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ABSTRACT. We formulate a “partial realization” property and prove that
this property is equivalent to the compact extension property. In addition,
we prove that a linear space L has the compact extension property if and
only if L is admissible if and only if L has the o-compact extension property.
This implies that for a o-compact linear space L, the following statements
are equivalent: (1) L is an absolute retract, (2) L has the compact extension
property, and (3) L is admissible. Finally, we prove that if there exists a linear
space which is not an absolute retract then there is an admissible linear space
which is not an absolute retract.

1. Introduction. All spaces under consideration are separable metric. J.
Dugundji [3] proved that every locally convex linear space is an AR. The prob-
lem whether this also holds for nonlocally convex linear spaces is still open. A
linear space L is called admissible [7, 8] if every compact subset of L admits ar-
bitrarily small displacements into finite-dimensional linear subspaces of L. It is
well known that every locally convex linear space is admissible (cf. [12]). Klee [8]
gave examples of nonlocally convex admissible linear spaces and also [7] proved
that every complete admissible linear space L has the so-called compact extension
property. A space X has the compact (neighborhood) extension property (abbrevi-
ated C(N)EP) provided that for every space Y and every compact subspace A of
Y, every continuous function f: A — X extends over Y (over some neighborhood
of AinY). It is known that every space with the C(N)EP which, in addition, is
compact or finite dimensional is an A(N)R [1]. Kuratowski [9] asked whether every
space with the CEP is an AR. This question was answered in the negative in [10]
(see also [2]). Klee [7, 8] asked whether every linear space is admissible and also
whether every admissible linear space is an AR. The aim of this paper among other
things is to prove that a linear space L has the CEP if and only if L is admissible if
and only if L has the “o-compact extension property” (see §3). This implies that
for a o-compact linear space L, the following statements are equivalent: (1) L is an
absolute retract, (2) L has the compact extension property, and (3) L is admissible.
We also show that if there is an example of a linear space which is not an AR, then
there also exists an admissible linear space which is not an AR.
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The paper is organized as follows. In §2 we present a characterization of spaces
with the CNEP in terms of a partial realization property and some related re-
sults. Finally, in §3 we use some of the results obtained in §2 to derive the above
statements on linear spaces.

2. Partial realization. Let X be a space and let Z be an open cover of X. In
addition, let 7 be a locally finite simplicial complex and let % be a subcomplex of
T containing all the vertices of 7. A partial realization of  in X relative to &
and 7 is a continuous function f: |%’| — X such that for every 0 € I there exists
U € % such that f(o N||) C U. For convenience, by a quadruple (7 ,.%, f, %)
we mean a partial realization of J in X relative to & and Z. If & =7, then f
is called a full realization of J in X.

It is well known that a space X is an ANR if and only if for every open cover
% of X there exists an open refinement 7 of % such that for every locally finite
simplicial complex 7, every partial realization (7 ,%, f,7") of J in X extends
to a full realization (7,7, f*,%); this is Whitehead’s Theorem and for details we
refer the reader to Borsuk [1] and Hu [6]. Whitehead’s Theorem is a very important
tool in the process of recognizing ANRs. For that reason we are interested in a
characterization of the CNEP in terms of partial realization. The following result
and its proof are, of course, inspired by Whitehead’s Theorem.

2.1. THEOREM. Let X be a space. The following three assertions are equiva-
lent:

(i) X has the CNEP,

(ii) for every compact subset K of X there is a compact subset L of X, such that
for every open cover % of X there is an open refinement 7 of %, such that for
every partial realization (7,7, f,77) with f(|¥|) C K there is a full realization
(T, T, f* %) with f*(17]) C L and f*||#| = f,

(ili) for every compact subset K of X there is a compact subset L of X, such that
for every open cover Z of X there is an open refinement 7 of % , such that for every
partial realization (7,7, f,7) of a finite simplicial complex T with f(|.¥|) C K
there is a full realization (7, , f*, %) with f*(|7|) C L and f*||%| = f.

