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Hilbert cube Q-matrix function space 

Introduction 

Let X be a space. Consider the spaces 

and 

C,*(X) = {f~ [w x If is continuous and bounded} 

C,(X) = {fE IR x If is continuous} 

as subspaces of Iwx. 

In [6] van Mill showed that for a countable metric space which is not locally 

compact, C%(X) = a,,,, where 

VW = (IF)” and $={xE 1’1 x, = 0 for all but finitely many i} 

(1* denotes Hilbert space). 
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In his paper van Mill used results on Q-matrices and results of [8,9]. The aim 

of this paper is to prove that C,(X) = o;, by the same methods, and to give examples 

of countable metric spaces X and Y which are not locally compact such that C,,(X) 

and C,,( Y) are not linearly homeomorphic. 

Observe that C,*(X) = C,,(X) for X as above whereas these two spaces are not 

even uniformly isomorphic provided X is not compact. 

Section 1 contains some definitions and theorems that we need in Section 2, where 

we will prove that C,,(X) = a,. In Section 2 we also sketch an alternative proof that 

C,(X) = UW. In Section 3 we give examples of spaces X and Y such that C,,(X) 

and C,,(Y) are not linearly homeomorphic. 

1. Preliminaries 

Consider the Hilbert cube Q = nT=, [-1, 11, with the metric 

d(x, VI = ,j 2qx, _Yil. 

A space which is homeomorphic to Q is called a Hilbert cube. If two spaces X and 

Y are homeomorphic we will use the symbol X = Y. 

Let X and Y be compact spaces (by a space we mean a separable metric space). 

Put 

C(X, Y)={f:X+ Ylfiscontinuous) 

and 

R( Y) = {f: Y + Y If is a homeomorphism}. 

The topology on both spaces is derived from the metric 

d^(f,g)= suP{d(f(x),g(x))lxEX}, 

where d is an admissible metric on Y. 

Let A be a closed subspace of X. A is a Z-set in X iff for every f E C(Q, X) and 

for every e > 0, there is a g E C( Q, X) such that 

(I) J(s,,)<&, 

(2) g(Q)nA=0. 
Notation: A E S(X). 

1.1. Lemma. Let AC Q with nj(A)#[-1, l] for injinitely many j, then AE 

Z(Q) ( 7rj : Q + [ -1, l] is the projection on the jth coordinate). 

Let {AJncN be an increasing family of Z-sets in X. Then {A,}, EN is a skeleton 

in X iff for every E > 0, for every n E N and for every Z E .5?(X), there are h E E(X) 

and m EN such that 

(I) &, I) < E, 
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(2) h 1% = 1, 
(3) h(Z) c A,. 
The above definitions and the lemma can be found in [3]. The next three definitions 

are due to van Mill [6]. 

A %matrix in X is a collection & = {A:) n, m EN} of Z-sets in X such that for 

every m, n E N, 

(1) A:=@, 

(2) A; = A:+, , 
(3) A;+‘c A;. 

Define the kernel of .d by ker d = nq=, l.J~=, A:. 

Let ti = {A: 1 n, m EN} be a Z-matrix in Q. Then & is a Q-matrix iff S has the 

following properties: 

(1) Vn EN: {A:},?, is a skeleton in Q, 

and Vn, < . . . <n,EN and Vi ,,.. ., i,,~N\{l}: 

(2) fI,“=, A? = Q, 
(3) Vp E N: {ny=, A> n A~,~~tp}l_, is a skeleton in n,“;, A?, 

(4) Vn EN and Vm E N\(l): n;=, A? g A,“+n;=:‘,, A? n A,” E %(n;=, A:;). 

In [6] van Mill proved the following theorem. 

1.2. Theorem. If d is a Q-matrix, then ker & = a,. 

Van Mill used this theorem to prove that if X is a countable metric space which 

is not locally compact, then C,*(X) = a,,,. The strategy of the proof is the following: 

First a nice subspace T of X is constructed and a Q-matrix 3 is found such that 

ker %I = C,*(T). So by Theorem 1.2 it follows that C,*(T) = c,,,. Then by applying 

strong results of [S, 91 he uses this result to derive that C,*(X) = a,. By the same 

strategy we will prove that C,,(X)-a,. 

