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- PSEUDO-BOUNDARIES AND PSEUDO-INTERIORS

J. J. DIJKSTRA, J. vaN MILL AND J. MOGILSKI

ABSTRACT. Let n and k be fixed integers such that » > 1 and 0 < k <
n. Let B,’c‘ and s,'c’ denote the k-dimensional universal pseudo-boundary and
the k-dimensional universal pseudo-interior in R” , respectively. The aim of
this paper is to prove that B,'c' is homeomorphic to B,’c" if and only if sz is
homeomorphic to s if and only if n=m or n,m>2k +1.

1. INTRODUCTION

Let n and k be fixed integers such that # > 1 and 0 < k£ < n. In addi-
tion, let .#" denote the collection of “tame” at most k-dimensional compacta
in R" (for precise definitions, see §2). In [10], Geoghegan and Summerhill
proved that there exists an .#]-absorber. This is the “k-dimensional universal
pseudo-boundary in R”” and we denote it by B} . The k-dimensional univer-
sal pseudo-interior s; is the complement of B? , |, in R"”. The aim of this
paper is to prove that B} is homeomorphic to B} if and only if n = m or
n,m>2k+1.

2. PRELIMINARIES: PART 1

If X is a space then Z(X) denotes the group of autohomeomorphisms of
X;let 1x or 1 stand for the identity. Let Z be a collection of subsets of X .
We say that mappings f, g: Y — X are #Z-close if for each y € Y with
f(y) # g(y) thereis a U € Z containing both f(y) and g(y). An element
h € Z(X) is called a Z-push if there is an isotopy H : X x I — X that is
limited by # and that satisfies Hy = 1 and H; = & (H is limited by Z
means that every path {H;(x) : ¢t € I} is either a singleton or is contained in
some element of %). If A is a closed subset of X and % an open cover
of X\A4 then % is called a normal cover relA if for each a € 4 and each
neighbourhood V of a in X thereisa W of a such that St(W ,Z)CV,cf.
[11, 1.4.12]. If the continuous map f: X\4 — X\A4 is Z-close to 1 where Z
is normal rel4 then fU1, is also continuous. Let #» and k be fixed integers
with the properties n > 1 and 0< k <n.

2.1. Definition. .# consists of all compact subsets of S of R” that have the
following property: if P is a subpolyhedron of R” (i.e. the underlying set of
a simplicial complex in R”) with dimension at most n —k —1 and Z isa
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collection of open subsets of R” that covers SNP then there exists a % -push 4
of R” with A(S)N P = 2. In addition, a.4 is the collection of all countable
unions of elements of .Z".

Intuitively, .#" is the collection of “tame” at most k-dimensional compacta
inR”. Note that if P is an at most k-dimensional compact subpolyhedron of
R” then by a general position argument we find that P € M. Let N be
the k-dimensional No6beling space in R”, i.e. N7 is the set of all pomts in
R” for which at most k coordinates are rational. The collection A" can be
characterized as follows (see [7, Lemma 1.10]).

2.2. Lemma. 4 = {f(S): f€ Z(R") and S is a compactum in NI'}. O

2.3. Definition. An element of ./ is called an M- absorber if for every
S € A and every collection Z of open subsets of R" there is an 4 € Z(R")
that is ?/-close to 1 while moreover A(SNJ%) C 4.

Geoghegan and Summerhill have shown in [10] that there exists an M-
absorber. This is the k- dimensional universal pseudo-boundary in R" and we
denote it by B} . The k-dimensional pseudo-interior sp is the complement of
B} ,_, in R"

We now sketch the construction of B} . In essence, B} is a countable union
of Menger compacta which are constructed by the “middle third” method. De-
finefor i=0,1, 2, , Ki={(m+1/2)37": m an integer } and let & be the
group of homeomorphisms of R” that correspond to coordinate permutations.
We denote the open e-ball with respect to the max metric in R” by U, . Define
for m € N the following closed subsets of R”

Rn\U U U13 o~ m Kk+1 Rn—k—l)).
i=0 aeP
Then the set B = J,_, Am is an 4, -absorber. For details, see Geoghegan
and Summerhlll [10] and Dijkstra [7].
We have the following important property for absorbers, see [15, 16].

2.4, Lemma. If S is an element of o #", % a collection of open sets in R”
and A is an M"-absorber then there exzsts an h € Z(R"), % -close to 1, such
that

(1) (AOU?/) SunJz.
If in addition S is itself an #"-absorber then we can replace (1) by
2) h(AnU%):SnU?/. u|

Observe that this lemma states that absorbers are “unique,” i.e. if 4 and
B are .#)-absorbers then there exists an 4 € #(R"), which can be chosen
arbitrarily close to 1, such that 4(A4) = B.

We need the following thinness property.

2.5. Lemma. If S € o# and R € o #]" ,_, then there is an h € #(R"),
which can be chosen arbitrarily close to 1, such that h(S)NR=2.

Proof. If P is a compact subpolyhedron of R” and % is an open covering of
R” then a 7/-regular neighbourhood of P is a regular neighbourhood N of P
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such that for any compactum F in R”\P there is a Z-push 2 of R" with
h(F)NN =a, cf. [9, §3].

The absorbers B} and Bj , , are constructed in [10] as countable unions
of Menger compacta, standardly imbedded according to the “middle third”
method. The procedure in [10, p. 153], representing the Menger compacta
as intersections of regular neighbourhoods of polyhedra, shows that for every
Menger compactum M, in B} and open covering Z of R” there is a k-
dimensional subpolyhedron P of R” and a % -regular neighbourhood U of
P that contains M. Of course we have a similar statement for the Menger
compacta M} , | thattorm B} , .

