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Abstract. Let & be an infinite cardinal such that 21°8% = k. We prove that the Cantor
cube 2" contains a dense subgroup D of cardinality £ such that for every subset E of D of
cardinality K we have |E| = 2%.
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0. Introduction. In [3], Priestley showed that there is a countable dense D < 2¢, where ¢ de-
notes the cardinality of the continuum, such that no infinite set E in D converges uniquely to a
point in 2¢. Simon [4] generalized this by showing that there is a countable dense D g 2¢ such
that for every infinite subset E ¢ D we have [El = 2°: the proof is combinatorial and complicated.
He also observed that such a result cannot be obtained for every uncountable cardinal: it is con-
sistent that every infinite subset D of 291 contains an infinite subset E converging to a unique
point in 201,

Let x be an infinite cardinal. As usual, we put log ¥ = min{p < x: 2t 2 x}. We consider 2%
endowed with its canonical Boolean group structure. The aim of this note is to prove the follow-
ing:

0.1. THFOREM: Let x be an infinite cardinal such that 2!°8 X = x. Then 2X contains a dense
subg;oup G of cardinality log K such that for every E < D of cardinality log x we have IE| = 2.

Since log £ = @, this generalizes Simon's result in two ways.

1. The Construction. If G is a group and A ¢ G then «A» denotes the subgroup of G gener-
ated by A. A group is called Boolean if every element has order at most 2. Observe that such a
group is abelian. A subset A of a Boolean group G is called independent if for every a € A we
have a ¢ «<A\{a}».

Our construction depends on the following two simple results.

1.1. LEMMA: Let G be a Boolean group and let A < G be infinite. Then there is an indepen-
dent B < A such that 1Bl = |Al.
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PROOF: Let B be a maximal independent subset of A. For every x € A\B there is a finite Fx ¢
B such that x € «Fy». Since G is Boolean, if F ¢ G is finite then so is «F». Consequently, for
every finite F ¢ B there are at most finitely many x € A\B such that Fx = F. Since A is infinite,
this implies that IBl = |Al.0J

1.2. LEMMA: Let G be a Boolean group and let A < G be independent. Then every function f.
A > {0,1)extends to a homomorphism f: G — {0,1}.

PROOF: Since A is independent, it follows easily that f can be extended to a homomorphism £
«A» — {0,1}. In addition, since G is Boolean, there is a subgroup H < G such that «<A» ® H =
G (let H be a maximal subgroup of G with the property that «A» N H = {0}). Now define f: G
- {0,1} by

fix+y) = ?(x) (x € «A», y € H).
Then f is clearly as required. (]

Now let x be an infinite cardinal such that 2198 X = x. For convenience, put L = log k. Let G be
any Boolean group of cardinality jL. Observe that by lemma 1.1 there is an independent subset A
of G of cardinality p. Since 2 = k we can enumerate the set {A ¢ G: Al = |1 and A is indepen-
dent} as {Ag: § < x} (repetitions permitted). Let { Eg: & < x} be a partition of X into pairwise
disjoint sets of cardinality x. We identify 2X and the product Hg«ZE{. Since the density of 2X is
equal to 1 (Juhdsz [2, 4.5)), for every & < x there is a function fe: Ag — 2E& such that f(Ag) is
dense. By lemma 1.2, we can extend fz to a homomorphism fg: G — 2Et. Now define f: G —
ITg 2B by

f(x)g = Fe(x) E<x).

Observe that f is a homomorphism. Put H = £(G). Observe that H is a closed subgroup of
TMg<x2Be.

1.3. LEMMA: H has weight x.
PROOF: First observe that the weight of H is at most k, being a subspace of H§<x25§. Con-

versely, pick an arbitrary § < x. By construction, H can be mapped onto 2E& which has weight
K. From this we conclude that the weight of H is at least x.[J
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It now follows from Hewitt and Ross [1, 25.22] that H is both topologically and algebraically
isomorphic to 2X. Since, as was remarked above, the density of 2¥ is equal to W and f(G) is dense
in H, we obtain If(G)! 2 .. On the other hand, If(G)! < IGl = p. We conclude that If(G)l = . Now
let B ¢ f(G) be of cardinality p. Clearly, |Bl < 2X.There is a set A < G of cardinality . such that
f(A) = B. By lemma 1.1 there is a § < x with A¢ < A. By construction, f(_A—g) can be mapped
onto 2E¢. We conclude that

Bl If(Ag)l 2 2%.
We are done.
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