HYPERSPACES OF LOCALLY CONNECTED CONTINUA OF EUCLIDEAN SPACES

HELMA GLADDINES¹ AND JAN van MILL²

ABSTRACT. If X is a space then L(X) denotes the subspace of C(X) consisting of all Peano (sub)continua. We announce here that for $n \geq 3$ the space $L(\mathbb{R}^n)$ is topologically homeomorphic to B^{∞} , where B denotes the pseudo-boundary of the Hilbert cube Q.

1. Introduction

For a space X, C(X) denote the hyperspace of all nonempty subcontinua of X. It is known that for a Peano continuum Xwithout free arcs, $C(X) \approx Q$, where Q denotes the Hilbert cube (Curtis and Schori [5]). L(X) denotes the subspace of C(X) consisting of all nonempty locally connected continua.

The spaces L(X) were first studied by Kuratowski in [10]. He proved that L(X) is an $F_{\sigma\delta}$ -subset of C(X), i.e., a countable intersection of σ -compact subsets. A little later, Mazurkiewicz [11] proved that for $n \geq 3$, $L(\mathbb{R}^n)$ belongs to the Borel class $F_{\sigma\delta}\backslash G_{\delta\sigma}$. It is easy to see that $L(\mathbb{R})$ is both σ -compact and topologically complete.

Our main result is that for $n \geq 3$ the spaces $L(\mathbb{R}^n)$ are homeomorphic to the countable infinite product of copies of the

¹The author is pleased to thank the Department of Mathematics of Wesleyan University for generous hospitality during the spring semester of 1992.

²The author is pleased to thank the Department of Mathematics of Wesleyan University for generous hospitality and support during the spring semester of 1992..

pseudo-boundary B of Q. Our methods do not apply for the case n=2. We use the theory of absorbing sets in the Hilbert cube and some ideas from Dijkstra, van Mill and Mogilski [7]. In fact, we prove that for $n \geq 3$, $L([-1,1]^n)$ is an $F_{\sigma\delta}$ -absorber in $C([-1,1]^n)$. Our main result then follows easily.

2. Terminology

As usual I denotes the interval [0,1] and Q the Hilbert cube $\prod_{i=1}^{\infty} [-1,1]_i$ with metric $d(x,y) = \sum_{i=1}^{\infty} 2^{-(i+1)} |x_i - y_i|$. In addition, s is the pseudo-interior of Q, i.e., $s = \{x \in Q; (\forall i \in \mathbb{N})(|x_i| < 1)\}$. The complement B of s in Q is called the pseudo-boundary of Q. Any space that is homeomorphic to Q is called a Hilbert cube.

Let A be a closed subset of a space X. We say that A is a Z-set provided that every map $f:Q\to X$ can be approximated arbitrarily closely by a map $g:Q\to X\backslash A$. A countable union of Z-sets is called a σZ -set. A Z-embedding is an embedding the range of which is a Z-set.

Let \mathcal{M} be a class of spaces that is topological and closed hereditary.

- **2.1. Definition.** Let X be a Hilbert cube. A subset $A \subseteq X$ is called *strongly* \mathcal{M} -universal in X if for every $M \in \mathcal{M}$ with $M \subseteq Q$, every embedding $f: Q \to X$ that restricts to a Z-embedding on some compact subset K of Q, can be approximated arbitrarily closely by a Z-embedding $g: Q \to X$ such that $g \mid K = f \mid K$ while moreover $g^{-1}[A] \setminus K = M \setminus K$.
- **2.2. Definition.** Let X be a Hilbert cube. A subset $A \subseteq X$ is called an \mathcal{M} -absorber in X if:
 - (1) $A \in \mathcal{M}$;
 - (2) there is a σZ -set $S \subseteq X$ with $A \subseteq S$;
 - (3) A is strongly \mathcal{M} -universal in X.
- **2.3 Theorem** ([13,7]). Let X be a Hilbert cube and let A and B be a \mathcal{M} -absorbers for X. Then there is a homeomor-

phism $h: X \to X$ with h[A] = B. Moreover, h can be chosen arbitrarily close to the identity.

