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Abstract 

Hart, K.P. and J. van Mill, Discrete sets and the maximal totally bounded group topology, Jour- 

nal of Pure and Applied Algebra 70 (1991) 73-80. 

If G is an Abelian group, then G # is G with its maximal totally bounded group topology. We 

prove that every A c G# contains a closed (in G#) and discrete subset B such that lB1 = IAl. 
This answers a question posed by Eric van Douwen. We also present an example of a countable 

G’ having an infinite relatively discrete subset that is not closed. 

0. Introduction 

Let G be an Abelian group and let G # be G with its maximal totally bounded 

group topology; this is the topology induced by the natural isomorphism of G into 

the compact product THom(G3T). (Here T denotes the circle group.) The topology 

of the groups G # is quite mysterious: for example, it is known that G# is zero- 

dimensional [2: 31, but it is not even known whether IR# is strongly zero-dimen- 

sional [3]. In [3], van Douwen proved, among other things, the following remark- 

able result: if D c G# is infinite then there exists E c D with the following proper- 

ties: IE 1 = IDI and E is relatively discrete and C-embedded in G#. He asked 

* This note was partly written during the workshop on “Locales and Topological Groups”, sponsored 

by the Caribbean Mathematics Foundation, in Curacao, July 1989. We are indebted to the organizers 

for their support. 
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whether G# has a closed discrete subset of cardinality ICI [3, Question 4.141. The 

aim of this note is to answer this question in the affirmative. 

Theorem 0.1. Let G be an Abelian group. Zf A c G# then A contains a subset B 
having the following properties: 

(1) B is relatively discrete and closed in G # ; 

(2) IBI = 14. 

In view of van Douwen’s Theorem, our results would be trivial if every relatively 

discrete subset of G# would be closed in G #. This is not true however, as the 

following example shows. 

Example 0.2. There is a countable Abelian group G such that G# contains an in- 

finite relatively discrete subset that is not closed in G#. 

1. Preliminaries 

If K is a cardinal number then cf(K) denotes its cofinality. For a set X and a car- 

dinal number K, [Xl” denotes the collection of all subsets of X of cardinality K. 

All groups considered are Abelian and are written additively: so the identity ele- 

ment of G is denoted by 0, except in the circle group where we use multiplicative 

notation and use 1 for the identity element. If G is a group and A c G then ((A)) 
denotes the subgroup of G generated by A. For A a singleton, say A = {a}, we write 

((a)) instead of (({a})). We also put ((0)) = (0). If G is a group and x E G then o(x) 

denotes the order of x, i.e., the smallest natural number n for which n. x = 0 if such 

a natural number exists, and 03 otherwise. The torsion subgroup of G is denoted 

by tG, and for each n, t,G = {XE G: nx=O}. Note that for every n, t,G is a 

subgroup of G and that for all n, m, t, G c t,, G. A subset A c G \ (0) is called in- 
dependent if for every B c A, 

((B>> n <(A\B)) = (0). 

The following two results follow straight from the definition: their easy proofs are 

included for the sake of completeness. 

Lemma 1.1. Let G be a group, and let A c G be independent. Zf xE G is such that 
((xl> fl ((A)) = {0}, then A U {x} is independent. 

Proof. Suppose that there exist disjoint F, G c A and p E ((FU {x})) n ((G)) such 

that p # 0. Then there exist n E Z, a E t(F)) such that 

Ofp=n.x+a. 

Consequently, n. x =p - a E ((A)), so n. x= 0. This implies that p = a, but this con- 

tradicts the fact that A is independent. 0 
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Lemma 1.2. Let G be a group, and let X be a chain (with respect to inclusion) of 
independent subsets of G. Then UX is independent. 

Proof. Put A = UX, and let B CA. Suppose that there exists an 

XE 0)) fl ((A \ B)) such that x # 0. 

There are finite FC B and G c A \ B such that 

XE (09) n KG)). (*) 

Since X is a chain with respect to inclusion, there is a KE X such that F U G c K. 
But now (*) and x#O contradict the fact that K is independent. 0 

Lemma 1.3. Let G be a group and let A c G be independent. Suppose that f : A -+ T 

is a function such that for every a E A, 

[f(a) = l] or [o(a) = 031 or [o(a) < 00 Ao(f(a)) 1 o(a)]. 

Then f can be extended to a homomorphism f : G --f T. 