Let & = {A: 1 n, m EN} be a T-matrix and let A2, and A$? be in ti such that 

n,<n,andm,~m,.ThenA~,cA”,I,soA~,nA~,=A~,.Soforn,<...<n,~~ 

and i I,‘.., i, E N\{ 1) we may assume i, < . . . < i,if we are interested in n;“=, A?. 

The next theorem can be found in [3]. It will be used in Section 2. 

1.3. Theorem. If {A,}i,N is an increasing family of Z-sets in Q such that 

(1) VI‘EN: Ai~9’(Ai+,), 

(2) Vi E N: Ai is convex and infinite-dimensional, 

(3) LJy=“=, Ai is dense in Q, 

then {AIrEN is a skeleton in Q. 

2. Homeomorphic function spaces 

In this section we will prove that for a countable metric space X which is not 

locally compact the function space C,,(X) is homeomorphic to uU. First we define 
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a test space T in the following way: T = N2 u {a}, where each point of N2 is isolated 

and {({n, n + 1,. . .> xN) u {CO>>,,, is an open base at 00. 

Let CJT) = {f~ C,(T) If(a) = 0). We shall identify C,(T) with its subspace 

if: T+ (-I, I) If is continuous}. Let P =ny=, Qi, where Qi = Q for every iE N. 

Notice that P is a Hilbert cube. We can embed C,,,,(T) into P by the embedding 

4 : C,,,(T) + P defined by 

4(f), =flG> x NJ. 

Let Z=[-1,1],Z,=[-1+1/m,1-1/m]foreverym~Nand 

B(E)=~:=,[--E,F]~ foreveryc>O. 

For every n, m EN define A; = 0 and 

Ai=ny=i”=, ((Zm)“XZX ZX.. *)iXnyem+l Bi(z-“)c nT=l Q<=P. 

Let zZ={AzIn, mcN}. 

2.1. Lemma. ker ti = C,,,,J T). 

Proof. Let f E ker ti and (i, j) E N2. By f( i, j) we mean the jth coordinate of Qj. 

Since f E u”,=, A’,,,, thereismEN withf~A’,.Ifi~m,thenf(i,j)EZ,,,c(-I,l) 

and if i>m, thenf(i,j)E[-2-i,2-i]c(-l, 1). So f is well defined. 

Now we prove that f: T + (-1,l) is continuous. Therefore we only have to prove 

that f is continuous at ~0. Let E > 0 and n E ZV such that 2-” < F. Let m E FV such that 

f E AZ. Then 1 f( i, j) I G 2-” < E for i > m and j E N. So f is continuous at ~0. Con- 

versely let f E C,,,(T) and n E N. There is m, E N with If (i, j) I < 2-” for i > m, and 

j~~.Thereism2~~suchthatforeveryi~m,andj~nwehave~f(i,j)~~l-l/m2. 

Let m = max(m, , m2). Then f E A”, . 0 

2.2. Lemma. d is a %-matrix in P. 

Proof. By Lemma 1.1 we have for every n, m EN that A”, E 2(P). It is clear that 

foreveryn,mEl$A~cA~+,andA~+‘cA~. 0 

2.3. Lemma. d is a Q-matrix in P. 

Proof. By Lemma 1.1 we have for every E >O and 8 <e that B(6) E ~(B(F)). 

Claim 1. Vn EN: {A:},,, is a skeleton in Z? 

By Lemma 1.1 we have for every n, m EN that ALE~.E(P) and A~E~(A~+,). 

Because each AC (m > 2) is a product of nondegenerate intervals, it is convex and 

infinite-dimensional. It is easy to verify that for every n EN, IJ”,=, A”, is dense in 

Z? By Theorem 1.3 we have for every n EN that {AZ},,, is a skeleton in Z? 

Now let n,<. ..<~,EN and i,,..., i, E N\(l). We may assume i, <. . . < i,. 
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Claim 2. n;=, A? = P. 

Because A?$1 = f-l:=, A:;, nz=, A:; is a product of intervals and A:; = P we have 

n;_, A? = P 

Claim 3. Vp E N: {n;=, AZ n A :~~~tP}iD, is a skeleton in n;,, A:;. 