It is now easy to show that each such M} be pushed away from each such
M} ., . Let Z be an open covering of R". Select polyhedra P and Q in R”
with % -regular neighbourhoods U and V', respectively, such that M} C U,
M}, ,CV,dimP =k and dimQ =n—k — 1. By general position there is
a Z-push o of R" with the property a(P)NQ =@ . Since V is a Z-regular
neighbourhood there is a %-push f of R” such that foa(P)NV =a. On
the other hand

Pnatopl(V)=o

yields the existence of a #-push g with UNnyoa~lof~ (V) = @. So
yoa~lof~! isa St*(%)-push of R with M Nyoa~lof~I(M" , ) =2.
Let {4;:i € N} be the collection of Menger compacta that form B, let
{Bj: j € N} be the collection of Menger compacta that form B} _, |, and
let {(in, ju): n € N} enumerate N x N. By a standard induction procedure
it is possible to construct a sequence (4,), in #(R") such that A, pushes
hp_y0--- ohy(A;,) away from B; and keeping it disjoint from it in the limit,
while moreover A = lim,_, Ay 0--- oh; is a homeomorphism of R” which is
arbitrarily close to the identity. Consequently, A(B})NB,_;_; = @ . Observing
that by Lemma 2.4 B} can absorb every element of ¢.#" and B} _, | can
absorb every element of ¢.# ,_,, we find the statement of Lemma 2.5. O

2.6. Lemma. If S is a Gs-subset of R" which contains B then R™\S €
oMy

Proof. Observe that the complement of the Nobeling space N)_, | is a count-
able union of k-dimensional simplices in R” and as such an element of ¢.4;" .
According to Lemma 2.4 we may therefore assume that BfUN! , |, = R",
which means that R"\S C N, . So with Lemma 2.2 we may conclude that
R\Se€ok', ,. D

Let X and Y be spaces and let f: X — Y be continuous. If 4 C Y
is closed then (X, f)4 is the space with underlying set (X\f~!(4))U 4 and
topology generated by the collection

{UC X\f}(4): Uisopenin X} U {f~}(U\Ad)u (UN A): U is open in Y}.
Define fy: X — (X, f)4 by

fA(x)={x for x € X\ f~1(A4),

f(x) for x € f~1(A).
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It is easily seen that the function f4: (X, f)4 — Y defined by
flofu=f
is continuous and has the following property:

For every y € A and every neighbourhood V of (f4)~!(y)
in (X, f)4 there exists a neighbourhood U of y in Y with

Mt w)cr.

We say that f4 is closed over 4. Formally, if f:.S — T is continuous and
B C T is closed then f is said to be closed over B if for every b € B and
every neighbourhood V of f~!(b) in S there exists a neighbourhood U of
b in T such that f~L(U)C V.

Now let 4 and B be closed in Y such that 4 C B. There is a unique map
f"‘ (X, f)la — (X, f)p such that fz = filo f4. Note that f is closed over

Observe that (Y x Z, )4, where n: Y x Z — Y is the projection, is the
cartesian product of ¥ and Z reduced over the closed set 4 C Y . This space
will be denoted by (Y x Z),, see [2, p. 25]. Finally observe that if X and
Y are metrizable then for every closed set A C Y also (X, f)4 is metrizable,
being homeomorphic to a subspace of (¥ x X)4.

3. PRELIMINARIES: PART 2

As usual, R* denotes the countable infinite product of copies of R. For
each k € NU {0} let .Z> denote the collection of all at most k-dimensional
compact subsets of R*. In addition, .#° is the collection of all countable
unions of elements of .Z,> .

3.1. Definition. An element 4 of 0.£ is called an .#®-absorber if for every
S € 4> and every collection % of open subsets of R” there is an 4 € Z(R*>)
that is %-close to 1 while, moreover, A(SNU%)C 4.

Dijkstra has shown in [7] that there exists an .#°-absorber. We shall denote
it by Bp°. Again, we have the following absorptlon property, see [15, 16].

3.2. Lemma. If S € a#£>°, % a collection of open subsets of R® and A is
an M >X-absorber then there exists an h € Z (R®), % -close to 1, such that

1) (AnU?/) SuanJz.
If in addition S is itself an #°-absorber then we can replace (1) by
(2) h(AnU?/):SnU?/. O

Again, observe that this lemma states that absorbers are “unique,” i.e. if 4
and B are .#®-absorbers then there exists an 2 € #(R*>), which can be
chosen arbitrarily close to 1, such that 4(A) =

We shall use the spaces B° as tools in the process of proving that B} and
B} are homeomorphic provided that n, m > 2k + 1.

The technique used in the proof of the following lemma is well known. Since
the lemma is an essential step in our argumentation, we shall give its proof in
full detail.
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3.3. Lemma. Let A be an #,*-absorber and let G be a subset of R> contain-
ing A. If h € Z(G) then h(A) is an M°-absorber.

Proof. Standard homeomorphism extension results, see [2], imply that a subset
B of R* is an .#>-absorber if B can be written as B = U;’ilBi, where
B; € #4° and B; C B;,, for every i, while moreover the following property
holds:

VZ e £ VneNVe>0:
dm > n 3 imbedding f: B, UZ — By, such that f|B, =1and d(f, 1) <e.

For details, see e.g. [6]. The tower (B;); is called a k-skeletoid. The .Z>°-
absorber constructed in [7] is in fact a k-skeletoid.

