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ABSTRACT. We construct an example of an AR-map f : X — Y, where X
is a strongly countable dimensional compact AR and Y is a countable dimen-
sional AR which is not strongly countable dimensional. Using this map we find
a shrinkable decomposition of the pre-Hilbert space 1} whose quotient map
does not stabilize to a near homeomorphism. We also present a partial result
concerning the question whether cell-like maps preserve countable dimension-
ality.

1. INTRODUCTION

A space X is (strongly) countable dimensional if it is a countable union
of (closed) finite-dimensional subspaces. The aim of this note is to construct
an example of an AR-map f : X — Y, where X is a strongly countable
dimensional compact AR and Y is a countable dimensional compact AR which
is not strongly countable dimensional. Observe that the range of our map is
“more infinite-dimensional than its domain.” The simplicity of our example
shows that this phenomenon has nothing to do with dimension raising cell-like
maps (Drani$nikov [4]). This example can be used to find a shrinkable AR-map
whose domain is the pre-Hilbert space

17 ={(x;)i € *: x; =0 for all but finitely many i},

but that does not stabilize to a near homeomorphism. This answers several
questions of J. P. Henderson (see West [13]). In the final section we discuss
the problem whether cell-like maps between compact ANRs preserve countable
dimensionality.

All spaces are assumed to be separable metric. As usual, I denotes the
interval [0, 1].

2. THE BASIC EXAMPLE

Proposition 2.1. There exists an AR-map [ from a strongly countable dimen-
sional compact AR X onto a countable dimensional but not strongly countable
dimensional compact AR Y .
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Proof. The construction is inspired by the classic examples of nonstrongly
countable dimensional spaces, see [6, Example 1.12]. First, we construct the
range of the map f. Let D denote a disk. Pick a null-sequence {J;}2, con-
sisting of pairwise disjoint arcs in D the union of which is dense. For every
k,let f, : J, — I*¥ be a continuous surjection with finite fibres. Standard
examples of space-filling curves have this property. We recall the construc-
tion of one such map. Define the homeomorphism /4 between the Cantor sets
3N =T112,{0, 1, 2} and 3N x 3N by A(e) = (a, B), where

o { &1, for Ej<,-/3,~ even,
“T\2-eur, for X, B odd,
and
[ e, for Ejgiai even,
ﬂi_{ 2 — ¢y, for Ejgiai odd.

Let g: 3N — I stand for the usual quotient map g(e) = Y 0, &37". Since
the fibres of g contain at most two points, the fibres of (g x g) o 4 contain at
most four points. One readily verifies that g(¢) = g(&') implies (g x g)oh(e) =
(g xg)oh(e). So there exists a continous map p: I — I xI with (g xg)oh =
pogq. Then p is obviously surjective and its fibres consist of at most four
points. The functions f; are obtained by iterating p.

Put

g={{r:y=x or fi(y) = fi(x) for some k e N}:x € D}.

Then & is an upper semicontinuous decomposition of D, so we can consider
the quotient space Y = D/¥ with corresponding quotient map n: D — Y.
Observe that Y is obtained from D by replacing each J; by I*¥. It clearly
follows that Y is countable dimensional. We claim that Y is not strongly
countable dimensional. This will follow by a standard argument. Let U C Y be
nonempty and open. Then n~!(U) is open in D and nonempty so it contains
infinitely many J;’s. This implies that U contains cells of arbitrarily large
dimension, i.e., dimU = co. Now assume that Y = [J;2, 4;, with each 4,
closed. Then by the Baire Category Theorem there exists an i such that 4;
has nonempty interior and hence we have dim 4; = co. We conclude that Y is
not strongly countable dimensional. By a direct argument, it is easily seen that
Y is an AR. Alternatively, apply Kozlowski [10, Theorem 15]: the image of an
ANR under a map f that is determined on a null-sequence of ARs A4; such
that each f(A4;) is an AR, is again an ANR.
We now look at the domain. Define

Z =D x{0phu|J L xI[0, 1/k].
k=1
It is easy to see that Z is a closed subspace of Dx 1. Observe that the collection
{Ji x {£}}¢2, is a null sequence in Z . For every k let g: Ji x {} — I be
defined by gi(x, %) = fi(x), i.e., g is a copy of the map f; . Now consider
the collection
Z={{p:y=x or g(y)=g(x) forsome k eN}:xeZ}.

