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ABSTRACT. Consider s = Hf:l (=1,1), and its compactification Q =
Hf:l[—l, 1], . Anderson and Bing asked whether for every homeomorphism
f:s — s there is a homeomorphism ¢:s — s such that ¢~!f$ is extendable

to a homeomorphism ¢~!f¢: Q — Q. The aim of this note is to construct a
counterexample to this question.

1. INTRODUCTION

Consider s =[], (~1,1), and its compactification

o=[[t-1.13,

1=1

A homeomorphism f:s — s is said to be conjugate to an extendable homeo-
morphism if there is a homeomorphism ¢: s — s such that d)_l fé is extend-

able to a homeomorphism ¢~ ' f¢: Q — Q. In [1], Anderson and Bing asked
whether every homeomorphism on s is conjugate to an extendable homeomor-
phism. Sakai and Wong [5] recently presented several conditions that imply that
a homeomorphism on s satisfying one of them is conjugate to an extendable
homeomorphism.

The corresponding finite-dimensional problem, replacing s by {x € R": || x|
<1} and Q by {x € R":|x| < 1}, has a simple negative answer for every
n > 2. For details, see [5]. We remark that Eric van Douwen communicated a
similar solution to us at least 5 years ago.
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The aim of this note is to present an example of a homeomorphism on s
which is not conjugate to an extendable homeomorphism, thereby answering
the Anderson and Bing question in the negative.

2. THE CONSTRUCTION

Let X be a space. An isotopy on X is a homotopy H: X x I — X such
that the function ¢: X x I — X x I defined by

o(x,t)=(H(x,t),t), (xeX,tel)

is a homeomorphism. Observe that if H: X x I — X is an isotopy then for
every t € I the function H,: X — X defined by

H,(x)=H(x,1), (x e X)

is a homeomorphism.

A Hilbert cube is a space homeomorphic to Q. Let M be a Hilbert cube.
A capset of M is a subset 4 C M for which there is a homeomorphism
f: M — Q such that f(A4) = Q\s. In addition, a closed set B of M is called
a Z-set if for every ¢ > 0 there isamap f: M — M\B with d(f,1,,) <e¢
(1, means the identity function on X). It is known that if 4 C M is a capset
and B C M isa Z-set then A\B is a capset (for details see [2] and [3]).

We shall now describe a special isotopy on s that shall be important later in
the construction of the example.

2.1. Proposition. There are an isotopy H: s x I — s on s and two compact
sets A,B Cs such that
(1) H() = 15;
(2) if E Cs is closed and misses A and if U is a neighborhood of B in s
then there is an n € N such that (H,)"(E)C U.

Proof. There is an isotopy F:I x I — I such that
(3) F,=1,,
(4) forevery tel, F (0)=0 and F/(1)=1,
(5) vte€(0,1], lim,_,_ (F)"(t)=1.
For example, F can be defined by F(s,?) = (1 —1)s +t/s.
Put 0 = OxI. Theisotopy F induces an isotopy G: OxI — @ as follows:

G((x,s),t)=(x,F,/s)), (xeQ,t,sel).

Since Q x {0,1} isa Z-setin J and O\(s x (0, 1)) is clearly a capset of g,
by the remarks preceding Proposition 2.1, X = (s x (0,1))U(Q x {0,1}) is
the complement of a capset in J, and hence is homeomorphic to s. We shall
construct the required isotopy on X .

Observe that by (4), G(X x I) = X. Consequently, H = G|(X x I) is an
isotopy on X. Define 4 = Q x {0} and B = Q x {1}, respectively. We
shall prove that H,A4 and B satisfy (1) and (2). Of course, only (2) needs
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verification. To this end, let £ C X be closed such that EN A4 = &, and let
U be an open neighborhood of B in X. Then ENA =& (E is the closure
of E in J) because A is compact. So there exists an element ¢ € (0, 1] with
E C Qx|[t,1]. Let U C J be open such that U' N X = U. There is an
element s € (0, 1) such that Q x [s,1] C U’. By (5) there exists n € N with
(F))"(t) > s. Then clearly (G,)"(E)C U’ ,i.e. (H)"(E)CU.

Now for n € N let x, = (1,1/n) € R®. The straight line segment con-
necting (0,0) and x, will be denoted by 7,. Let T denote the subspace
U:‘;l T, of R’. We define a homeomorphism &: T xs — T x s as follows.
On {(0,0)} xs, & is the homeomorphism H, of Propostion 2.1 (we make an
obvious identification here). For every n, ¢[{x,} x s is the identity. We use
the isotopy of Proposition 2.1 to “connect” £|{(0,0)} x s and ¢|{x,} x s for
every n. Clearly, the resulting function is a homeomorphism.

The space T is contractible, locally contractible and 1-dimensional. Con-
sequently, T is an AR ([4])." Since T is also topologically complete, by a
theorem of Torunczyk [6], T x s is homeomorphic to s;let A:s — T x s be
any homeomorphism. Then

—1
n=h oloh:s—s
is a homeomorphism and we claim that it is as desired.

2.2. Proposition. n is not conjugate to an extendable homeomorphism.

Proof. To the contrary, assume that there exists a homeomorphism f:s — s
such that f_lnf = f_lh_léhf is extendable to a homeomorphism p: Q — Q.
It will be convenient to let g denote the composition Ao f:5s — T x 5. Let
0 be the point in s all coordinates of which are equal to 0. For every n, let
p,= &, l(xn ,0) andlet p € Q be alimit point of the sequence (p,), . Observe
that {p, :n € N} isclosed in s so that p ¢ 5. Also observe that every p, is
a fixed point of g_lég from which it follows that p is a fixed point of p.

Claim. p ¢ g~ ' ({0} xs).

To the contrary, assume that p € g~ ({0} x 5). Since 4 and B are compact
and p ¢ g_l({Q} x §) there are open neighborhoods U and V of 4 and B
in s, respectively, such that

p¢g (O xUuy).
Put E =s\(UUV). Then E is closed in s, misses A, and clearly has the

property that p € g'l({Q} x E). By Proposition 2.1 there exists n» € N such
that (H,)"(E) c V. This implies that

(g7'¢8)" (7 ({0} x E)) = g '&"g(g ™' ({0} x E))
=g 'E"{O xE)C g ({0} x V).
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Consequently,

p"(p) € p"(g7 ({0} x E)) € 87 '({0} x V') € Q\{p}.
But this contradicts the fact that p is a fixed point of p.
By the claim there is an open neighborhood U of p in Q such that

(1) Un(g™ ({0} x9)) = 2;

(2) Uns is connected
(simply let U be a basic open subcube of Q containing p but missing
g_l({Q} x 5)). Observe that U N's contains infinitely many p, ’s. Conse-
quently, g(UNs) is a connected open subset of 7 x s which misses {0} x s
and contains infinitely many (x,,0)’s. This is clearly a contradiction.

2.3. Question. Is every homeomorphism on s the composition of two conju-
gates of extendable homeomorphisms?
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