Absorbers for the class F_{σ} for all σ -compact spaces were first constructed by Anderson and Bessaga and Pelczyński. A basic example of such an absorber in Q is B. For details, see [2] and [12, Chapter 6]. The space B^{∞} in Q^{∞} is an absorber for the Borel class $F_{\sigma\delta}$. This was shown in Bestvina and Mogilski [3]; see also [7].

2.4. Corollary. Let X be a Hilbert cube and let A be an absorber in X for the Borel class $F_{\sigma\delta}$. Then there is a homeomorphism of pairs $(Q^{\infty}, B^{\infty}) \approx (X, A)$. In particular, A is homeomorphism to B^{∞} .

The space B^{∞} has been studied intensively in infinite -dimensional topology during the last years. For more information, see e.g. [3,4,8,7,6,1].

3. Results

For a continuum X and $n \in \mathbb{N}$ define

 $\mathcal{B}(X)_n^m = \{C \in C(X) : C \text{ can be covered by at most } m \text{ subcontinua of diameter } \leq \frac{1}{n} \cdot \text{diam}(C)\}.$

A routine verification shows that each $\mathcal{B}(X)_n^m$ is compact, and that

$$L(X) = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \mathcal{B}(X)_n^m.$$

We show that for $n \geq 2$, $L(\mathbb{R}^n)$ belongs to the Borel class $F_{\sigma\delta}\backslash G_{\delta\sigma}$, generalizing the result of Mazurkiewicz mentioned in the introduction. Let $\hat{c}_0 = \{x \in Q : \lim_{n \to \infty} x_n = 0\}$. It follows from Dijkstra, van Mill and Mogilski [7] that \hat{c}_0 is an $F_{\sigma\delta}$ -absorber in Q, and hence that it belongs to the Borel class $F_{\sigma\delta}\backslash G_{\delta\sigma}$. For every $x \in Q$ define $S(x) \subseteq [-1,1]^2$ by

$$S(x) = (\{0\} \times [-1, 1]) \cup ([0, 1] \times \{0\}) \cup \bigcup_{n=1}^{\infty} \{\frac{1}{n}\} \times \begin{cases} [0, x_n](x_n \ge 0), \\ [x_n, 0](x_n \le 0). \end{cases}$$

It is clear that the function $S: Q \to C([-1,1]^2) \subseteq C(\mathbb{R}^2)$ defined by $x \mapsto S(x)$ is an embedding. Moreover, S(x) is locally connected if and only if $x \in \hat{c}_0$. As a consequence,

$$S[Q] \cap L([-1,1]^2) = S[\hat{c}_0],$$

and so $L([-1,1]^2)$ belongs to the Borel class $F_{\sigma\delta}\backslash G_{\delta\sigma}$. The result for all $n\geq 2$ now follows easily because for these $n, L([-1,1]^n)$ contains a closed copy of $L([-1,1]^2)$.

3.1 Theorem. If $n \ge 3$ then $L([-1,1]^n)$ is contained in a σZ -set in $C([-1,1]^n)$.

The strategy of the proof is roughly speaking the following. First we push $C([-1,1]^n)$ by a small movement into $C(\Gamma)$ for a certain finite connected graph $\Gamma \subseteq [-1,1]^n$. Then we carefully "blow up" each subcontinuum of Γ to a close subcontinuum of $[-1,1]^n$ that has more or less the following shape:

FIGURE 1

We next consider the collection

 $\mathcal{B} = \{ C \in C([-1,1]^n) : C \text{ can be covered by finitely }$ many subcontinua of diameter $\leq \frac{1}{3}$. diam $(C) \}$

and observe that $L([-1,1]^n) \subseteq \mathcal{B}$ and that \mathcal{B} is σ -compact. We then prove that \mathcal{B} is a σZ -set by observing that continua C

of the type as shown in Figure 1 cannot be covered by finitely many subcontinua of diameter $\leq \frac{1}{3} \cdot \text{diam}(C)$.