Then # is an upper semicontinuous decomposition of Z , so we can consider
the quotient space X = Z/# with corresponding quotient map p: Z — X.
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Observe that X is a disc with the mapping cylinders of the maps f; attached
to it. Indeed, for every k we have that the set

p(Ji x 10, 1/k])

is a canonical copy of the mapping cylinder of f;. Observe that X is an
AR for the same reason as Y is. Also, observe that Z is strongly countable
dimensional. If we remove (Jgo; p(Jk x {#}) from Z then what remains is
(homeomorphic to) a g-compact subspace of D x I.

Finally, we define the map f. For every k let ¢;: p(Ji x [0, %]) — I* be
the collapse to the base. Then ¢; is clearly an AR-map (its point inverses are
cones of finite sets). Put

F={{y:y=x or ¢(y) =cx(x) forsome ke N}:x € X}.

Then .# is upper semicontinous, and the decomposition space X/.# is clearly
homeomorphic to Y. Since the quotient map X — X/.# is an AR-map, we
are done.

For a o-compact space X, let y(X) be the minimum ordinal a such that X
is a countable union of compact subsets with transfinite dimension ind < o (cf.
[2, p. 282]). Let us recall that the transfinite dimension ind is the extension
by transfinite induction of the classical Menger-Urysohn inductive dimension
(ind X = -1 means X = @, ind X < a, where « is a countable ordinal, if and
only if X has a open basis consisting of sets B with ind(0B) < a ). Obviously,
we have y(X) <ind X and a compactum X is strongly countable dimensional
if and only if y(X) < wo. In Proposition 2.1 we constructed an AR-map of a
compact AR X, with (X) = @, onto a compact AR Y, with p(Y) =wo+1.
By a slight modification of our construction we obtain:

Proposition 2.2. For every countable ordinal o, a > wq, there exists an AR-map
fo from a strongly countable dimensional compact AR X, onto a compact AR
Y, with y(Y,) > «a.

Proof. As in the proof of Proposition 2.1, we pick a null-sequence {Ji}72,
consisting of pairwise disjoint arcs in a disk D. Let H*, for a < w;, stand
for a slight modification of Henderson’s “transfinite cubes.” We define H®*
together with a point p* € H* as follows. H® = {0}, H**! = H* x I, and
p**t! = (p*, 0). If « is a limit ordinal then we write {#: f <a} = {B;:i € N}
and we connect in the topological sum @i, H% every p# with pf+ by an
arc. We then take the one point compactification of the resulting space. This
is H* and p“ is the point at infinity. The space H* is a strongly countable
dimensional compact AR with ind = a (see [8]).

Now, let a; be a nondecreasing sequence converging to «. For every k,
let g.: Jp — H* be a continuous surjection with finite fibres (it is not hard
to construct g; using the map p described in the proof of Proposition 2.1).
We construct the spaces X, , Y, and the map f, in the same way as X, Y,
and f were constructed. Hence X, and Y, are compact ARs and f, is an
AR-map. By strong countable dimensionality of H% , for k =1,2,..., X,
is strongly countable dimensional. Since each nonempty subset of Y, contains
infinitely many H* ’s we have y(Y,) > a.