Let p EN and i E N\{ l}. Let k be greater than max( i, i,). The kth factor space of 

n;=, AZ is B(2P”,t,) and the kth factor space of n;=, A:; n A:,‘)+” is B(2-“,,~7, 

so by Lemma 2.1 we have nL, A:; n A:,~,+“E z(f):;, A:;). If is i,, then the 

(i + 1)th factor space of n;=, A? n A:~~~+” is B(2-“,), -“) and the (i + 1)th factor space 

of n;=, A? n A:?:” is B(2P”*‘l). If there is an 1 G m such that i,_, < i + 1 s i, (i, = l), 

then the (i-t 1)th factor space of f-j;=, A? n Ai n,t~tp is a Z-set in the (i-t 1)th factor 

space of n;=, A; n A:Y:“. We conclude that for every i E N\(l), n;_, A:; n 

A:,-+” E %(n;=, A: n A:$” ). The rest of the claim can be proved as in Claim 1. 

Claim 4. t/s EN and Vt E N\{ 1): 

Ifs > n,, then n;=, AZ n A: E 2yn;z, A:;) by Claim 3. Ifs G n,, there is k< m 

such that ?tk_r <s s nk (let n,= 0). This implies t < ik. So there is 1 EN such that 

i,_, < I + 1 G i, ( i0 = 0). The (t + 1)th factor space of n;=, A? is B(2P”1-1) and the 

(t+ 1)th factor space of f-j;=, A:; n Ai is B(2-“), because s > n,_, . So n;=, Ai: n 
A; E %(n;=, A?). 

By Claims l-4 we have that ,d is a Q-matrix. 0 

2.4. Corollary. C,,,,( T) = a,,, . 

Proof. This follows immediately from the Lemmas 2.1, 2.3 and Theorem 1.2. 0 

2.5. Theorem. Let X be a countable metric space which is not locally compact. Then 

C,(X) = g<,,. 

Proof. In [6] van Mill proved that C&(T)=uW, where 

C:o( T) = {f~ C,*( T) (f(a) = 01. 

By using results of [S, 91, he derived from this fact that C$(X) = a,,,. By using the 

same technique it follows from Corollary 2.4 that C,(X) = a,. II 

Remark. Let X be a countable metric space which is not locally compact at x0. It 

is possible to find a Q-matrix & such that ker ti = C,,,(X), where 

C,.“(X) = {fE C,(X) k-b”) = 01. 

From this it follows that C,(X) = C,,,(X) x R = a, x R = u,,,. The same can be done 

for C,*(X). These results can be found in [2]. 
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Remark. We are indebted to the referee for providing us with the Q-matrix for 

C,,“(T) presented in this section. This Q-matrix is much simpler than the one 

originally constructed in [2]. 

3. Function spaces that are not linearly homeomorphic 

In Section 2 we proved that for countable metric spaces X and Y which are both 

not locally compact, the spaces C,,(X) and C,,( Y) are homeomorphic. In the present 

section we shall construct countable metric spaces X,, X2 and X, which are not 

locally compact, such that C,,(X,) and C,(Xj) are not linearly homeomorphic for 

i #j. First we derive the following theorem. 

3.1. Theorem. Let M be a countable metric space which is not locally compact. If M 

contains an injinite closed discrete set of non isolated points, then C,(T) and C,,(M) 

are not linearly homeomorphic. 

Proof. Let A = {x, , x2,. . .} be a closed discrete set of non isolated points in M. For 

every n E N, let { Uy Ij E lU} be a clopen base for x,, such that U;1,1 n U~,Z = 0 if n, f n2 

and j, , j, E N (this is possible since A is closed discrete and M is zero-dimensional). 

Now suppose that 4 : C,,(M) + C,,J T) is a linear homeomorphism. Let g: be the 

characteristic function of Ur on M. Since Uy is clopen, gy E C,,(M). Furthermore 

let hr = 4( gy) E C,,,( T). 

Claim 1. For every n E N and for every t E T, the set {hJ( t) Ij E N} is bounded. 

Suppose the contrary. Without loss of generality we may assume that hJ( t) 2 0 

for every j E N. Then for every k E N, there is j, E N such that hJ,( t) 3 2k. Notice that 

,~=~~=, 2-kgz E C,,(M). But then 4(f) =Cy=‘=, 2-hhy, E C,,JT). Since 4(f)(t) = 

C;?3_, 2Pk hTk( t) is divergent, we have a contradiction. 