Claim. Let (B;); be a k-skeletoid, let G C R*® such that {J2, B; C G and let
h e Z(G). Then (h(B;)); is a k-skeletoid.

First observe that A(B;) € #° for every i. Now choose an arbitrary Z €
A, neN and ¢ > 0. Since (J2, B; is an .#-absorber, there exists an
a € Z(R*) such that

Yt

(1) d(a, 1)< le, alh(B,)=1 and «(Z\h(B.)C (] B:

-
Il
—_

Observe that «(Z) € G and consider A~ 'a(Z). By compactness of this set
there clearly exists a § > 0 such that for every x € A~'a(Z) and y € G with
d(x,y) <6 wehave d(h(x), h(y)) < 1¢. There are m € N and B € #(R®)
such that

(2) d(f,1)<8, PBlB,=1 and Boh 'oa(Z)C Bp.
Now define y: A(B,)UZ — R by
y(x)=hoBoh ' oa(x).
Observe that y is a well-defined imbedding, that y|k(B,) =1 and that y(Z) C
h(By,) . We shall prove that d(y, 1) < ¢. To this end, take an arbitrary x € Z
and observe that d(h~'oa(x), Boh~loa(x)) <. Since A~ loa(x) € h~'oa(Z)
this implies that
d(a(x), y(x)) =d(hoh ™ oa(x), ho Boh™! oa(x)) < le.
Consequently, since d(a, 1) < 1,
d(x, y(x)) < d(x, a(x)) +d(a(x), 7(x)) < Je + Je = ¢.

This completes the proof of the claim.

Now let ‘4 and G be as in the lemma. Since by [7] k-skeletoids exist, by
the claim and Lemma 3.2, 4 is a k-skeletoid. Again by the claim, A(4) is a
k-skeletoid, hence an .#,®-absorber. O

Remark. The above lemma is false if we replace R by Q, where O denotes
the Hilbert cube. To see this, for every i € N let E; C Q be a Z-set Cantor set
such that (J;2, E; is dense in Q. In [5] it was shown that E = U2 E; is an
absorber for the collection of all zero-dimensional Z-setsin Q. Let K C Q bea
wild Cantor set [17]. Then EUK is zero-dimensional and therefore is contained
in a zero-dimensional Gs-subset P C Q. Observe that P is homeomorphic to
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the space of irrational numbers and that both £ and EUK are homeomorphic
to the product of the rational numbers and the Cantor Set. By [8] there is a
homeomorphism f: P — P mapping E onto EUK. But EUK is not an
absorber for the collection of all zero-dimensional Z-sets in Q since K is not
a Z-set.

3.4. Lemma. (a) Let k € NU {0} and let m € N be such that 2k +1 < m.
Then for every M#"-absorber X in R™ there exists an M, >*°-absorber Y in
R™ x R*® such that n(Y) = X, where m: R™ x R® — R™ s the projection.

(b) If X is an M °-absorber in R™ then there exists an #,®°-absorber Y
in R® x R such that n(Y) = X, where m:R® x R — R® is the projection.

Proof. (a) Let Z be an .#>-absorber in R” x R®. Write Z = |J2, Z; with
Zie #>* and Z; C Z;y, forevery i. Since dim(Z;) < k and 2k+1 < m, the
function f; = n|Z,: Z; — R™ is approximable by an imbedding f,: Z; — N/
[11, §4.4]. Put

S ={(71(x’y)s y) (x’y)ezl}

and define g1: Z; — S; by gi(x,y) =(fi(x,y),y). Then g is a homeo-
morphism which can be extended to a homeomorphism g; € Z(R™ x R®) [2].
Observe that # restricted to g,(Z;) is an imbedding into N}*.

The function f, = n|g,(Z>): €,(Z;) — R™ is approximable by an imbedding
f2:21(Zy) — N such that f,|g,(Z,) = n|g,(Z,). Arguing as above yields a
homeomorphism g, € Z(R™ x R*) having the following properties:

(1) &, is as close to the identity as we please,

(2) Bl (Z) =1,

(3) = restricted to g,(Z;) is an imbedding into N;".

Continuation of this process yields the existence of a sequence (g;); in
Z (R™ x R®) having the following properties:

(4) g=lim;,,g,0---08; € Z(R" x R®),

(5) for every i € N we have that 7|g(Z;): g(Z;) — R™ is an imbedding
into NJ*.

From Lemmas 2.2 and 2.3 we may therefore conclude that without loss of
generality n(Z) € o.#" . By Lemmas 2.4 and 3.3 it now follows that without
loss of generality, 7(Z) C X . Let 0 be the point in R*® having all coordinates
equal to 0. By Lemma 3.2, Y = Z U (X x {0}) is an .#Z®-absorber. Since Y
clearly projects onto X , it is as required.

The proof of (b) is similar to the proof of (a). O

A closed subset 4 of a space X is called Z-set if for every open cover Z
of X thereisamap f: X — X\A which is Z-close to the identity.

3.5. Theorem. Let X be an #,°-absorber, let Z be a collection of open subsets
of R® andlet A and B be Z-sets in X that the closures of A and B in R®
are Z-sets in R®. If h: A — B is a homeomorphism which is homotopic in
R to the inclusion A — X by a homotopy that is limited by % then for every
open cover 7 of U% there exists a homeomorphism H: X — X such that

(1) HA=h.
(2) H is St(SU(¥%), 7')-close to the identity on X .
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Proof. Let O = J% . Observe that A restricts the identity on A4\O. This
implies that there exists an open cover 7" of O such that

(3) 7 refines #,

(4) h is homotopic in R* to the inclusion 4 — X by a homotopy that is
limited by 7,

(5) 7 is normal rel R*\O.