Proof. First observe that we can extend f to a function h : (JaEA ((a)) + T such 
that for every aEA, hl((,)) is a homomorphism. Next observe that for every 
XE CA)) \ (0) there exist for some n,E N, a:, . . . . aGX~A and b:E ((a;)) \ {0}, . . . . 

bz, E ((aiX>> \ (0) such that x= C:; 1 b:. The independence of A easily implies that 
the b:, . . . . bcX depend uniquely on x. Consequently, the function h: ((A)) -+ T 

defined by 

h(0) = 1, h(x) = z h(b;) (x # 0) 
i=l 

is well defined. Also, it extends h so it restricts to a homomorphism on every ((a)), 
a E A. This easily implies that /i is a homomorphism. Now since T is divisible, there 
exists a homomorphism J;: G + T that extends /i [5, A.71. 0 

Lemma 1.4. Let G be an Abelian group, and let A c G be independent. Then A is 
closed and discrete in G # . 

Proof. Since every subset of an independent set is independent, it suffices to prove 
that every independent set in G is closed in G # . So let an independent A c G be 
given. We first prove that O$A. For every aeA pick an element f(a) ET such that 

(1) o(a) = o(f(a)); and 
(2) f(a)E{zET: Rez<O}. 

By Lemma 1.3, we can extendf: A -+ T to a homomorphismJ: G# -+ T. Sinceyis 
continuous, and y(O)$f[A], we get OeA, as required. 

Now let XE G \ A be arbitrary. We will prove that x@A. By what we just proved, 
we may assume that x#O. Since ((A)) is closed in G# [l, 2.11, we may also assume 
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that xe((A)). Pick n~iN, al,...,a,,~A and <,,...,&,EZ\(O) such that x= 

Cr= r tie ui. We may assume without loss of generality that for every iin, if 

~(a;) < 03 then 0 < ri< o(ai). For every is n pick an element Z; ET such that O(Zi) = 

~(a;). By Lemma 1.3 there exists, for every is n, a homomorphism f; : G + T such 

that 

.&(a,) = 1 and f;(a,) = 2;. 

Then r$=f,x...xf,:G# +T” is a homomorphism and is therefore continuous. 

In case n = 1, we clearly have cl # 1 so that Q(x) = zf’ $ (0, z, } = @[A]. 
In case n> 1, we see that no coordinate of Q(x) is equal to 1, whereas for every 

a E A some coordinate of @(a) is equal to 1. 

We see that in both cases Q(x) $ @[A], so that x@ A. 0 

By noting that G* is zero-dimensional ([3, Theorem 1.11 and [2, Theorem 2.1]), 

the following result is Theorem 1.3(b) from [3]. 

Theorem 1.5. Let G be an Abelian group. If xE G# and if A c G# is uncountable 
then x has a clopen neighborhood U such that 1 U \ A I= IA I. 

We conclude this section with the following fact, which can be proved straight 

from the definition: 

Fact. If f : G -+ H is a homomorphism of groups, then f : G# 4 H” is continuous. 

We will use this fact often without mentioning it. 

2. Proof of Theorem 0.1 

Let G be a group. First observe that the theorem is trivial if A is finite, for then 

A is a finite discrete space. The theorem is also trivial if A is countably infinite, for 

then ((A)) is a countable space every compact subspace of which is finite [4] (see 

also [2, Theorem 4.71 and [3, Theorem 1.3(a)], and which moreover is closed in 

G# [l, 2.11. So in the remaining part of this section it suffices to consider uncoun- 

table subsets of groups. 

The following result is probably well known; its easy proof included for the sake 

of completeness. 

Proposition 2.1. Suppose that G is an Abelian group which is either torsion free or 
has the property that every point different from 0 has order p, for some fixed prime 
number p. If E c G is uncountable, then there is an independent FL E such that 

IFI = IEI. 
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Proof. Suppose E is uncountable and B c G is independent such that (BJ < IE) . Let 

K= {XE E: B U {x} is not independent} and let o be 03 or p. For every XE K fix <, 

such that &..x~((B)j and O<&<o. For <<o let Kg={x~K:<,=<}; since the 

mapx- 5. x is one-to-one, it follows that IK(.i I 1<(B))j I JB1. cu. Since JBl. U< 
) E 1, we conclude that 1 K 1 < j E 1. From this the statement of the proposition readily 

follows. 0 

Corollary 2.2. Suppose that G is an Abelian group which is torsion free or is such 
that every point different from 0 has order p for some fixed prime number p. If 
E c G# is uncountable, then there is a closed (in G # ) and discrete F c E such that 

IF1 = IEl. 

Proof. Combine Proposition 2.1 and Lemma 1.4. 17 

So this result proves Theorem 0.1 for groups that are torsion-free. We will now 

in two steps prove the theorem for torsion groups. Then we piece everything 

together, and present a proof of the general result. 