Claim 2. For every t E T there are only finitely many n E N such that there is j, EN 

with hT,( t) # 0. 

Suppose there is t E T such that there are infinitely many n E N, say n, , n,, . . . with 

the property that for every i EN, there is ji EN such that hT,( t) f 0. Without loss of 

generality we may assume that hIg( t) > 0 for every i E N. Let hi = (hI,( t))-‘. Notice 

that f=CTL, A,gI,E C,,(M),so 4(f)=Cy=“=, A,hIrE C&T). Since 4(f)(r) = 
Cp= 1 h,h;j (t) = CT=, 1 is divergent, we have a contradiction. 

Now let n EN. Then gy + xix,,) (the characteristic function of {x,}) pointwise 

(j + co). Observe that x~_~,,~ is not continuous, since x, is a non isolated point. For 

every n EN we define a sequence (fE)k& in C,,,(T) as follows: Since T is countable, 

we can enumerate the elements of T\(W) as {t, , t2, . . . }. Inductively for every I E N, 

we find converging sequences (h2( t,)) kcN as follows: Since {hq( t,) 1 j E N} is bounded 

(Claim l), there is a converging subsequence (hy;(tI))kcN. Suppose the sequence is 

found for i = 1, . . . , 1. Since {hA(t,+,) 1 kEN} is bounded (Claim l), there is a 

converging subsequence (h?;l( t,+,))k.FN. 
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Now let f; = h> (k E N). By construction, for every 1 E T, a,,(t) = lim,,, f i(f) 
exists. So a,, : T-, R is well defined. Observe that (T,(W) = 0. Suppose v,, is continuous. 

Then f E + un in C,,,(T). Since 4-l is continuous, 4-‘( f t) = g> + CJ-'(~,,) in C,,(M), 

so xcX-,,, = limk+, gy; is continuous; a contradiction. 

Since (T, is well defined and T\(a) is discrete, (T, is discontinuous at 00. It follows 

that there is a sequence (Y;),,~ in T, converging to 00 such that \a,,( JJ;‘) ( > F, for 

some E, > 0 and for every 1 EN. Since 4 is linear we may assume that E,, = 1 for 

every n EN. 

We now inductively construct sequences (ni),<_N, (k,),,, in kJ and (f,),rN in T such 

that 

(i) n, < n2 < . . . , 

(ii) I, +a, 

(iii) If ;Z;( t,)l > 1 for every i E N, 

(iv) f~;(t,)=OforeveryiEkJandj<i, 

(v) (f;;(ti)I<1/(2(i-l))foreveryi~FUandj<i, 

as follows: 

Let n, = 1. Since lim k_K I.fl,( y;,)l = I~,,(y;l)( > 1, there is k, EN such that 

/f;;(y~l)l> 1. Let t, =y;,. 

Suppose n,, . . , n,, k,, . . , k, and t,, . . , I, are found. By Claim 2, for everyj d i 

there are only finitely many n E kJ such that f z( t,) # 0 for some m EN. It follows 

that there is nit, > nj such that for every js i and m EN, f :+I([,) = 0, so (i) and (iv) 

are satisfied. Since v;,+l+ a3 (I + ~0) and ,f ;; E C,,,(T) for j s i, there is l,, E bJ such 

that for t,,, =yt;+, we have 

If~;(~l+l)l< l/(24 (js 9, 
and the first coordinate of t,,, is greater than the first coordinates of t,, . . , ti. With 

this tit, (v) is satisfied. 

Finally, since lim,,, If ;,+l(t,+,)l= /a,,+,(t,+,)l> 1, there is k,,, EN such that 

If ;:::(&+,)I> 1, 
so (iii) is satisfied and the induction is completed. By construction (ii) is also satisfied. 