By argumg precisely as in Chapman [4, §11] we can construct G(;-sets Ac4d
and B C B such that /2 can be extended to a homeomorphism h: A — B
such that % and the inclusion A — R* are homotopic in R* by a homotopy
that is limited by St(7"). Since A and B are Z-sets in R it follows that
(AUB)\(4U B) is a countable union of Z-sets in R®. Put

W =R®\(AUB)\(AUB)) and V =0\(AUB)\(4UB)),

respectively. By [1], R® and W are homeomorphic. Observe that V' is open
in W. It is a triviality to verify that X N W is a k-skeletoid in W, see
e.g. the proof of Lemma 3.3. Since (A\/f) U (B\B) is, are remarked above,
a| countable union of Z-sets in R*, it also follows that % and the 1nclu510n
A — W are homotopic by a homotopy that is limited by St(Z N V). Since A4
and B are Z-setsin W, % extends to a homeomorphism h: W — W which
is St(Z nV)-close to the 1dent1ty on W [2]. Since A(X) isa k-skeletoid in W
there exists a homeomorphism g: W — W whichis "NV -close to the identity
and which moreover has the properties goh(X) = X and g|§ uw\v)=1.
Let H =goh|X. Then H has the required properties. 0O

L

3.6. Corollary. Let X be an M>-absorber. If % is a collection of open subsets
of X then there exists an open cover 7° of J% such that whenever we have
a pair of imbeddings o, and oy of a compactum into X that are 7 -close
then there is a homeomorphism h of X that is % -close to 1 with the property
hoaj=o0ay. 0O

4. POSITIVE RESULTS

In this section we shall present our main result, the proof of which is inspired
by Torunczyk [13, 14], Mogilski [12] and Bestvina and Mogilski [3].

Let f: Y — X be a continuous surjection. Then f is called a near-homeo-
morphism provided that for every open cover Z of X there is a homeomor-
phism A:Y — X which is #-close to f. We shall need the following version
of Bing’s Shrinking Criterion due to Torunczyk [14].

4.1. Theorem. Let f: Y — X be a continuous surjection, let B C X be closed
and let K CY be closed such that f(K) = B. Suppose that for every open cover
% of X, for every open cover 7° of Y and for every neighbourhood U of B
there are a homeomorphism h: Y — Y and an open cover %" of X such that

(1) f and foh are % -close,
) h(x)=x if x € KUfY(X\U),
(3) forevery W € ¥ thereisa V € 7 such that h(f~'(W))C V.

Then f is a near-homeomorphism. 0O

)
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Remark. Observe that the map f in the above theorem has the property that
fIK: K — B is a homeomorphism. In addition, all “shrinking” homeomor-
phisms restricted to K are the identity. This implies that the homeomorphisms
that are going to approximate f all have the property that they agree with f
on K.

Let C = (R* x [0, 1]){;} be the cone over R*. It is well known that Cis
homeomorphic to R* . In addition, let kK € NU {0} and let m € N such that
2k +1 < m. Finally, let X C R™ be an .#/"-absorber.

By Lemma 3.4 (a) there exists an .£°-absorber X; in R™ x R* such that
Xi CX xR=® and X;N({x} xR®) # o forevery x € X.

We shall now derive a technical lemma that will be important later. Let
Ae A", | and let U be an open neighbourhood of 4 in R™. Pick an
arbitrary (admissible) metric d,, on U and an arbitrary metric d,, on R*®.
On U x R*® we use the metric

d((x,y), (s, ) = max{dm(x, 5), deo (¥, 1)}

4.2. Lemma. There is a closed imbedding f: X; — X, with the following prop-
erties:

(1) d(f(Xl)s A x Roo) > Oa

(2) f is supported on U x R*,

(3) fI(U x R®) is arbitrarily close to 1 (with respect to the metric d).

Proof. Since A € #",_, there is a regular e-neighbourhood N ¢ U of an
(m—k—1)-dimensional polyhedron P such that 4 C Int(N), with ¢ arbitrarily
small [10]. Choose a € #Z(R™), close to 1 with respect to the metric dy,,
such that a(X) N P = @. There is a function p: N x [0, 1] — N such that
p:ON x [0, 1) —» N\P is a homeomorphism, p(dN x {1}) = P, and

diamp({x} x [0, 1]) <& forevery x €ON.

Pick 6 > 0 such that p(ON x[0, ])N 4 = & and define N5 =p(dN x[J, 1]).
Let f: R™\P — R™\N; be a homeomorphism, defined in the obvious way,
which is supported on Int(N). Notice that N5 x R>® is a Z-set in the Hilbert
space manifold M = (R™\Int(Ns)) x R®, and consequently there exists a
homeomorphism y: M\(8 N5 x R®) — M which is close to 1 with respect to
the metric d, [1]. Notice that X; = yo((foa) x Ir=)(X1) and X; N M are
both absorbers for the < k-dimensional compacta in M (self-explanatory). So
there exists a &€ € Z (M) such that & (X1) = X; N M while moreover ¢ and 1
are close with respect to the metric d, Lemma 3.2. Now define

f=Eopo((Boa)x lnw)|Xi.

Since M is closed, f is as required. O

By Lemma 3.4(b) there exists an .#>-absorber X, in R” x R* x (0, 1)
such that X, € X; x (0, 1) and X, N ({x} x (0, 1)) # @ for every x € X;.
Let &: R® x [0, 1] — C be the “projection.” (See Figure 1.) In addition, let
7:R” x R® x [0, 1] = R™ x C be the map lgn x £. (See Figure 2.)

