n € w and each p € AA,, , (p+ BZ)Nn /T,,H =g.
Proof. Wehave p+ fZ=cl(p+Z)=cl(Z+p)Ccl(fZ+p). O

We are now prepared to deduce from the topological and algebraic facts
contained in Theorem 1.5 that there are strictly increasing chains of principal
left ideals and of principal closed ideals. We utilize the notion of the limit
along an ultrafilter. Recall that if & is an ultrafilter on a set I and (X;);cs is an
I-sequence in a topological space the statement & —lim;c; x; = y means that for
every neighborhood U of y, {i € I: x; € U} € £. Recall also (or do the easy
exercise which is the proof) that if f is a continuous function and & —lim;ey X;
exists, then f(& — lim;es x;) = & — lim;er f(x;) -

1.7. Theorem. Let (S, +) be a compact Hausdorff lefi-topological semigroup
and for each n € w let A, be a nonempty closed subset of S with Apy1+Ayy1 C
Ay . Given any sequence (q,)2, With each q, € A, there is a sequence ()52,
with each p, € A, such that for each n € ®, qui1 + Dnt1 =Dn .

Proof. Choose any nonprincipal ultrafilter & on w. For n and m € w with
n>m let r, , = qn,. By downward induction for n < m let ry m = gu41 +
"n+1,m - For each n € w let p, =& —limyee n,m . Observe that since for each
n and m in @ wehave r, , € A, we have p, € 4, . Note also that for n € w,
{m € W: Iy, m = Gns1 + Tn+1,m} is cofinite and is hence in £. Thus for n € w
we h_ave dnt+1 + Pyl = Aq,m(é — limeq rn+1,m) =¢ - limmew'lq,,ﬂ(rnﬂ,m) =
¢ —limpew(gnst + Tnst,m) =Pn. O

1.8. Corollary. There exist strictly increasing chains of principal left ideals and
of principal closed ideals in BZ.

Proof. Pick by Theorems 1.5(a) and 1.7 sequences (p)52, and (g»)5>, with
each p, and g, in 4, and each ¢,,1+Pn+1 = Dn. Then foreach n, fZ+p, C
BZ+ pn.1 and hence cl(BZ+ p,) C cl(Z+ pu+1) - By Theorem 1.5(b) we have
DPn+1 € (ﬂZ +pn+1)\C1(:BZ +pn) . 0

2. COMPACT SUBSETS OF LEFT TOPOLOGICAL SEMIGROUPS
NEED NOT BE JUST BIG POINTS

We show here that Theorem 1.5 and the fact that BZ is a compact left
topological semigroup are not sufficient to conclude that there exists a strictly
increasing chain of principal rigkt ideals (i.e., orbit closures) in BZ. Specifi-
cally, we produce a compact left topological semigroup (5, +) and a sequence
(An)22, of compact subsets of S satisfying

(1) foreach n€ w, Apy1 + Aps1 C A4y
(2) foreach n€ w andeach pe 4,, (p+S)NA4,.,1 =2 and cl(S+p)N
Ay =9;and
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(3) there does not exist a sequence (p,)S2, with each p, € 4, and each
Pn € Pn+1 + S.
We begin by defining an operation x on the finite nonempty subsets of Z.

2.1. Definition. (a) & ={F:FCZ,F # @, and F is finite}.

(b) Define ¢9: F - R by @(F)=3,p27".

(c) For F, GEF , FxG =9 (¢(F)+¢(G)).

An example will make the operation clear. Consider F = {-4, -2, 1, 4}
and G = {-4, -3, 0, 1, 3}. Write numbers in binary labelling the columns in
the reverse of the usual order and add:

-5 -4 -3 -2 -1 0 1 2 4

F 1 0 1 0 1 0 0 1

G 1 1 0 1 1 0 1 O
FxG 1 0 1 1 1 0 0 0 1 1

We read off from the addition that F x G = {-5, -3, -2, -1, 3,4}. Itis
then clear (since we are copying ordinary addition) that  is associative and
cancellative. Note also that always min(F * G) < min F .

