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ON THE EXISTENCE OF WEAKLY #n-DIMENSIONAL SPACES

JAN vaN MILL AND ROMAN POL

(Communicated by Dennis Burke)

ABSTRACT. Using a certain method for constructing peculiar large-dimensional
spaces in every compactum with sufficiently large dimension, we present for
every n an easy example of a weakly n-dimensional space.

1. INTRODUCTION

Foraspace X and apoint x € X, ind X denotes the dimension of X at the
point x (cf. [1, Problem 1.1.B]). If X is n-dimensional then its dimensional
kernel is the set {x € X: ind, X = n}. It is known that the dimensional kernel
of an n-dimensional space X , where n > 1,isan F_ subset of X of dimension
at least » — 1. Also, if in addition X is compact, then its dimensional kernel
is n-dimensional. For more information see [1, Problem 1.5.C]. A space X
is called weakly n-dimensional, where n > 1, if it is n-dimensional, but its
dimensional kernel is of dimension n — 1. Clearly, a weakly n-dimensional
space contains no compact subspace of dimension n. The first examples of
weakly n-dimensional spaces were given by Sierpinski [15] and Mazurkiewicz
[9]. A simpler construction can be found in Tomaszewski [16]; he also proved
that if X is weakly n-dimensional and if Y is weakly m-dimensional then

dim(X xY)<n+m-1=dimX +dimY — 1.

In this note we present an application of a certain method for constructing
peculiar large-dimensional subspaces in every compactum with sufficiently large
dimension. The technique goes back to Mazurkiewicz [9] and Knaster [3] and
has been used by several authors: see Lelek [8], Zarelua [17], Rubin, Schori, and
Walsh [14], Kulesza [6], Ivanov [2], Pol [13], and Krasinkiewicz [4, 5] (These
papers contain further references.) We use the technique for the construction
of easy weakly n-dimensional spaces.
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2. PRELIMINARIES

Our terminology in dimension theory follows Engelking [1], Nagata [12], and
van Mill [11].

We denote the closed interval [0, 1] by I. A compactum is a compact metriz-
able space. A family v = {(4,, B,), (4,, B,), ..., (4,, B,)} of pairs of dis-
joint closed sets in a space X is called essential if for every family {L;:i < n},
where L, is a partition between A; and B, for every i, we have (,., L, # J;
if 7 is not essential then it is called inessential. Recall that X is at least n-
dimensional if and only if X contains an essential family of size ».

We shall need the following well-known fact.

2.1. Lemma. Let K bea (k+ 1)-dimensional compactum and A, B a pair of
disjoint closed subsets of K. Then there exists a continuous function f: K — I
taking A to 0 and B to 1 such that dim f ~'(¢) < k for each te[L, 3].

This lemma follows immediately from Hurewicz’s theorem (Kuratowski [7,
§45]) that the zero-dimensional maps g: K — [ +1 are dense in the function
space C(K, I*™") (if p: I*"' = I is the projection and g: K — I**! is zero-
dimensional then dim[(p o g)_l(t)] < k for all t € I). Alternatively, one can
use Nagata’s metricon K [12, Theorem V.4]. For the purpose of §2 it is enough
to know that dim f _l(t) < k for ¢ belonging to a Cantor set C in I and this
can be proved directly by a standard Urysohn construction as the points ¢ with
dim f ~'(¢) < k form a set of type G, .

We will also need the following triviality: if X is an »n-dimensional o-
compact space, where n > 0, then there exists a zero-dimensional g-compact
set N C X such that dim(X\N) < n — 1. This can be verified easily by
induction on #: note that dim X = ind X and apply [11, Theorem 4.7.3].

The following lemma is probably well known: its easy proof is included for
the sake of completeness.

2.2. Lemma. Let X and Y be compact spaces, and let f: X — Y be a con-
tinuous surjection. If Y is zero-dimensional at y € Y and if dim f _l(y) =0
then X is zero-dimensional at every point of f _l(y) .

Proof. Pick an arbitrary x € f _l(y) and let U be a neighborhood of x in
X . Since dim f _l(y) = 0 there is an open and closed subset C of f _l(y)
such that x € C C U . Pick disjoint open subsets £ and F in X such that

Enf '()=C and Fnf '(n)=7"'0)\C

It is clear that without loss of generality we may assume that £ C U . Observe
that E U F is a neighborhood of f _l(y) in X. Consequently, since f is
a closed map, there is a neighborhood ¥V of y in Y such that f _I(V) -
E UF. Since Y is zero-dimensional at y, we may assume without loss of
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generality that ¥ is open and closed. Then f ™ (V)N E is an open and closed
neighborhood of x in X which is containedin U. 0O

3. EASY WEAKLY #-DIMENSIONAL SPACES

The aim of this section is to present new examples of weakly n-dimensional
spaces.