Since 7(R™ x R*® x {0, 1}) is clearly a Z-set in R™ x C, it easily follows
that n(X,) is an .#>-absorber in R” x C. Consequently,

Y =n(X2U(X; x {0, 1}))
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[0, 1] >

FIGURE 1

[0, 1]

R™ R™
FIGURE 2

is also an .Z-absorber; simply observe that 7(X; x {0}) is homeomorhic
to X; and n(X; x {1}) is homeomorphic to X and apply Lemma 3.2. Let
n: R™ x C — R™ be the projection and observe that n#(Y) =X .

We shall prove

4.3. Proposition. f =r|Y:Y — X is a near-homeomorphism.

It will be convenient to introduce some notation. If A4 is a compact subset

of X then
14 R"xC—>(R"xC)y and n?:(R™xC)y—R"

have been defined in §2. Let Y, stand for m4(Y) and put f; = m4|Y and
f4 = n4]Y,. Now, let B be a compact subset of X that contains 4. Then
nd: (R"xC)4 — (R™xC)p is well defined and we may put f3' = n5|Y4: Y4 —
Yp.

If S is a subset of R” then S* denotes the homeomorphic subset 7(S x
R™ x {1}) of R" x C. If S is a subset of R” x R>® then S. denotes the

homeomorphic subset 7(S x {0}) of R" x C.
The most important step in the proof of Proposition 4.3 is the following:

4.4. Lemma. Let A and B be compact subsets of X such that A C B. More-
over, let K be a compact subset of Y, such that f4|K is a homeomorphism
from K onto B. If % is an open cover of X\ A then there is a homeomorphism
h: Y4 — Yg such that fBoh is %-closeto f4 and h|K = f§|K.

From the proof of Lemma 4.4 it will follow that we can choose the home-

omorphism /4 to be “supported” on an arbitrarily small neighbourhood of B.
Therefore, by putting 4 = @ and K = B* we find
4.5. Corollary. If B C X is compact then fg:Y — Yp is a near-homeomor-
phism.
Remark. At first glance this is surprising because it seems that the maps involved
are rather arbitrary. However, because of the special nature of the absorbers,
certain homotopy conditions are automatically satisfied. We illustrate this by
verifying the following:
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Fact. Let p: R™ — R" be the projection, where m > n. Then if Y C R™ s
an M#"-absorber, then p|Y is a UVk-map (i.e. given x € R", j < k and a
neighbourhood U of x, there is a neighbourhood V C U of x such that each
g:0l - p~ Y (V)NY extendstoamap g: I’ - p~(U)NY).

Proof. Let x e R*, j<k and x € U C R"”, where U is open. We can choose
a neighbourhood ¥V of x in R”, such that V' C U while moreover each map
g:0l - p~Y(¥)NY extends to a map g: I/ — p~!(U). By the absorption
property of Y we can adjust g such that g(I/) C p~L(U)nY. O

Proof of Lemma 4.4. Obviously, our aim is to apply Theorem 4.1 to f3: Y, —
Yp . In the proof we shall work in the spaces Y and X rather than in Y, and
Yp. Because fB: Yz — X is closed over B it suffices to consider an arbitrary
open cover Z of X\A together with an open neighbourhood U of B in X .
Furthermore, instead of finding a homeomorphism of Y, we shall construct a
homeomorphism g of Y with the property that there is a homeomorphism g
of Y, such that go f; = f,0 g. This can be realized by letting g be supported
on aset f~!1(Q) where Q is a closed set in R™ that is disjoint from 4.

The homeomorphism g will be a composite of six homeomorphisms, namely:

(1) g=a"loyohyohioBoalY.

The map o moves the bulk of the set K\ A to the top of the cone C, whereas f
is an adjustment homeomorphism that pushes «(Y) back to Y. The functions
hy and h, do the actual shrinking: the fibres of B are compressed into a small

neighbourhood of the top of the cone. The map y pushes /,o0k(Y) onto
a(Y). Finally, a~! moves K back to its original place.

Construction of «. Let Z” be an open covering of Y, and let % and U be
as above. We assume that the elements of 7" respectively Z U {U} have
been extended to open subsets of (R™ x C), respectively R™. Since n4:
(R"™ x C)4, — R™ is closed over 4 we can find an open covering 7; of A4
in U such that n~!1(%{) refines n;l(W). Let O, and O, be open subsets
in R suchthat A C O, C 0, C 0, C 0, CUZ]. Define B; = B\O; and
K; = K\(z1)~Y(0;) for i =1,2. Put U = U\4 and U, = U\O,. Since
C is homeomorphic to Hilbert space we may assume that it is endowed with a
vector space structure in which the vertex of C corresponds to the zero vector
0. Select a continuous ¢: R”™ — C such that

(2) ¢(b) = (fIK)~'(b) forbe B

and ¢(x) =0 for x ¢ U;. Let a be a homeomorphism of R” x C defined
by

(3) a(x, y) = (x,y — ¢(x)).

Observe that o is supported on U; x C and that «(K,;) = B} .

Construction of h,. Use the compactness of B} to find an open covering 7
of B; in U; and an ¢ > 0 such that
4) {n(W xR x (1—¢, 1]): W € SE(#1)}

refines both a(n}‘(%)) and 7~ (%) and moreover such that

(5) {(SE(W, #): W e #; and W N O, # o} refines 7.
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Let 77" be an open cover of B, defined by
(6) YV ={WnU,:WeZ}.