Lemma 2.3. If G is Abelian and if G = t,, G for some II then every (uncountable) 
subset A of G # contains a closed (in G # ) and discrete subset of size 1 A I. 

Proof. Associate with G the following sequence of groups: G, = G; if Gj is known 

and non-trivial let p,=min{k: XXEG~\{O} o(x)=k} and G,+r =Gi/tP,Gi; if G, is 

trivial stop. Note that every pi is prime and that the sequence must stop some- 

where. Let us call the index i for which G; is trivial the depth of G. We prove the 

lemma by induction on the depth of G. 

If the depth of G is 1 then every element of G has prime order p0 and we can 

apply Corollary 2.2. 

If the depth of G is i> 1 consider the natural homomorphism @ : G--f G, . @ is 
continuous by the Fact from Section 1. Fix a subset B of A such that @ is one-to-one 

on Band @[B]=@[A]. For beB we put A,=(A-b)nt,,G; observe that A,+b= 

@+(@(b))nA. 
By Corollary 2.2 we may find for every b E B a subset Aj, of Ab such that AL is 

closed and discrete in G# and such that lAbi = lA,J. 
Case 1: IA& = IAl f or some 6. Then AL + b is the desired subset of A. 
Case 2: lAbI < IAl for all b. 
Subcase 2a: supbEB JA,J = IAl. First observe that 1Blrcf(lAl). Now we can 

thin out B to a subset B’ of size cf( IA I) such that for every subset B” of B’ of car- 

dinality cf(lA)) we have IAl =supbEB,, lAb 1. Then we may find by our inductive 

assumption a subset C of B’ such that @[Cl is closed and discrete in (G,)# and 

IAI = s”Pb,C jAbi. Then ubEC (Ah+ 6) is the desired closed and discrete subset 

ofA. 
Subcase 2b: supb,B iA,1 < lA(. Now we know that IBI = IAl and by the induc- 
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tive assumption we can find a subset D of B such that ID ( = [B I= IA 1 and @[II] is 

closed and discrete in (Gr)#; then D is closed and discrete in G#. Cl 

Proposition 2.4. If G is Abelian and if G = tG then every (uncountable) subset A 
of G# contains a closed (in G # ) and discrete set of size 1 A 1. 

Proof. For convenience, put K = IA 1. Since t, G is a subgroup of G for every n, by 

[l, p. 411, the identity idtno is a closed embedding of (t,G)# into G#. Consequent- 

ly, by Lemma 2.3 we are done if for some n, IA n t,,Gl =K. We therefore assume 

without loss of generality that for every n, 

lAnt,GI</c. 

Observe that (**) implies that K has countable cofinality. 

(**) 

Claim. If a CA has cardinality K, then for every n E l’r.l there exists a clopen neigh- 
borhood V, of t,G such that Iff\ V, / = K. 

Proof. Consider the natural homomorphism @ : G + G/t,G and let I,U = @ IA. 

Case 1: There exists a EA such that 1 I,-](~(a))1 = K. Then by (**), a $ tn G which 

implies that t,u(a)#O. Now since (G/t,G)# is zero-dimensional, [2,3], there is a 

clopen neighborhood C of 0 in (G/t,G)# such that @(a)$C. Then V,=@‘(C) is 

clearly as required. 

Case 2: 1 ~[a] 1 = K. Then by Theorem 1.5 there exists a clopen neighborhood C 

of 0 in (G/t,,G)# such that C\ w[a]l =K. Then V,=@-‘(C) is as required. 

Case 3: [lu/[a]l <K]A[VaEA: IwP1(t&a))i <K]. Then sup,,~ IwP’(u/(a))l =K 
so that cf(K) = co implies that there is a countable infinite set B c t,~[ff] such that for 

every infinite EL B we have SUP,,~ 1 t,-‘(e)1 = K. Again by Theorem 1.5 there exists 

a clopen neighborhood C of 0 in (G/t,G)# such that C\ B is infinite. So 

V,=@-‘(C) is as required. 0 

Now since K has countable cofinality, we may pick a sequence of regular uncoun- 

table cardinals K~<K~<...<Ic,,<+.. such that sup,, K, = K. Put U, = 0. By induction 

on n E t?4 we will construct an integer m,, a clopen neighborhood U,, of t,“G and 

a closed discrete set A, c (A n t,” G) \ U,, ~, such that 

(1) m,<m,<...<m,<...; 
(2) the numbers m, and n + 1 are factors of m, + I for every n; 
(3) u, c u, Lz ... c u, L . . . . 
(4) for every n, IA,, 1 = K,; 
(5) for every n, IA \ U, ( = K. 
Since K, is regular and uncountable, there exists ml E N such that IA fl t,,,,Gl “_Ic~. 