3.1. Theorem. Let K be an (n + 1)-dimensional compactum, where n > 1.
Then K contains a weakly n-dimensional G-subset X (hence X is completely
metrizable) .

Proof. Let © = {(4,, By), ..., (4,, B,)} be an essential family in K. By
Lemma 2.1 there exists a continuous function f: K — I taking 4, to 0 and
A, to 1 such that there exists a Cantor set A C (0, 1) such that dim f _l(t) <n
for every t € A.

We now closely follow a construction in Rubin, Schori, and Walsh [14]. De-
note the hyperspace of K by 2% and put

& ={Ce 2% C is a continuum from A, to B}

Then % is closed in 2X and hence is a compact space (see [11, Claim 1 of
Theorem 4.7.10]). Consequently, there is a continuous surjection ¢ : A — & .
Put

z=Jir'noe@): tea).

Then Z is closed in K, hence is compact, and f[Z] = A ([11, Claim 2 of
Theorem 4.7.10]). Then dimZ > n because Z intersects every continuum
from 4, to B, ([11, Corollary 4.7.9]). In addition, dimZ < n because the
fibers of the restriction g of f to Z are at most n-dimensional and A is
zero-dimensional [1, Theorem 1.12.4]. We conclude that dimZ = n.

Now let A denote the dimensional kernel of Z . Then because Z is compact,
A is an n-dimensional o-compact subset of Z, cf. the remarks in §2. There
exists consequently a o-compact zero-dimensional subset N of A such that
dim(A\N) < n — 1, cf. the remark preceding Lemma 2.2. Now put X =
Z\N. Then X is clearly a G;-subset of X and we claim that it is weakly
n-dimensional.

Let C € % . We will prove that C meets X . Pick ¢ € A such that ¢(t) = C.
Observe that g_l(t) cCnz. If dimg_l(t) > 0 then g_l(t) intersects X
because the complement of X in Z is zero-dimensional. We may therefore
assume that dim g_l(t) = 0. But since A is zero-dimensional, we now obtain
that Z is zero-dimensional at all points of g—l(t) (Lemma 2.2). Consequently,
g '()NA =0, thatis, @ # g '(t) C X. We conclude from [11, Corollary
4.7.9] that dim X > n. However, because X is a subspace of Z , we also have
dim X < n. Consequently, dim X = n, as required.
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We next prove that X is weakly n-dimensional. This is however a triviality.
Simply observe that if x is a point of X at which X is n-dimensional, then Z
is n-dimensional at x, which implies that x € X N A. Since by construction,
dim(XNA)<n-1, we are done. O

3.2. Remark. Observe that the spaces X constructed in Theorem 3.1 are rim-
compact, that is, have a basis consisting of open sets with compact boundaries.
This is clear because the complement of X in K is zero-dimensional.

3.3. Remark. If one takes K = I"™ in the above theorem then there is no
need to use Lemma 2.1 in the proof. It seems that this gives us the easiest
known examples of weakly n-dimensional spaces.

3.4. Remark. 1t seems useful to recall that the main points of the original
construction of Mazurkiewicz [10]. Let C be the Cantor set and consider
K = C x1I". Let .# denote the subspace of 2Kk consisting of all
sequences (4,, 4,,...) such that 4 C 4, C ---. Then .# is compact, so
there is a continuous surjection ¢: C — #. For t € C we write ¢(1) =
(9,(8), 95(8),...). Let & = {t e C: p,(t)n({t} xI") # @}, D, = C|,
D, =%_,\%, and let

M={(t,x):teD, xept)n{t}xI"}.

Then M C C x I" has the following property: for each S C M which projects
onto C, each Gg-set G in C x I" containing S, also contains some section

{t} x I" . This can be seen as follows. If (C x I")\G=F,UF,U---, F, € 2K,
F/ CF,C---, then pick t € C such that ¢(¢) = (F|, F,,...). Then t ¢
for all i, hence {t} x I" C G; in particular, dimS > 7.
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