According to Lemma 4.2 there is a closed imbedding v: X;. — X« and a
closed neighbourhood P of B, in |J7  with the range of v disjoint from
P x C. Note that both domain and range of v are Z-sets in Y. We may
assume that v is so close to the identity that the extension homeomorphism
hi:Y — Y for the map v~! (which exists by Theorem 3.5) has the properties
that foh;, is # -close to f and that A, fixes Bf . We may also assume that
hy can be extended by the identity on (R™\|J%Z ) x C to a homeomorphism
h, of YU(R™M\UZ') xC).

Construction of h,. We have h;(f~!(P)) is disjoint from X), , so we can insert
between these closed subsets of Y the “graph”

(7) {n(z,d(2)): z € X1}

of amap J: X; — (0, 1) with the property d(x,y)=1-¢e\2 if x ¢ U7 .
Then use the map & to get a homeomorphism 4, of #n(X; x[0, 1]) that moves
points along the [0, 1]-axis of C and pushes the “graph” {n(z, d(z)): z € X1}
onto the “plane” n(X; x {1 —¢/2}). Since d(x,y)=1—-¢/2 for x ¢ U7
we may assume that A, is supported on n~!(|J#Z ). The map A, obviously
fixes X*. Again put sy = hy U I(R,,,\UW))(C.

Construction of . We want B to push a(Y)Nzn= (U7 ) back to Y. The set
a(Y) is obviously an .#°-absorber in R” xC . Let 7" be an open covering of
U7 such that Stz(Bz, #"')C P and 7" refines 7. According to Lemma
3.2 there is a homeomorphism B of R” x C thatis z~!(#")-close to 1 such
that

(8) ﬂ(a(Y)ﬂn“ (U?//)) —Ynz! (UW)
We may assume that g fixes Bj.

Construction of y. We want y to move the set Y’ = hyoh;o foa(Y) back to
a(Y) . Define the following covering of z='(J%Z"):

9) Z"={n(WxR®xJ):We¥ , Jopen C|[0, 1] and diamJ < g/2}.

According to Lemma 3.3 the set Y’ is an £ -absorber in R” x C so by
Lemma 3.2 there exists a homeomorphism y of R™ x C that is 7Z"'-close
to 1 with y(Y’) =a(Y) and y fixes B} (using that Y'\n~!(J%") is already
equal to o(Y)\z~{(UZ")).

Define g =a~'oyohyoh oBoalY. Notethat g is a homeomorhism from
Y to Y and that it is supported on f~!(|J#’). Observe that Q = U7 is
disjoint from 4 an hence go f; = f40 g defines a homeomorphism g of Y,.
Since |J% C U we have that & fixes the complement of the set (f4)~!1(U).
Recalling that £, hi,hy and y all fix B*, that o(K)) = B} and that BN
UZ C B, we find that g fixes K.

Furthermore, if y € f~'(U%7") then

(10) fog) eS(f(»), #)



704 J. J. DUKSTRA, J. van MILL AND J. MOGILSKI

because mo B, mohy and moy are # -closeto # and moa =7, Tohy Cm.
In view of formula (4) we may conclude that fog and hence f4og are
% -close to f respectively f4.

Now we verify condition (3) of Theorem 4.1.

Case 1. Let b € B\B; and select a V € 7] that contains b. If we put W =
V'NO, then W is disjoint from |J%#  and hence g(f~'(W)) = f~}(W). Since
n~1(Z1) refines f;'(7") this takes care of the points of B\B; .

Case II. Let b € B;\B, and select a W € 7] that contains b. Using formula
(10) and the fact that 7" refines 7; we find

(11) g(f\(w)) C fUSEW, 7).

Formula (5) together with n~!(#{) refines n;'(?") allow us to conclude that
(- 1(w)) cV forsome V eZ .

Case III. Let b € B, and select a W € Z” that contains b. Note that
a(f~Y(W)) =" (W)Na(Y) and (using St*(B,, #"') C P)

(12) Boa(f{(W)) c f~X(SUW, 7)) C f1(P).
This leads to
(13) RioBoa(f~L(W)) C fUSEW, 7)) nhi(f~(P)).

Using the fact that /4, pushes everything above the level ¢ inside the interval
(1-¢/2,1] we find

(14)  hyohyoBoa(f~ (W) Cn(SE(W,#) x R® x (1 —¢/2, 1]).

As a consequence of formulae (9) and (4) we find

(15) yohyohioBoa(f~ (W) C n(SEW , #)xR®x(1-¢, 1]) C a(n;'(V))
for some ¥ in 7. So we may conclude that g(f~!(W)) C f;'(V) and hence
g cv.

Case IV. The case b € Yp\B is a triviality since f3|(f3)~'(Ys\B) is the iden-
tity homeomorphism on ((X\B) x C)NY. O

Now we are ready for

Proof of Proposition 4.3. We want to show that f: Y — X is a near home-
omorphism. Let d be an arbitrary metric on X . Write X = [J2)X; and
Y = U‘,.’:O Y;, where the X;’s and Y;’s are compacta such that X; C X;;; and
Y; C Y;;;. We may choose X, and Y, to be empty. Put 49 =2, go = ly:
Y - Y4, =Y andlet % be an arbitrary open covering of X with mesh < 1/2.
This is the base step of an induction process in which we shall construct a se-
quence of compacta 49 C 4; C A, C--- C X, a sequence of homeomorphisms
g Y4,_, — Y4, and a sequence of normal covers %; of X\A4;rel4; such that