PROOF. (i)=(ii). Choose an imbedding j: K — @ (Q is the Hilbert cube). By
assumption there exist an open neighborhood V of j(K) and a continuous function
§: V™ — X such that | j(K) =771 Let L =¢(V™).

Choose an arbitrary open cover % of X. Then £&~1(Z)NV = {¢-1(U)NV:U e
% } is an open cover of the open subspace V of Q and consequently there exists an
open refinement 7 of this cover consisting entirely of (linearly) convex sets. The
collection 75 = j~1(%") is a cover of K consisting of (relatively) open subsets of
K, and it refines the cover Z N K. Now let 7" be an open refinement of % such
that 75 = 7N K. We claim that these L and 7 satisfy the requirements.

Choose a locally finite simplical complex .77, a subcomplex % which contains
all the vertices of 7~ and a partial realization f: || — X with respect to Z” such
that f(|#|) C K. By construction, for every o € 7 there is an element W, of %
with

jof@n|F)) S We.
By induction on the dimension of o, a standard construction successively applying
the Dugundji Extension Theorem [3 and 6], shows there is an extension f: 7| — Q
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of jo f: || — Q such that f(c) is contained in the convex hull of j o f(o N |.¥))
for every simplex o € 9. The convexity of the W,’s then gives us that f(c) C W,
for every 0 € 7. Consequently, if we define f*: || — X by f* = o J, then f*
is the required full realization.

Observe that (ii) = (iii) is a triviality.

For (iii) = (i), choose a space Y, a compact subset A of Y and a continuous
function f: A — X. According to [1, Chapter V, Theorem 6.2], there exist a com-
pact AR, Z, and an imbedding ¢: A — Z such that N = Z\i(A) is a polytope with
triangulation I~ = {04}$2, with lim,;_,, diam(o;) = 0. Note that the polytope
N is metrizable, so locally finite. There is a map a: Y — Z such that i = o | A.
Denote f oi™': {(4) — X by f and identify i(4) and A in the sequel.

For every p € N(© pick a point r(p) € A with d(p,r(p)) = d(p,A). Then
r: AUN© — A is a retraction. Define g: AUN©® — X by g= for. Theng
clearly extends f. Now use (iii) to find two compacta K; and K, in X such that for
K = f(A) we can choose L = K; in (iii), and for K = K; we can choose L = K,.
Observe that

- f(A) € K1 C K,.

The next step is to define three sequences, (%,)%, (Zn)%;, and (%)%,
open covers of X such that:

(1) % = {X},

(2) %, < 7 < Yp < Upn—1 (n > 1%, < 7, means that %, refines 7, and
/A < %, means that 7, is a star-refinement of %,,),

(3) for n > 1, partial realizations of finite polytopes with respect to %, with
images in K can be extended to full realizations with respect to {B(z, 1/2n): z €
X} with images in K (if A C X then B(A4,¢) is the open ball about A with radius
€ of course),

(4) for n > 1, partial realizations of finite polytopes with respect to %, with
images in f(A) can be extended to full realizations with respect to %, with images
in Kl. .

For every n > 1, pick a Lebesgue number A, > 0 for the open cover f ~1(#%,) of
the compact set A; we may assume that ), | 0. Note that from the local finiteness
of N it follows that for every open U in Z with A C U there exist only finitely
many ¢ € N with o; ¢ U. From this it follows that we can write 7~ as a countable
union of finite subcomplexes 7, (n > 0) of 7~ with %, C 41, such that if we let
T, be the subcomplex of J consisting of all the simplices in I\ -1 and their
faces (n > 0;%2; = &), then
B)oN|F 1| B =>0€FH5 (n>1,0€T),

(6) |9l € B(4, 1A, (n > 1),
(7) 0 € F = diam(o) < A (n>1,0€T),

(8) Ta N Ty = D (In —m| > 2).

For every n > 0 put T, = |7,|. It is easily seen that T}, N T,,4; is a polytope
with triangulation F, N 4.