3.2 Theorem. If $n \geq 2$ then $L([-1,1]^n)$ is strongly $F_{\sigma\delta}$ -universal in $C([-1,1]^n)$.

The strategy of the proof is roughly speaking the following. First we approximate a continuum $C \subseteq [-1,1]^n$ arbitrarily closely by a finite set F. Then we add straight-line intervals to F to make it connected. Moreover, to each point of F we add small sets of the form that were used in the proof that $L([-1,1]^2)$ belongs to the Borel class $F_{\sigma\delta} \setminus G_{\delta\sigma}$. These sets are needed to make sure that some but not all of the approximations that we construct are locally connected. Then we add to each point of F a half-closed ball. This ball is added for technical reasons: it allows us later to establish rather easily that our approximation is an embedding.

So we arrive at the conclusion that for $n \geq 3$, $L([-1,1]^n)$ is an $F_{\sigma\delta}$ -absorber in $C([-1,1]^n)$. Fix $n \geq 3$. It is clear that $\{A \in C([-1,1]^n) : A \cap \partial([-1,1]^n) \neq \emptyset\}$ is a Z-set in $C([-1,1]^n)$.

Since an $F_{\sigma\delta}$ -absorber in Q minus a Z-set in Q is an $F_{\sigma\delta}$ -absorber (Baars, Gladdines and van Mill [1, Theorem 9.3]), it follows that the set of all Peano continua in $[-1,1]^n$ that miss the boundary also forms an $F_{\sigma\delta}$ -sbsorber in $C([-1,1]^n)$. So an application of Corollary 2.4 now yields our main result.

3.3. Theorem. If $n \geq 3$ then $L(\mathbb{R}^n)$ is homeomorphic to B^{∞} .

For details, see Gladdines and van Mill [9].

References

- [1] J. Baars, H. Gladdines, and J. van Mill, Absorbing systems in infinite-dimensional manifolds, Top. Appl., **50** (1993), 147-182.
- [2] C. Bessaga and A. Pelczyński, Selected topics in infinite-dimensional topology, PWN, Warszawa. 1975.
- [3] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J., 33 (1986), 291-313.
- [4] R. Cauty, L'espace des fonctions continues d'un espace métrique dénombrable, Proc. Amer. Math. Soc., 113 (1991), 493-501.
- [5] D. W. Curtis and R. M. Schori, *Hyperspaces of Peano continua are Hilbert cubes*, Fund. Math., **101** (1978) 19-38.
- [6] J.J. Dijkstra and J. Mogilski, *The topological product structure of systems of Lebesgue spaces*, Math. Annalen **290** (1991), 527-543.
- [7] J. J. Dijkstra, J. van Mill, and J. Mogilski, The space of infinite-dimensional compact spaces and other topological copies of $(\ell_f^2)^{\omega}$, Pac. J. Math., **152** (1992), 255-273.
- [8] T. Dobrowolski, W. Marciszewski, and J. Mogilski, On topological classification of function spaces $C_p(X)$ of low Borel complexity, Trans. Amer. Math, Soc., **678** (1991), 307-324.
- [9] H. Gladdines, H. van Mill, Hyperspaces of Peano continua of euclidean spaces, Fund. Math., 142 (1993), 173-188.
- [10] C. Kuratowski, Evalution de la classe borélienne ou projective d'un ensemble de points à l'aide des symbols logiques, Fund. Math., 17 (1931), 249-272.
- [11] S. Mazurkiewicz, Sur l'ensemble des continus péaniens, Fund. Math., 17 (1931), 273-274.
- [12] J. van Mill, Infinite-Dimensional Topology: prerequisites and introduction, North-Holland Publishing Company, Amsterdam, 1989.

HYPERSPACES OF LOCALLY CONNECTED CONTINUA ...349

[13] J. E. West, The ambient homeomorphy of an incomplete subspace of an infinite-dimensional Hilbert space, Pacific J. Math., **34** (1970), 257-267.

Wesleyan University Middletown CT 06459

New address: Vrije Universiteit Amsterdam Faculteit Wiskunde en Informatica de Boelelaan 1081^a
1081 HV Amsterdam
The Netherlands