(1) mesh(%;) <21,

(2) %4, is a star refinement of 7%},

(3) h; and h;yy are %;-close,

(4) X;Uhi(Y;) C 4,
where h;: Y — X denotes f4ogjo---0gog.
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First, let us assume that the induction is performed and show that 2 =
lim;_,o 4; is a homeomorphism that approximates f. If y € Y then y €
Y; for some i so h;(y) € A;. Since Y% = X\A4; we have that h;(y) =
hig1(¥) = hipa(¥) =--- . So h exists and is a surjection by formula (4). Since
mesh(%;) < 27/~! we have A is continuous and d(k, f) < 1. For the final
step let U be a neighbourhood of y € Y and let i be such that y € ¥;. Since
hi(y) € A; and by the definition of A; we have that y is the only point to
be mapped onto A;(y) by h;. Note that f4 and hence h; are closed over
A;. This means that there is a neighbourhood V of A;(y) in X such that
k7' (V) C U. Since % is normal rel 4; there is a neighbourhood W of h;(y)
in X such that St?(W, %) C V. Let z be an element of A~!(W), which is a
neighbourhood of y because 4;(y) = h(y). Let z € Y; for some j > i. Then
we have hj(z) = h(z) € W . This implies that 4;(z) is an element of

5) St(-- SUSUW , %), %-2) -+ » ).

Since %, is a star refinement of %, we find that the set in (5) is contained
in St*(W, #%;) which in turn is a subset of V. So hj(z) € V and hence
zZ€ hj_l('u) C U. Since we found that A~!(W) C U we may conclude that A
is a homeomorphism.

Assume that we have constructed 4;, g and %;. Let a = gjo---g1080:
Y - Y, and put

(6) Ki=a(Yi1)Ud; C Yy,

Extend the elements of %; to open subsets of R™. Let Z’ be an open cover
of U%; such that St*(%’) refines %;. According to the Corollaries 4.5 and
3.6 we can find an open cover 7”7 of Y, \4; = ((X\4;)) xC)NY in R" x C
such that

(7) 7 refines (n4)~Y (%)

and whenever «; and a, are two imbeddings of a compact space into Y,
that are St(Z”)-close then there is a homeomorphism g of Y, such that g is
(f4)~Y(#%")-close to 1 and Boa; =ay.

Let 7" be an open covering of f4(K;\4;) in |J%; such that 7" refines
%' and for every V € 7" there is a collection & of open subsets of C such
that

(8) {Vx0:0€e@} refines 7 and

(9) (VxUﬁ)nIQ:(VxC)nKI.

Let ¢ be an imbedding of K; — X thatis Z7”-close to f%4|K;, [11, §4.4],
Lemma 2.2 and Definition 2.3. Put B = ¢(K;) and
(10) Aiy1 = Xiy1 U S(K7).

Let w = 7n’o¢'|(B\A4;): (B\4;) — C, where n’ stands for the projection
R”™ x C — R™, and let ¥ be an extension of y over A4;.,\A4;. Define the
compact set K in (R™ x C)4, by

(11) K=A4;0{(b,¥(d)): be Airi\4;}.
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Observe that n4|K: K — A;;; is a homeomorphism. Let the imbedding
x: K1 — K be given by
{x(a)=a ifaeA;,

x(x,p) = (p(x,¥),y) if (x,y) € Ki\4..
The continuity of x at points of 4; follows from the fact that ¢ is %;-close to
f4|K, and that %; is normal rel 4; One may verify that (8) and (9) guarantee
that x is 7 -close to lg, .

Since K\A4; is a < k-dimensional g-compactum in (R™\4;) x C we have
that

(12)

(13) Y =Y U(K\4)
is an .#°-absorber in R” x C . Define the following covering of 7~/ (U%):
(14) ¥ =7 u{n Y(U)\x(K1): Ue}.

By Lemma 3.2 there is a homeomorphism y of R™ x C that is # -close to
1 with the property y(¥Y) = Y’. Since y is n~!(%)-close to 1 and since %;
is normal rel 4; we find that oy, = 74 o defines a homeomorphism y of
(R™ x C) 4, . Note that 7|Y,: Y4, — Y, is also a homeomorphism.

It is easily verified that 1, is St(Z")-close to jox: K} — Y4, . So thereisa
homeomorphism B of Y, such that f4iof and f4 are #'-close and

(15) BIKi=7""ox.
We are now ready to apply Lemma 4.4 to
(16) fik i Yo = Yae

Note that Y’ meets the requirements of Lemma 4.4 because Y C Y', n(Y') =
X and Y’ “projects” onto an .#;-absorber X| in R™ x R>®. We observed
earlier that 74|K is a homeomorphism between K and A4;,;. So there exists
a homeomorphism H:Y; — Y, thatis (n+)~!(%")-close to 4 and that
has the property
(17) HIK = f;* |K.
Since K C (n4i)~!(A;y;) we have that Y,
(18) giv1=Hojop
is a homeomorhism from Y, onto Y, with the property
fAi0gini(Ky) = fA* o Hojo B(K))

(19) = fA1 0 Hox(Ki)

C fAiv o H(K) = f4(K) = Ajy1-

is equal to Y; . Observe that

Consequently,
his1(Yisr) = fA# 0 giproa(Yigr)
C fAi+ o gin1(Ky) C Aig1.
This and (10) take care of induction hypothesis (4). The maps n4io 8, nioy

and 74+ o H are all %'-close to 74 so f4+ o g,y is St*(%’)-close to f4 and
hence h;., is %;-close to A;, hypothesis (3).

