A HOMEOMORPHISM ON S NOT CONJUGATE TO AN EXTENDABLE HOMEOMORPHISM

JAN VAN MILL

(Communicated by James E. West)

Dedicated to Profesor Yukihiro Kodama on his sixtieth birthday

ABSTRACT. Consider $s=\prod_{i=1}^{\infty}(-1,1)_i$ and its compactification $Q=\prod_{i=1}^{\infty}[-1,1]_i$. Anderson and Bing asked whether for every homeomorphism $f:s\to s$ there is a homeomorphism $\phi:s\to s$ such that $\phi^{-1}f\phi$ is extendable to a homeomorphism $\overline{\phi^{-1}f\phi}\colon Q\to Q$. The aim of this note is to construct a counterexample to this question.

1. Introduction

Consider $s = \prod_{i=1}^{\infty} (-1, 1)_i$ and its compactification

$$Q = \prod_{i=1}^{\infty} [-1, 1]_i.$$

A homeomorphism $f: s \to s$ is said to be conjugate to an extendable homeomorphism if there is a homeomorphism $\phi: s \to s$ such that $\phi^{-1}f\phi$ is extendable to a homeomorphism $\overline{\phi^{-1}f\phi}: Q \to Q$. In [1], Anderson and Bing asked whether every homeomorphism on s is conjugate to an extendable homeomorphism. Sakai and Wong [5] recently presented several conditions that imply that a homeomorphism on s satisfying one of them is conjugate to an extendable homeomorphism.

The corresponding finite-dimensional problem, replacing s by $\{x \in \mathbb{R}^n : ||x|| < 1\}$ and Q by $\{x \in \mathbb{R}^n : ||x|| \le 1\}$, has a simple negative answer for every $n \ge 2$. For details, see [5]. We remark that Eric van Douwen communicated a similar solution to us at least 5 years ago.

Received by the editors March 18, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 57N20.

Key words and phrases. Hilbert cube, isotopy, conjugation, capset.

This note was written during a visit to Japan in February 1988. I am indebted to the Department of Mathematics of the University of Tsukuba for generous hospitality and support.

The aim of this note is to present an example of a homeomorphism on s which is not conjugate to an extendable homeomorphism, thereby answering the Anderson and Bing question in the negative.

2. The construction

Let X be a space. An *isotopy* on X is a homotopy $H: X \times I \to X$ such that the function $\phi: X \times I \to X \times I$ defined by

$$\phi(x,t) = (H(x,t),t), \qquad (x \in X, t \in I)$$

is a homeomorphism. Observe that if $H: X \times I \to X$ is an isotopy then for every $t \in I$ the function $H_i: X \to X$ defined by

$$H_{\star}(x) = H(x, t), \qquad (x \in X)$$

is a homeomorphism.

A Hilbert cube is a space homeomorphic to Q. Let M be a Hilbert cube. A capset of M is a subset $A \subseteq M$ for which there is a homeomorphism $f \colon M \to Q$ such that $f(A) = Q \setminus s$. In addition, a closed set B of M is called a Z-set if for every $\varepsilon > 0$ there is a map $f \colon M \to M \setminus B$ with $d(f, 1_M) < \varepsilon$ (1_X means the identity function on X). It is known that if $A \subseteq M$ is a capset and $B \subseteq M$ is a Z-set then $A \setminus B$ is a capset (for details see [2] and [3]).

We shall now describe a special isotopy on s that shall be important later in the construction of the example.

- 2.1. **Proposition.** There are an isotopy $H: s \times I \rightarrow s$ on s and two compact sets $A, B \subseteq s$ such that
 - (1) $H_0 = 1$;
 - (2) if $E \subseteq s$ is closed and misses A and if U is a neighborhood of B in s then there is an $n \in \mathbb{N}$ such that $(H_1)^n(E) \subseteq U$.

Proof. There is an isotopy $F: I \times I \rightarrow I$ such that

- (3) $F_0 = 1_I$,
- (4) for every $t \in I$, $F_{t}(0) = 0$ and $F_{t}(1) = 1$,
- (5) $\forall t \in (0, 1], \lim_{n \to \infty} (F_1)^n (t) = 1.$

For example, F can be defined by $F(s, t) = (1 - t)s + t\sqrt{s}$.

Put $\vec{Q} = Q \times I$. The isotopy F induces an isotopy $G: \vec{Q} \times I \to \vec{Q}$ as follows:

$$G((x, s), t) = (x, F_t(s)), \quad (x \in Q, t, s \in I).$$

Since $Q \times \{0,1\}$ is a Z-set in \vec{Q} and $\vec{Q} \setminus (s \times (0,1))$ is clearly a capset of \vec{Q} , by the remarks preceding Proposition 2.1, $X = (s \times (0,1)) \cup (Q \times \{0,1\})$ is the complement of a capset in \vec{Q} , and hence is homeomorphic to s. We shall construct the required isotopy on X.

Observe that by (4), $G(X \times I) = X$. Consequently, $H = G|(X \times I)$ is an isotopy on X. Define $A = Q \times \{0\}$ and $B = Q \times \{1\}$, respectively. We shall prove that H, A and B satisfy (1) and (2). Of course, only (2) needs

JAN van MILL

verification. To this end, let $E \subseteq X$ be closed such that $E \cap A = \emptyset$, and let U be an open neighborhood of B in X. Then $\overline{E} \cap A = \emptyset$ (\overline{E} is the closure of E in \overline{Q}) because A is compact. So there exists an element $t \in (0,1]$ with $\overline{E} \subseteq Q \times [t,1]$. Let $U' \subseteq \overline{Q}$ be open such that $U' \cap X = U$. There is an element $s \in (0,1)$ such that $Q \times [s,1] \subseteq U'$. By (5) there exists $n \in \mathbb{N}$ with $(F_1)^n(t) \ge s$. Then clearly $(G_1)^n(\overline{E}) \subseteq U'$, i.e. $(H_1)^n(E) \subseteq U$.