Noticethatby(i),f=C,u;=,~~‘(f~:)EC~(M).S~~(f)=C/“=,f;:EC,,~(T).Since 

by (ii) fi-+oo, 4(f)(t,)+O. But 

b(f)(G)= l,;,I-::ii,,l 
= C fi;(h)+fZ:(c) (by (iv)) 
j-1 

2 IlfUI,)l- l;gf;i(t,)l / 

> l-(i-1)/(2(i-1)) (by(iii)and(v)) 

El-;=;, 

A contradiction. 
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Since C,,,(T) and C,,(T) are linearly homeomorphic, we proved the theorem. q 

Now let Q be the set of rationals and C T = Cy=, T, the topological sum of infinitely 

many copies of T. For convenience let Ooi be the non isolated point in T,. Notice 

that Q and C T are countable metric spaces which are not locally compact. By 

Theorem 3.1 we have the following corollary. 

3.2. Corollary. (a) C,,(Q) and C,,(T) are not linearly homeomorphic. 

(b) C,,(C T) and C,,(T) are not linearly homeomorphic. 

However Theorem 3.1 does not decide whether C,,(Q) and C,,(C T) are linearly 

homeomorphic. In the sequel we will show that this is not the case. First we need 

some results from [I]. 

For every space X let C(X) = {f:X+RIf . IS continuous}. If we endow C(X) 

with the compact-open topology we write C,(X). A subbase for C,,(X) is 

{Ax (K, U) 1 K c X compact and U c R open}, 

where A,(K, U)={fe C(X)(f(K)c U}. 

3.3. Theorem (Arhangelskii [ 11). If 0 : C,,(X) + C,(Y) is a linear homeomorphism, 

then 0 considered as a function from C,(X) + C,( Y) is also a linear homeomorphism. 

Let X and Y be spaces and 0 : C(X) + C( Y) a linear mapping. 

3.4. Definition. For every y E Y, the support of y in X is defined to be the set supp( y) 

of all x E X satisfying the condition that for every neighborhood U of x E X there 

is an f E C(X) such that f(X\ U) c (0) and t3(f )(y) # 0. 

Notice that for every YE Y, supp(y) is closed. 

3.5. Definition. 0 is said to be effective if for every f, g E C(X) and y E Y, such that 

S and g coincide on a neighborhood of supp( y), O(f)(y) = O(g)(y). 

3.6. Proposition (Arhangelskii [l]). Let 8: C,(X) + C,,(Y) be a linear homeo- 

morphism. Then 

(a) 8 is effective, 

(b) for every compact K c Y we have that LJyEK supp( y) is compact. 

Remark. In fact Arhangelskii proved that for every bounded set K c Y (that means 

for every continuous real-valued f on Y, f(K) is bounded in R), UvrK supp( y) 
is bounded in X. For metric spaces we then have the formulation in Proposition 

3.6(b). 

We shall prove that C,,(C T) and C,(Q) are not linearly homeomorphic. To derive 

a contradiction we assume a linear homeomorphism 0: C,(C T) + C,(Q). For the 

proof we need a property which can be found in [4]. 



J. Baars et al. / Topological and linear homeomorphisms 215 

3.7. Definition. Let E be a Banach space and (x,),,,~ a sequence in E. We say that 

x,, +x weakly iff f(x,,) +f(x) for every (norm) continuous linear functional f on E. 

3.8. Definition. A Banach space E has the weak Banach-Saks property iff for every 

sequence (x,),,~ in E such that x, + 0 weakly, there exists a subsequence (x,,~)~~~ 

of (Xn)ntN with IlC’,=, x,,ljII + 0. 

It is easy to see that the weak Banach-Saks property is a property which is 

preserved by linear homeomorphisms and which is hereditary. 

For a space X we denote X”’ the set of accumulation points of X. Inductively 

we can define X’“‘= (X’“-“)‘” for every n EN and X’“‘= nT=, Xtn). 

3.9. Theorem [4, p. 851. Let X be a compact space. Then C,(X) has the weak 

Banach-Saks property ifsX’*’ = @ 

Let K be a copy of ww + 1 in Q and L = U_ K supp( y). Notice that K is compact 

and therefore by Proposition 3.6(b), L is compact. This means that there is p EN 

such that Lc cf=, Ti. Furthermore by Theorem 3.9, C,,(L) has and C,(K) does 

not have the weak Banach-Saks property. 

3.10. Lemma. For everyf, g E C,(Q) with fl K # g 1 K it follows that 

O_‘(f) ( L # 8-‘(g) ( L. 