282 J. J. DDKSTRA, J. VAN MILL, AND J. MOGILSKI
3. A SHRINKABLE DECOMPOSITION OF 1}

The pre-Hilbert space l} is strongly countable dimensional and universal
for all strongly countable dimensional compacta. Henderson and Walsh [9]
constructed a cell-like map f from l} onto an AR M such that M is not
homeomorphic to l} but M xR & l}. Proposition 2.1 allows us to construct
an AR-map of / } onto an AR Z such that noteven Z x/ } is homeomorphic to
l}. Our map has another interesting property. Let us recall that a proper map
f:X — Y is shrinkable if for every open cover % of Y and every open cover
7" of X there exists a homeomorphism 4: X — X such that foh is #Z-close
to f and {h(f~'(¥))}yer refines 7" . Bing’s Shrinking Criterion states that if
X is complete and f is shrinkable, then Y is homeomorphicto X and f is a
near homeomorphism. The following proposition shows that the completeness
assumption is essential and it answers questions NCL 12, 13, and 14 in West
[13].

Proposition 3.1. There exists a shrinkable AR-map from l} onto an absolute
retract Z such that Z x l} is not homeomorphic to l}.
Proof. Let X be the strongly countable dimensional AR from Proposition 2.1.

We may assume that X is a subset of l}. By compactness X is a Z-set in l} .
If f:X — Y isthe AR-map from Proposition 2.1, then the decomposition

F={f'):ye Y U{{x}:x € 2\ X}

is upper semicontinuous and the quotient map F: l} — l} /¥ isan AR-map. By
[10] the quotient space Z = l}/gf’ is an AR. Of course, Z and Z x l} contain
topological copies of the space Y which is not strongly countable dimensional.
Hence, Z x! } is not homeomorphic to the strongly countable dimensional space
l}. We prove that F is shrinkable. Let Z and 77 be open covers of Z and
[2, respectively. Since F is a fine homotopy equivalence (see [7] or Theorem
4.2) there exists a map G: Z — l} such that G o F is F~1(%)-homotopic
to the identity. The map G o F|X can be approximated by an embedding
v: X — [} such that v is F~!(%)-homotopic and 7 -close to G o F|X . Since
X and v(X) are Z-sets ihere exists a homeomorphism /: /7 — [ which is
F~1(st Z)-homotopic to the identity and such that #|X = v. Thus F ok and
F are st Z-close. Since h|X is Z -close to Go F and Go F(F~!(y)) is a
singleton for all y € Y the family {A(F~!(y)):y € Y} refines st7 .

4. TRANSFINITE DIMENSION AND CELL-LIKE MAPS

The spaces in this section are assumed to be compact. The following question
is closely related to the example of §2.

Question 4.1. Let f: X — Y be a cell-like map of a countable dimensional
ANR X onto an ANR Y. Is Y countable dimensional?

Let us recall that a cell-like map f: X — Y between absolute neighborhood
retracts is a fine homotopy equivalence (i.e., for every open cover %Z of Y there
exists a map g:Y — X such that fo g is #Z-homotopic to idy and go f
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is f~1(U)-homotopic to id x ) and a hereditary shape equivalence (i.e., for each
ANR Z tke map f produces a one-to-one correspondence between the homo-
topy classes of C(Y, Z) and C(X, Z)). Hereditary shape equivalence is the
natural extension to arbitrary compacta of fine homotopy equivalence between
ANRs. Let us have a closer look at this. Let X be a countable dimensional
compactum and let f: X — Y be a cell-like map. By the Freudenthal Expan-
sion Theorem (see [3]) X is the inverse limit of finite dimensional ANRs, say
X = lim{X,, f,}, with each X,, ANR. Let X be the infinite mapping cylin-
der of the sequence {X,, f,}52, with a copy of X attached at its end. Then
X € ANR and X is countable dimensional (observe that we added a countable
dimensional set to X ). Let &y = {f~!(y) : y € Y} U {points}, then Z; is a
cell-like decomposition of X and the quotient map f X - X [y is a cell-like
map. Of course Y embeds in X /%,. Let us recall the following theorem of
Kozlowski [10] (see also [5, p. 133]).

Theorem 4.2. The following statements are equivalent.