2.2. Definition. (1) T={(m,F): mewand F € F}.
(2) Given (m, F) and (s,G) in T,

(m, F)+ (s, G) = (m+min F —min(F G), F xG).

Since always min(F * G) < minF we have for (m, F) and (s,G) in T
that the sum (m, F) + (s, G) is again in T'. It is an easy exercise to verify
that + is an associative operation on 7 .

We topologize T as follows. Given F € ¥ , we make {(m, F): m € w} an
open and closed copy of the one point compactification of the positive integers
with (0, F) as its point at infinity. That is, if m > 0, {(m, F)}) is clopen
and {{(0, F)}uU{(m, F): m > n}: n € w} is a basic neighborhood system
for (0, F). Observe that as a topological space T is homeomorphic to the
topological sum of countably many convergent sequences. The following lemma
is therefore a triviality.

2.3. Lemma. With the topology described above T is a locally compact Haus-
dorff space. Given B C T, B is compact if and only if B is closed and there is
a finite # CF with BC{(m,F):mew and FeZ}. O

2.4. Definition. S = TU{oo} where topologically S is the one point compact-
ification of T and algebraically oo = co + 00 = (m, F)+ oo =00+ (m, F) for
any (m,F)eT.

2.5. Lemma. S is a compact Hausdorff left topological semigroup.

Proof. One immediately concludes that .S is compact and Hausdorff. Further
Ao is constant. Let (m, F) € T. Given (k, G) € T we have {(n, G): n € w}
is a neighborhood of (k, G) on which A, r) is constantly equal to (m +
min F —min(F % G), F x G) . Finally we show that A(,, r) is continuous at co.
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Let U be an open neighborhood of oo and pick by Lemma 2.3 finite # C %
with S\UC{(n,H):n€ewand HeX}. Let T ={GeF:FxGeX}.
Since = is cancellative, & is finite (possibly empty). Let V' = S\{(k, G): G €
Z}. Then V is a neighborhood of oo and Ay, ) [VICU. O

2.6. Definition. For n € w, let 4, = {(m, {n}): m € w}.

Unlike the situation in BZ we need a separate verification of conclusions
2(a) and 2(b) in the following theorem. The reason is that while the center of
BZ (namely, Z) is dense, the center of S is {oo}.

2.7. Theorem. The sequence (A,)2, in the compact left topological semigroup
(S, +) satisfies
(1) For each n € w, A, is compact and Ap.1 + Apy1 C Ay,
(2) Foreach ne€ w and each p € A,,
(a) p+S)NA,.1 =9 and
(b) cI(S+p)NA,.1=2.
(3) There is no sequence (p,)2, with each p, € A, and each p, € pp41+S.

Proof. For (1) we have immediately that each A, is compact. Since {n + 1} %
{n+1} ={n} wehave 4,1 + Apy1 C 4,.

For (2) let p = (m, {n}). Then p + co = co while for (k, F) € T we have
(m,{n})+(k,F)=(m+n—-—min({n}*xF), {n}«F) and min({n}«F) < n
so 2(a) holds.

For 2(b) since A,4; is openin S it suffices to show that (S+p)NA,.1 =2.
Again co+p =00 and (k, F)+(m, {n}) = (k+min F —min(F x{n}), F x{n))
and min(F * {n}) < n.

To verify (3) suppose we have a sequence (p,)$>, with each p, € 4, and
each p, € pp+1+S. Foreach n € w pick g,y €S with p, = ppy1+4ns1 . For
each n pick m, €  with p, = (m,, {n}) and pick r,;; € w and F,4| € &
with gny1 = (Fny1, Fuy1) . Since pp = puy1+dny1 wWe have {n+1}+ Fyyy = {n}
and hence F,,; = {n+ 1}. But now for each n we have

(mn, {n}) = (Mpy1, {n+ 1} + (rps1, {n+ 1}) = (Mp1 + (n+ 1) — n, {n})
so that m,,; = m, — 1. But one cannot have an infinite decreasing sequence
inw. O

Observe that by the left-right switch of Theorem 1.7 we have that .S is not
a right topological semigroup. (This is also easy to verify directly.)
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