Now for $n \in \mathbb{N}$ let $x_n = (1, 1/n) \in \mathbb{R}^2$. The straight line segment connecting (0,0) and x_n will be denoted by T_n . Let T denote the subspace $\bigcup_{n=1}^{\infty} T_n$ of \mathbb{R}^2 . We define a homeomorphism $\xi \colon T \times s \to T \times s$ as follows. On $\{(0,0)\} \times s$, ξ is the homeomorphism H_1 of Propostion 2.1 (we make an obvious identification here). For every n, $\xi | \{x_n\} \times s$ is the identity. We use the isotopy of Proposition 2.1 to "connect" $\xi | \{(0,0)\} \times s$ and $\xi | \{x_n\} \times s$ for every n. Clearly, the resulting function is a homeomorphism.

The space T is contractible, locally contractible and 1-dimensional. Consequently, T is an AR ([4]). Since T is also topologically complete, by a theorem of Toruńczyk [6], $T \times s$ is homeomorphic to s; let $h: s \to T \times s$ be any homeomorphism. Then

$$\eta = h^{-1} \circ \xi \circ h : s \to s$$

is a homeomorphism and we claim that it is as desired.

2.2. **Proposition.** η is not conjugate to an extendable homeomorphism.

Proof. To the contrary, assume that there exists a homeomorphism $f: s \to s$ such that $f^{-1}\eta f = f^{-1}h^{-1}\xi hf$ is extendable to a homeomorphism $\rho\colon Q\to Q$. It will be convenient to let g denote the composition $h\circ f\colon s\to T\times s$. Let $\underline{0}$ be the point in s all coordinates of which are equal to 0. For every n, let $p_n=g_n^{-1}(x_n,\underline{0})$ and let $p\in Q$ be a limit point of the sequence $(p_n)_n$. Observe that $\{p_n\colon n\in \mathbb{N}\}$ is closed in s so that $p\notin s$. Also observe that every p_n is a fixed point of $g^{-1}\xi g$ from which it follows that p is a fixed point of ρ .

Claim.
$$p \notin \overline{g^{-1}(\{\underline{0}\} \times s)}$$
.

To the contrary, assume that $p \in \overline{g^{-1}(\{\underline{0}\} \times s)}$. Since A and B are compact and $p \notin g^{-1}(\{\underline{0}\} \times s)$ there are open neighborhoods U and V of A and B in s, respectively, such that

$$p \notin \overline{g^{-1}(\{\underline{0}\} \times (U \cup V))}$$
.

Put $E = s \setminus (U \cup V)$. Then E is closed in s, misses A, and clearly has the property that $p \in g^{-1}(\{\underline{0}\} \times E)$. By Proposition 2.1 there exists $n \in \mathbb{N}$ such that $(H_1)^n(E) \subset V$. This implies that

$$\begin{split} (g^{-1}\xi g)^n (g^{-1}(\{\underline{0}\}\times E)) &= g^{-1}\xi^n g(g^{-1}(\{\underline{0}\}\times E)) \\ &= g^{-1}\xi^n (\{\underline{0}\}\times E) \subseteq g^{-1}(\{\underline{0}\}\times V). \end{split}$$

Consequently,

$$\rho^{n}(p) \in \overline{\rho^{n}(g^{-1}(\{\underline{0}\} \times E))} \subseteq \overline{g^{-1}(\{\underline{0}\} \times V)} \subseteq Q \setminus \{p\}.$$

But this contradicts the fact that p is a fixed point of ρ .

By the claim there is an open neighborhood U of p in Q such that

- $(1) \ U \cap (g^{-1}(\{\underline{0}\} \times s)) = \varnothing;$
- (2) $U \cap s$ is connected

(simply let U be a basic open subcube of Q containing p but missing $g^{-1}(\{\underline{0}\} \times s)$). Observe that $U \cap s$ contains infinitely many p_n 's. Consequently, $g(U \cap s)$ is a connected open subset of $T \times s$ which misses $\{\underline{0}\} \times s$ and contains infinitely many $(x_n, \underline{0})$'s. This is clearly a contradiction.

2.3. **Question.** Is every homeomorphism on s the composition of two conjugates of extendable homeomorphisms?

REFERENCES

- 1. R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable product of lines, Bull. Amer. Math. Soc. 74 (1968), 771-792.
- C. Bessaga and A. Pełczyński, Selected topics in infinite-dimensional topology, Polish Sci. Publ., Warsaw, 1975.
- 3. T. A. Chapman, *Dense sigma-compact subset of infinite-dimensional manifolds*, Trans. Amer. Math. Soc. **154** (1971), 399-426.
- 4. S. T. Hu, The theory of retracts, Wayne State University Press, 1965.
- 5. K. Sakai and R. Y. T. Wong, Conjugating homeomorphisms to uniform homeomorphisms, Trans. Amer. Math. Soc. (to appear).
- H. Toruńczyk, Absolute retracts as factors of normed linear spaces, Fund. Math. 86 (1974), 53-67.

FACULTEIT WISKUNDE EN INFORMATICA, VRIJE UNIVERSITEIT, DE BOELELAAN 1081, 1081 HV AMSTERDAM, THE NETHERLANDS

FACULTEIT WISKUNDE EN INFORMATICA, UNIVERSITEIT VAN AMSTERDAM, ROETERS STRAAT 15, 1018 WB AMSTERDAM, THE NETHERLANDS