By Lemma 2.3 there is a closed and discrete set Al c A fl tmlG such that IA, / = K~. 

By the Claim there is a clopen neighborhood V of t,,G such that A \ V is of car- 

dinality K. Put U, = VU U, . Now by applying the Claim inductively and by noting 
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that if IA fl t,GI ZZK then IA tl t,,G( ZK for every s, it is clear how to construct 

the other m,‘s, Un’s and A,‘s in precisely the same way. 

Observe that the collection {U,,\ U,_ 1 : n E N} is a clopen partition of G#. Since 

for every n, A,, c U,\ U,_ , we obtain that U,,, A, is a closed and discrete subset 

of A of size K. 0 

Proposition 2.5. If G is an abeiian group and A c G# then A contains a closed (in 
G # ) and discrete subset B of size 1 A / , 

Proof. For convenience, put K = /A ( . As remarked at the beginning of this section, 

we may assume that K > o. Consider the natural homomorphism @ : G--t G/tG. 
Observe that G/tG is torsion free. So if ]@[A] [ = K then @[A] contains a closed and 

discrete subset of cardinality K by Corollary 2.2. By continuity of @ this then implies 

that A contains a closed (in G#) and discrete subset of cardinality K. Therefore 

assume that /@[A] 1 c K. Fix a subset B of A such that @[B] = q3 [A] and 0 is one-to- 

one on B. For b E B let Ab= (A -b) n tG and again observe that A, + b = 
@-‘(@(b))nA. ThenA=UbEB (Ab+b), so that IAl =supbEB lAbj because /B~<K. 

Case 1: For all b we have IA,1 < /A). Now we may thin out B to a subset C of 

size cf([Aj) such that for every subset D of C of size cf(lA/) we have /Al = 
supbED lAbI. We take D c C of size IC ( such that @[D] is closed and discrete in 

(G/tG)#. It is clear that we can use Proposition 2.4 to find for every b ED a closed 

and discrete subset Ai of Ab such that IAl =supbED IALl. Then UbED AL+ b is 

closed and discrete and has the right cardinality. 

Case 2: For some b we have IAbJ = IAJ. Apply Proposition 2.4. 0 

3. Construction of Example 0.2 

One of the reasons that the topology of G # is difficult to deal with, is that 

Hom(G,T) is always big, and usually has a complicated structure. However, its 

structure is not always complicated. For example, let G be a Boolean group, i.e., 

a group in which every point has order at most 2. Then each homomorphism 

@ : G + T has finite range, and a moment’s reflection proves the following: 

Theorem 3.1. Let G be a Boolean group. Then the collection 

(E: E is a subgroup of G with finite index} 

is a local basis at 0 E G # consisting of clopen sets. 0 

Of course a similar result can be derived for all groups G for which there exists 

an n such that G = t, G. So now let G be any infinite Boolean group. Let H be a 

maximal independent subset of G. By Lemma 1.1, ((H)) = G, so H is infinite. We 

will first prove that D = (H+ H)\ (0) ’ is d iscrete. Indeed, pick distinct elements x 
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and y in H. Then by the independence of H, x + y $ ((H\ {x, y> 2. Since ((H\ {x, y} 8 

is closed [1,2.1], there exists disjoint open neighborhoods U and I/ of x and y, 

respectively, such that (U+ V) fl ((H\ {x, Y}>> = 0. Since H is discrete, Lemma 1.4, 

we may assume without loss of generality that U fl H = {x} and V n H = ( y} . Now 

put W=(x+ V)tl (y+ U). Then W is a neighborhood of x+y and we claim that 

Wn((H+H)\{O})={x+y}. To this end, suppose that a+b~ W for a,b~H. 

Observe that a#b. We will prove that {a, b} = {x, y}. If {a, b) fl {x, y) = 0, then 

a+ b E ((H\ {X9 Y>>> n w c ((H\ {XT Y>>> f) (u+ v) = 0, 

which is a contradiction. So we may assume without loss of generality that e.g., 

a = x. There exists LI E I/ such that a + b =x + u. Consequently, 

as required. 

We will next prove that 0 ED. This is easy. Indeed, let E be a basic neighborhood 

of 0 in G#, i.e., E is a subgroup of G with finite index. There is a translate of E, 

say x + E, that contains two distinct points of H, say CI and 6. Then a + b E E n D. 
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