Claim 1. For n > 0, g|(Tp N Tn+1)© is a partial realization of J, N, with
respect to %,41 having its image in f(A).

Proof of Claim 1. Pick an arbitrary ¢ € 9, N J},41. From (6) and (7) it follows
that diam(o) < An41 and 0 € B(A, $An41), so diam(r(0(?))) < A,4; and there is

of



LINEAR SPACES, ARS AND THE CEP 945

a U € py1 with r(0(®)) C f~1(U). This gives us that g(¢(®) C U. The assertion
about the image is obvious of course.

From the construction of %, ; and K; we conclude that for n > 0 there exists a
full realization g,: T,, N T4+ — X with respect to Zpt1 With g, (T, NTyy1) C K,y
and g, (2) = g(2) (2 € (Tp N Tp4+1)©@, n > 0). Define the polytope R, (n>1) by

Ry = (Tn 0 (Tog1 UTno1)) UTLO
and the function ~,: R, — X by
gn-1(2) (€T NTh-1),
Mm(2) =1 9gn(2) (2 € Tn NToy1),
9z) (€T
Observe that by (8), ~,, is well-defined.

Clatm 2. For n > 1, =y, is a partial realization of .7, with respect to 7, having
its image in K.

Proof of Claim 2. Pick an arbitrary o € J,. There exists U, € U, with
glon T° ) C Up. Using the full-realization properties of g,_; and g, we find
V(@ N Tpoy) C V, and v,(0 N Tn+1) € Vpgi, where V, and V,,; are unions
of members of 7, and 7,1, respectively, and each such member intersects U,.
Now 7,41 < ?/n < Zn < Yy, gives us the existence of a W,, € %, such that
W NR,) C
We conclude that there exists a full realization G,: T, — X with respect to
{B(z,1/2n): z € X} with G | R, = v, and G,,(T},) C K. Now define

Z=AU U T,
n=1
andG:Z—»be _
flz)  (z€4),

G(z) = {

Claim 3. G is continuous.

Proof of Claim 3. It suffices to consider a € dA and a sequence (2n)n in N
with 2, — a. For every n choose 0, € 7 with 2z, € On, and p, € oy, 0 By some
elementary observations it is possible to prove that p, — a and d(G(z n) G(pn)) —

0. So by continuity of G| AU N© = g we have G(pn) — G(a). Consequently,
G(zn) — G(a) and we are done.

Finally, note that ¥ = a~1(Z) is a neighborhood of A in Y and that F =
Go(a|Y): Y — X is an extension of f.

Let X and Y be spaces and let f,g: Y — X be continuous. If % is an open cover
of X, then d(f,9) < Z means that for every y € Y there exists U € ¥ containing
both f(y) and g(y). In addition, we say that f and g are %-homotopic, f ~% g,
if there exists a homotopy H: Y x I — X connecting f and g while, moreover, for
every y € Y there exists U € Z such that

H({y} xI) CU.

We shall present a few other results in the same spirit.

Gn(2) (2€Tp, n>1).
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2.2. THEOREM. Let X have the CNEP. Then for every compact subset K of
X there exists a compact subset L of X such that for every open cover % of X
there is an open refinement 7” of Z such that if Y is any space, and f,g: Y — X
are continuous functions with d(f,g) < 7" and f(Y)U g(Y) C K, then there is a
homotopy H: f ~4 g with H(YY x I) C L.

PROOF. Construct L and 7 as in the proof of Theorem 2.1, (i) = (ii). After this
proceed as follows, adopting the notation of that proof. Choose an arbitrary space
Y and continuous functions f,g: Y — X and f(Y)Ug(Y) C K and d(f,g9) < 7.
Then d(jo f,jog) < ¥ . Let G: Y x I — @ be the straight-line homotopy from
Jo f to jog. The convexity of the members of 77" gives G: jo f ~¢ 7 og, whence
if we take H = £ o G then we find H: f ~y gand H(Y xI) C L.

We finish this section with the following result that will be important in §3.