(20)
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Finally, let %, be a normal cover of X\A;, rel 4;;; with mesh less than
2-i=2 and which moreover is a star refinement of %;. O

Proposition 4.3 together with the uniqueness of absorbers gives

4.6. Theorem. Let n > 2k +1 be integers and let B} and By° be the universal
k-dimensional pseudo-boundaries in R" and R*, respectively. Then B} and
Bp° are homeomorphic. O

4.7. Theorem. Let n, m > 2k+1 be integers and let s} and s be the universal
k-dimensional pseudo-interiors in R" and R™, respectively. Then sp and s
are homeomorphic.

Proof. By Lemma 2.5 there are an .#"-absorber X in R” and an M-
absorber Y in R™ such that X C sz and Y C s57'. By Theorem 4.6 and
[16] there exists a homeomorphism 4: X — Y. By Lavrentiev’s Theorem [2,
p. 21] & can be extended to a homeomorphism 4: X — Y between certain
Gs-sets, X CX Cst, YCY Cs”. By Lemma 2.6, R"\X € oM ,_, and
R’”\Y €oM,) ,_, . ByLemma 2.4, s? and X are homeomorphic and sg' and
Y are homeomorphic. We conclude that sy and s7* are homeomorphic. O

4.8. Corollary. All imbeddings of a compactum in s¥**' or B¥*! are equiv-
alent, i.e., every homeomorphism between compacta in s¥**' or BX**! can be
extended to a homeomorphism of s¥**! respectively BX+'.

For instance, the trefoil and the unknot are topologically indistinguishable
in s} or B}. Corollary 4.8 is known for n > 2k + 2. This follows from the
unknotting theorem in R” for elements of .#” (Geoghegan and Summerhill
[9, Theorem 2.5]) and Lemma 2.4 (cf. Dijkstra [6, Theorem 1.2.13]).

We conclude this section with two conjectures. The stable pseudo-interiors
sg, n > 2k, behave like k-dimensional versions of Hilbert space /2. It is

expected that this analogy extends to Toruniczyk’s [14] characterization of /2:

4.9. Conjecture. The space s; for n > 2k is characterized topologically by the
following properties:

(1) k-dimensionality,

(2) topological completeness,

(3) LCk! and Ck-!,

(4) the discrete k-cells property.

A space X has the discrete k-cells property if every sequence (f;: I* — X )%,
can be approximated by a sequence (g;: I* — X )72, such that the images of
the g;’s form a discrete collection in X .

The stable pseudo-boundaries B} for n > 2k are k-dimensional versions
of the pseudo-boundary B of the Hilbert cube, which space was characterized
by Mogilski [12]. This leads to

4.10. Conjecture. The space B} for n > 2k is characterized topologically by
the following properties:

(1) k-dimensionality,
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(2) o-compactness,
(3) LC*! and Ck-!,
(4) the discrete k-cells property,
(5) strong universality for < k-dimensional compacta.

If # is a collection of spaces then a space X is called strongly .# -universal
if every map f from an element C of .# into X such that f|D: D — X
is a Z-imbedding for some closed subset D of C, can be approximated by a
Z-imbedding g: C — X that restricts to f on D.

5. NEGATIVE RESULTS

We shall now prove that the spaces B} and B}’ and the spaces s} and s}
are not homeomorphic if n < 2k.

We say that a space has property D(i, j) if for every pair of maps f: I' —» X
and g: I’ — X there exists maps f’: I' - X and g’': I/ — X arbitrarily close
to f and g, respectively, with f"(I')Nng'(I')=@.

The following lemma is probably well known. We include a proof for com-
pleteness sake.

5.1. Lemma. R*™*/*! has D(i, j) whereas R*™*J has not.
Proof. That R*/*! has D(i, j) is easy: simply approximate f and g by
PL-maps and bring their images into general position.

We proceed to prove that R**/ does not have D(i, j). Let J =[-1, 1] and
let f:J" — R*/ and g:J/ — R*J be given by f(x) = (x, 0) and g(y) =
(0, ). Let f' and g’ be two functions with disjoint images that are close to f
and g, respectively. Define a: J'+/ — R*/\{0} by a(x,y) = f'(x)-g'(-y).
Note that « is close to the identity and hence a|0J'*/ is an essential map into
R*/\{0}. Consequently, the extension over J*/ cannot exist. O

5.2. Proposition. B} and s; have the property D(k , min{k , n—k—1}). More-
over, if n <2k then B} and s} do not have D(k,n—k).

Proof. Consider B!, ¢ > 0, f: IF — B} and g:I™ — B}, where m =

min{k,n —k — 1}. There are f;: I¥ — R" and gy: I — R", &-close to f
and g, and with disjoint images. Find PL-approximations f, and g to fj

and g; that are .

3 2
close. The polyhedra f,(I¥) and g,(I™) are disjoint and at most k-dimen-
sional. So f,(I¥) U g2(I™) is an element of ' and can be pushed into the
absorber B} by a homeomorphism o with distance less than § towards the
identity. Consequently, ao f and ao g, are é-close to f and g and have
disjoint images.

For s the argument is similar with one exception: f2(I¥) and gy(I"™) are
elements of ./# and can be pushed off the .#" , | -absorber B} , , and thus
into s; (Lemma 2.5).

Consider now the case n < 2k. Let f:I¥ — R” and g: I"* — R" be
two maps that do not have &-approximations by functions with disjoint images
(Lemma 5.1). We may assume that f and g are piecewise linear. As above
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we can find maps f; and g; from I" and I"* into B} (or s7) that have
distance less than £ towards f and g. Then every pair f’ and g’ with
distance less than £ towards f; and g; has intersecting images. O

10.

11.

12.

13.

14.

15.

16.

17

DEe
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