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HYPERSPACES OF LOCALLY CONNECTED
CONTINUA OF EUCLIDEAN SPACES

HELMA GLADDINES! AND JAN van MILL?

ABSTRACT. If X is a space then L(X) denotes the
subspace of C(X) consisting of all Peano (sub)continua.
We announce here that for n > 3 the space L(R") is
topologically homeomorphic to B*°, where B denotes the
pseudo-boundary of the Hilbert cube Q.

1. INTRODUCTION

For a space X, C'(X) denote the hyperspace of all nonempty
subcontinua of X. It is known that for a Peano continuum X
without free arcs, C(X) ~ @, where @ denotes the Hilbert
cube (Curtis and Schori [5]). L(X) denotes the subspace of
C(X) consisting of all nonempty locally connected continua.

The spaces L(X) were first studied by Kuratowski in [10].
He proved that L(X) is an F,s-subset of C'(X), i.e., a countable
intersection of o-compact subsets. A little later, Mazurkiewicz
[11] proved that for n > 3, L(R™) belongs to the Borel class
F,;\Gs,. Tt is easy to see that L(R) is both o-compact and
topologically complete.

Our main result is that for n > 3 the spaces L(R") are
homeomorphic to the countable infinite product of copies of the
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pseudo-boundary B of ). Our methods do not apply for the
case n = 2. We use the theory of absorbing sets in the Hilbert
cube and some ideas from Dijkstra, van Mill and Mogilski [7].
In fact, we prove that for n > 3, L([—1,1]") is an F,s-absorber
in C([—1,1]™). Our main result then follows easily.

2. TERMINOLOGY

As usual I denotes the interval [0,1] and ) the Hilbert cube
I12°,[—1,1]; with metric d(z,y) = 222, 270V |z; — ;. In ad-
dition, s is the pseudo-interior of @Q, ie., s = {x € Q; (Vi €
N)(|z;| < 1)}. The complement B of s in @ is called the pseudo-
boundary of (). Any space that is homeomorphic to () is called
a Hilbert cube.

Let A be a closed subset of a space X. We say that A is a Z-
set provided that every map f : ¢ — X can be approximated
arbitrarily closely by a map g : @ — X\ A. A countable union
of Z-sets is called a 0Z-set. A Z-embedding is an embedding
the range of which is a Z-set.

Let M be a class of spaces that is topological and closed
hereditary.

2.1. Definition. Let X be a Hilbert cube. A subset A C
X is called strongly M-universal in X if for every M € M
with M C @, every embedding f :  — X that restricts
to a Z-embedding on some compact subset K of @), can be
approximated arbitrarily closely by a Z-embedding g : Q — X
such that g | K = f | K while moreover g '[A\K = M\K.

2.2. Definition. Let X be a Hilbert cube. A subset A C X
is called an M-absorber in X if:

(1) A e M;

(2) there is a 0Z-set S C X with A C S

(3) A is strongly M-universal in X.

2.3 Theorem ( [13,7] ). Let X be a Hilbert cube and let A
and B be a M-absorbers for X. Then there is a homeomor-
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phism h : X — X with h[A] = B. Moreover, h can be chosen
arbitrarily close to the identity.

Absorbers for the class F}, for all o-compact spaces were first
constructed by Anderson and Bessaga and Pelczynski. A basic
example of such an absorber in ) is B. For details, see [2] and
[12, Chapter 6]. The space B* in Q> is an absorber for the
Borel class Fj5. This was shown in Bestvina and Mogilski [3];
see also [7].

2.4. Corollary. Let X be a Hilbert cube and let A be an
absorber in X for the Borel class F,5. Then there is a home-
omorphism of pairs (Q*°, B*) ~ (X, A). In particular, A is
homeomorphism to B*.

The space B> has been studied intensively in infinite

-dimensional topology during the last years. For more infor-
mation, see e.g. [3,4,8,7,6,1].

3. RESuULTS

For a continuum X and n € N define

B(X)" ={C € C(X) : C can be covered by at most m
subcontinua of diameter < . diam(C)}.

A routine verification shows that each B(X)!" is compact,
and that

rx) =N U sy

We show that for n > 2, L(R") belongs to the Borel class
F,;\Gs,, generalizing the result of Mazurkiewicz mentioned
in the introduction. Let ¢y = {z € @ : lim, ooz, = 0}. It
follows from Dijkstra, van Mill and Mogilski [7] that ¢, is an
F,s-absorber in (), and hence that it belongs to the Borel class
F,5\Gs,. For every x € @ define S(z) C [-1,1]* by

[0, 2] (2 > 0),

() = (Ox(-L 1D, Uxefopu U 2}
n=l [:lzn,()] (xn, <0).
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It is clear that the function S : @ — C([-1,1]*) C C(R?)
defined by = — S(z) is an embedding. Moreover, S(z) is
locally connected if and only if z € ¢;. As a consequence,

SIQI N L([-1,1]%) = Slad],

and so L([—1,1]?) belongs to the Borel class F,;\Gs,. The re-
sult for all n > 2 now follows easily because for these
n, L([—1,1]") contains a closed copy of L([—1,1]?).

3.1 Theorem. If n > 3 then L([—1, 1]") is contained in a 0 Z-
set in C([—1,1]").

The strategy of the proof is roughly speaking the following.
First we push C([—1,1]") by a small movement into C'(I') for a
certain finite connected graph I' C [—1,1]". Then we carefully
“blow up” each subcontinuum of I' to a close subcontinuum of
[—1,1]" that has more or less the following shape:

FIGURE 1

We next consider the collection

B={C € C([-1,1]") : C can be covered by finitely
many subcontinua of diameter < 5 . diam(C)}

and observe that L([—1,1]") C B and that B is o-compact. We
then prove that B is a 0Z-set by observing that continua C
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of the type as shown in Figure 1 cannot be covered by finitely
many subcontinua of diameter < -diam(C).

3.2 Theorem. If n > 2 then L([—1,1]") is strongly F,s-
universal in C'([—1,1]").

The strategy of the proof is roughly speaking the following.
First we approzimate a continuum C' C [—1,1]" arbitrarily
closely by a finite set F'. Then we add straight-line intervals
to F' to make it connected. Moreover, to each point of F' we
add small sets of the form that were used in the proof that
L([—1,1]?) belongs to the Borel class F,;\Gs,. These sets are
needed to make sure that some but not all of the approzima-
tions that we construct are locally connected. Then we add
to each point of F' a half-closed ball. This ball is added for
technical reasons: it allows us later to establish rather easily
that our approzimation is an embedding.

So we arrive at the conclusion that for n > 3, L([—1, 1]") is
an F,s-absorber in C'([—1,1]"). Fix n > 3. It is clear that {A €
C([-1,1]") : Ana([—1,1]") # 0} is a Z-set in C([—1,1]").
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Since an F s-absorber in () minus a Z-set in @ is an F4-
absorber (Baars, Gladdines and van Mill [1, Theorem 9.3]), it
follows that the set of all Peano continua in [—1, 1|” that miss
the boundary also forms an F,s-sbsorber in C'([—1,1]™). So an
application of Corollary 2.4 now yields our main result.

3.3. Theorem. If n > 3 then L(R") is homeomorphic to B*.

For details, see Gladdines and van Mill [9].
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