2.3. THEOREM. Let X have the CNEP and let Y be compact. Furthermore,
let Z be an open cover of X and let f: Y — X be continuous. Then there exist

a (finite) polyhedron P and maps g:Y — P and h: P — X such that hog s
?/ homotopic to f.

PROOF. Put K = f(Y) and let the compact set L in X have the properties
mentioned in Theorem 2.1(iii) for K. Observe that K C L. There are open covers
o, %, %, %3 of X such that

W) U< <P <UU< ¥,

(2) any two continuous functions into X with images in L and which are %,-close
are % -homotopic (Theorem 2.2),

(3) partial realizations with respect to % having their images in K can be
extended to full realizations with respect to %) having their images in L (Theorem
2.1).

After this we take a finite subcover 77 of f~1(%;) of Y and define P to be
the nerve of 77. For the map g: Y — P we take any barycentric map. For each
V € 7 let vy be the vertex of P corresponding to V. Define h°: PO — X by
hO(vy) = f(yv), where yy € V is arbitrarily chosen. Then h° is a partial realization
of P with respect to Z2. So there exists a full realization h: P — X with respect
to %, with h(P) C L and k| P(®) = h®. An elementary verification gives us that
d(hog, f) < %, whence hog ~g f.

3. Linear spaces. Let L be a linear space and let 0 be the zero of L. By [4]
there exists an admissible metric d on L satisfying the following two conditions:

(i) d(z + 2,y + 2) = d(=z,y) (z,y,2 € L;d is translation invariant),

(ii) d(0, sz) < d(0,tz) (z € L\{0}, 0 < s < t;d is strictly monotone).

In the sequel we shall supply every linear space with such a metric. The following
lemma is well known and the proof is included for the sake of completeness.

3.1. LEMMA. Let L be a linear space. Then d has the following additional
properties:

(ili) d(z1 + y1, 22 + y2) < d(z1,22) + d(y1,92) (21, 22,91,92 € L),

(iv) d(sz,sy) < d(z,y) (z,y€ L,0<s< 1),

(v) ¢f z is on the straight-line segment from z to y, thend(z, z) < d(z,y) (z,y,2 €
L),
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(vi) f S C L has k elements, then diam(conv(S)) < 2(k— 1) - diam(S) (k € N).

PROOF. Observe that (iii), (iv) and (v) are trivial. For (vi), put S = {ay,...,ax}.
Take an arbitrary z € conv(S), say z = Ez 1 Aia; with A; > 0 for every 7 and
Ez_ Ai = 1. Then by using (iii) and (iv) it easily follows that

k
d(z,ay) (Z,\az, - 1) al) Z (Niai, Miay)

k
<Y d(ai,an) —1) - diam(8).
1=2

We now come to the first main result in this section. Recall from the introduction
that Klee proved that every topologically complete admissible linear space has the
CEP. We shall prove that the completeness assumption in this result is superfluous.
So we have that admissibility implies the CEP. We shall also prove the converse.

3.2. THEOREM. Let L be a linear space. Then the following statements are
equivalent:

(1) L is admissible,

(2) L has the CEP.

PROOF. The proof of (1) = (2) is a more complicated version of the proof of
Theorem 10 in [7]. For € > 0 let D(0,¢) = {z € L: d(z,0) < €}. Let X be a space
and let f: A — L be continuous, where A C X is compact. We shall construct

continuous functions ¢,: X — L for n = 1,2,... such that with d;n = ¢n | A we
have
() (f =1 == ¢s)(4) € D(0,1/2") (n > 1),

(i) ¢n(X) € D(0,1/2" +1/27%) (n > 2),

(iii) ¢n | X\B(A,1/n) =0 (n > 2).

We shall proceed by induction on n. There exist a finite-dimensional linear
subspace F; of L and a continuous function ¢1 A — E; such that d(¢1, f) < %
Since E; is an AR there is a map ¢;: X — E; with ¢ |A = ¢1 Suppose that
®1,...,¢n—1 have been constructed satisfying (i), (ii) and (iii). There are a finite-

dimensional linear subspace E, of L and a continuous function qﬁn A — FE, such
that

d(f — 1=+ = fn1,6n) < 1/2".