(1) f is a hereditary shape equivalence,
(2) X/%, € ANR;

(3) f is a fine homotopy equivalence;
(4) f is a hereditary shape equivalence.

By Theorem 4.2, Question 4.1 is equivalent to the following question (posed
by Henderson, Kozlowski, and Walsh at the problem session of the AMS meet-
ing in Norman, 1983).

Question 4.3. Do hereditary shape equivalences preserve countable dimension-
ality?

A complete space X is countable dimensional if and only if ind X exists.
Because hereditary shape equivalences do not raise finite dimension we ask

Question 4.4. Let f: X — Y be a hereditary shape equivalence between count-
able dimensional compacta. Is indY <ind X ?

Ancel [1] proved that a cell-like map with a countable dimensional range is
a hereditary shape equivalence. We define

n(X) =sup{indY : Y is a countable dimensional cell-like image of X }.
We present the following partial result concerning Question 4.3.

Proposition 4.5. If for every countable dimensional compactum X we have n(X)
< w1, then hereditary shape equivalences preserve countable dimensionality.

Proof. Let f: X — Y be a hereditary shape equivalence of a countable di-
mensional compactum X onto Y. In order to prove that Y is countable
dimensional we shall apply Pol’s characterization of countable dimensionality
(see [12]) but we modify his orginal construction sligktly. Let ¥ = lim{Y,, g},
where each Y, is a finite dimensional ANR. As in the beginning of this section,
Y stands for the infinite mapping cylinder of the sequence {Y;, &i}$2, with the
copy of Y attached at its end. If Y, is a finite mapping cylinder of the finite

sequence {Y;, g}/, and if =, is the natural collapse of Y onto Y,, then
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Y, is a finite dimensional ANR, &, is a cell-like map which is a hereditary
shape equivalence and the sequence J, = sup, .y diam(x; !(z)), converges to
0. Let C be the Cantor set and let Cy = {c;, ¢, ...} be a dense countable
subset of C. We shall denote by & the upper semicontinuous decomposi-
tion of the space C x ¥ into singletons {(c, )}, where ¢ ¢ o, and the sets
{ci}xn; I(z), where z € Y; and i = 1,2, . The space C x Y/<9Z is compact
and the quotient map 7 : C x Y - Cx Y/g*” is a hereditary shape equivalence.
According to Pol’s characterization the space Y is countable dimensional if
and only if
sup ind(n(D x Y)) < o,
DeC,

where C, = {D D is a compact subset of Cy}. Now, let X be a com-
pactum which is the infinite mapping cylinder of the sequence {Y,, , 8n} with
a copy of the space X attached at its end (the compactum X can be con-
structed as follows: assume that X C I? x {0} c I® x [0, 1], then the quo-
tient space 1% x [0, 1]/F of the decomposition Z ={{(q, t)}:te (0, 1]} U
{{(g,0)}: (¢,0) ¢ X}U{f7'(v): y € Y}, is homeomorphic to I1° x [0, 1]
(see [11 Lemma 7.5.2]) and f (X ) isa Z-set, where f is the quotient map; we
set X = f- I(Y) assuming that Y is a subset of I® x x [0, 11/¥ whose intersec-
tion with f(I® x {0}) is Y). By the construction X is countable dimensional,
fIX = f and f maps X\ X onto ¥\Y. Then ¢ =idc x (f|X) is a hereditary
shape equivalence of C x X onto Cx Y. Thus 7o ¢ is a hereditary shape
equivalence. If D e CO , then

indzn(D x Y) = ind(7 o ¢(D x X))

and the space 7o ¢(D x X ) is a closed subset of a countable dimensional space
which is a cell-like image of C x X . Thus

ind(n(D x Y)) < 5(C x X).
By our assumption 7(C x X ) < w; .

Added in proof. It can be shown that the converse of Proposition 4.5 is also
valid and that the answer to Question 4.4 is no, [14].
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