Proof. Let y E K be such that f(y) # g(y) and let R, and R, be disjoint open 

neighborhoods off(y) and g(y), respectively. Then A&{ y}, R,) and A,({ y}, R,) 

are disjoint open neighborhoods of f and g in C,(Q). So BP’(A,({y}, R,)) and 

/T’(A,({y}, R,)) are disjoint open neighborhoods of F'(f) and B-‘(g) in C,,(C T). 

There consequently exist compact K,, . . . , K,, L,, . . , L, ~1 T and open 

U ,,..., U,,, V ,,..., V,,,cR such that 

and 

We claim there is a z E supp( y) c L such that &‘(f)(z) f O-‘(g)(z) (and then we 

are done). Striving for a contradiction, assume the contrary. 

Foreverysaplet I,={i~n(co,~Ki},J,={j~m(oo,~Li}and 

P, = u (K;n T,)u u (L,n T,). 
it I, jcJ, 
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Then P, is compact in T, and 00, SZ P,, so F’, is finite. Let P = tJ__ f’,. Then P is 

finite and Pn{co ,,..., CO,,}=@ 

Definef’:C T+IW by 

f’(x) = 

i 

~-‘(f)(x) 

~-‘cf)(~5) 
Define g’:C T+lQ by 

Then f’ and g’ are continuous because T,\P, is a neighborhood of ~3,~. 

ifxEPu f T, 
i=p+, 

ifxE T,\P, forssp. 

ifxEPu f Ti, 
t=p+, 

ifxc T,\P, forscp. 

Claim 1. f’ and g’ coincide on a neighborhood of supp( y). 

Let M={s s p joo, E supp( y)}. Then by assumption we have that for every s E M 

am’ = o-‘(g)(a,). Let u =Clth, T,\l’, u supp(y). Then U is a neighbor- 

hood of supp(y) on which f’ and g’ coincide. 

Now by Claim 1 and the fact that 0 is effective we have e(f’)( y) = B(g’)( y). 

Claim 2. f E ny=, A, T(Ki, U;) and g’ E n,“, , A, I( Lj, Vj). 

Let icn and XE Ki. If XE Pu Cy=,+, T,, then f’(x) = F’(f)(x) E U, because 

6-‘(f) in;=, A,,(K,, U,), and if XE Pu Cy=,+, T, we have x E T5\P, for some 

sop. Because XE Kin T, and x$ P, we have ~0, E K,, so f’(x) = 0-‘(f)(a5) E U,. 

The remaining part of the claim can be proved similarly. 

Now we have e(f’) E A&(y), R,) and 0(g’)E A&(y), R,). But this means 

e(f’)( y) # 8(g’)( y); a contradiction. 0 

Because K c Q is compact and L c C T is compact we can find retractions r : Q + K 

and s : C T + L (see [5]). Define 

+:G(K)+G(L) byIL(f)=~-‘(f”r)IL, 

and 

4:G(L)+G(K) by4(g)=o(g”41K. 

3.11. Lemma. qb is a linear embedding. 

Proof. It is easy to see that qk and q5 are well-defined continuous functions. We 

claim that for every h E C,,(K) we have 4($(h)) = h. To the contrary suppose 

B(~(h)~s)~K#h=(h~r)~K.ByLemma3.10wehave(~(h)~s)(L#8-‘(h~r)(L. 

But this implies 1+9(h) # +(h); a contradiction. It easily follows that + is a linear 

embedding. 0 
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3.12. Proposition. C,,(C T) and C,,(Q) are not linearly homeomorphic. 

Proof. Suppose C,,(C T) and C,,(Q) are linearly homeomorphic. By Theorem 3.3 

C,,(C T) and C,(Q) are linearly homeomorphic. Then by Lemma 3.11 we have a 

linear embedding +: C,,(K) + C,(L). C’,(L) has the weak Banach-Saks property 

which C,,(K) does not have; a contradiction. 0 

Remark. In [7] Pelant proved that the function spaces C,*(T) and C,*(Q) are not 

linearly homeomorphic. His proof does not seem to generalize to get our result that 

C,,(T) and C,,(Q) are not linearly homeomorphic. 

Note added in proof 

Dobrowolski, Gulko and Mogilski recently proved that C,(X) = a; provided X 

is a countable nondiscrete metric space. This result generalizes Theorem 2.5 of the 

present paper. 
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