It follows that ¢,(4) C D(0,1/2"! + 1/2") N E,. The latter set is an AR,
being a retract of E, [7, Proposition 8]. So there exists a continuous function
Yn: X — D(0,1/2"1 4 1/2") with ¢, | A = ¢,,. Now choose a Urysohn function
a: X — I =[0,1] which satisfies

alA=1 and «|X\B(4,1/n)=
We define ¢,, by the formula
On(2) = o(z) - Pn(z).

Then ¢, is clearly as required (Lemma 3.1).
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Now define f: X — L by
F@) =3 éa(a).
n=1

This series converges on X\A by (iii) and by (i) it converges to f on A. Finally,
the continuity of f follows from (ii).

For (2)=>(1), let K C L be compact and let € > 0. By Theorem 2.3 there are
a polyhedron P and maps ¢: K — P and : P — L such that d(no ¢, 1g) < g/2.
Let n = dim P.

Claim 1. There exists § > 0 such that whenever A C L has cardinality at most
n+ 2 and has diameter less than § then diam(conv(4)) < ¢/2.

Indeed, take 6§ = ¢/4(n + 1) and apply Lemma 3.1(vi).

There is a triangulation J~ of P such that for every o € 7, diam(n(c)) < 6.
Let us supply P with this triangulation. For every vertex p € P put ¢(p) = n(p)-
The function ¢ may be extended linearly to a function v: P — L.

Claim 2. d(n,v) < €/2.

Indeed, take an arbitrary z € P. Take 0 €. with z € 0. Let V denote the set
of vertices of o and put W = n(V U {z}). Then W has cardinality at most n + 2
and has diameter less than §. By Claim 1, conv(W) has diameter less than &/2.
Since conv(W) contains 7(z) as well as ¢(z) we now obtain d(n(z),%(z)) < €/2, as
required.

Now put g = 4 o £&. Then clearly d(1x,g) < €. Also, the range of g is contained
in the convex hull of a finite set, and hence in the linear hull of a finite set, i.e. in
a finite-dimensional linear subspace of L.

Let us say that a space X has the o-compact eztension property, abbreviated
LCEP, if for every space Y and for every o-compact closed subspace A of Y, every
continuous function f: A — X can be extended over Y. We shall now improve
Theorem 3.2 and then conclude that a o-compact linear space is an AR if and only
if it is admissible. This will be done by deriving a series of lemmas.

3.3. LEMMA. Let X be a space and let A C X be compact. In addition, let
L be an admissible linear space, let f: X — L be continuous and let € > 0. Then

there exist a finite-dimensional linear subspace E of L and a map g: X — L such
that d(f,9) < e and g(A) C E.

PROOF. There are a finite-dimensional linear subspace E of L and a continuous
function ¢: A — E such that d(¢, f|A) < €/2. Since E is an AR there is a
continuous extension ¢: X — E of q§ There is an open neighborhood U of A such
that d(f(z),#(z)) < €/2 for every z € U. Let a: X — I be a Urysohn function
with

alA=0 and a|X\U=1.
Now define g: X — L by
9(z) = a(z) - f(z) + (1 — &(2)) - $(2).
An application of Lemma 3.1(v) yields that g is as required.
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3.4. LEMMA. Let X be a space and let B,A C X be compact such that B C A.
In addition, let L be an admissible linear space, let f: X — L be continuous and
let € > 0. If f(B) is contained in a finite-dimensional linear subspace of L then
there exist a finite-dimensional linear subspace E of L and a map g: X — L such
that d(f,g) <e, g(A) C E and g|B = f|B.

PROOF. By Lemma 3.3 there are a finite-dimensional linear subspace E of L and
a continuous function ¢: X — L such that ¢(A) C E and d(¢, f) < €/3. Without
loss of generality we may assume that f (B) C E. Since E is an AR there is a
continuous function f X — E with f |B = f|B. Furthermore, there is an open
neighborhood U of B with

d(f(z),¢(z)) <e/3 forzeU.
Let a.: X — I be a Urysohn function with
a|B=1 and «a|X\U=0
and define g: X — L by the formula

9(2) = a(z) - f(z) + (1 - o)) - 4(2).
Again it follows by Lemma 3.1 that g is as required.
3.5. LEMMA. Let X be a o-compact space and let L be an admissible linear
space. then for every continuous function f: X — L and € > 0 there are an Wg-

dimensional linear subspace E of L and a continuous function g: X — L such that
d(f,9) <€ and g(X) C E.

PROOF. Choose compacta X;, X2,... such that

o0
XnCXnp1 and X =|J Xa.
n=1
By a repeated application of the previous lemma, it is easy to construct for every
n > 1 a continuous function g, : X — L such that
(i) gn(Xn) € Ep, where E,, is a finite-dimensional linear subspace of L (n > 1),
(11) g’an -1 = gn—llxn—l (n > 2)1
(iii) d(gn-1, gn) <€/2™ (n 21, go = f).
Define g: X — L by
g(z) = lim g,(z).
n—00
Observe that for every m and z € X,, we have g(z) = gn(z). By (iii), g is

continuous and
Z :
2n

Finally, by (i), g¢(X) € E with E = E; + E2 +--
We now come to an interesting consequence of Theorem 3.2.

3.6. THEOREM. Let L be a linear space which has the CEP. Then L has the
Y CEP.

PROOF. By Theorem 3.2, (2)=>(1), a linear space with the CEP is admissible.
The remaining part of the proof is analogous to the proof of Theorem 3.2, (1)=(2).
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First observe that if L' is any linear space then each neighborhood of the zero 0 of
L' of the form D(0,¢) = {z € L': d(0,z) < €} is a retract of L' [7, Proposition 8.
The most important adjustments are now that one should use Lemma 3.5 instead of
the definition of admissibility and the observation that each Ro-dimensional linear
space is an AR. The latter observation follows easily from Haver’s Theorem [5] that
every locally contractible space that is a union of countably many finite-dimensional
compact is an ANR.

3.7. COROLLARY. For a o-compact linear space L the following three condi-
tions are equivalent:

(i) L is admissible,

(ii) L has the CEP,

(ili) L ¢s an AR.

PROOF. The equivalence (i)« (ii) follows from Theorem 3.2 and the implication
(iil)=(ii) is a triviality. For (ii)=>(iii), imbed L as a closed subspace in an AR X [6,
Theorem III.2.1]. Then by Theorem 3.6, the identity 1: L — L admits a continuous
extension r: X — L, so L is a retract of X.

By Corollary 3.7 the question naturally arises whether admissibility of linear
spaces implies the AR property. We will show that this question is the same one
as the question whether every linear space is an AR.

3.8. THEOREM. If there is a linear space which is not an AR then there is an
admissible linear space which is not an AR.

PROOF. Let L be a linear space which is not an AR. Then L x I is also a linear
space which is not an AR and which in addition has algebraic dimension ¢. We
therefore assume without loss of generality that L has algebraic dimension ¢. Put
L* = L x 2 and let 0 denote the zero of L*. Define

Z ={K C L*: K is closed and the algebraic dimension of K is c}.

Observe that .Z" is nonempty since it contains L*. Precisely such as in [13 and 11]
it is possible to construct two linear subspaces E and F' of L* such that:

(1) forevery K€ #Z, KNE # < and KNF # J;

(2) ENF ={0}.

We claim that E is the required example. For every z € 12 put L, = L x {z}.

Claim 1. For every z € 12, EN L, is dense in L.

Let U be any nonempty open subset of L and take a nonempty open subset V of
L with V= C U. Countably many translates of V cover L. Consequently, since L
has algebraic dimension ¢ and ¢ is not the sum of countably many smaller cardinals,
it follows that V' has algebraic dimension ¢. This implies that V= x {z} € % and
consequently intersects E. We are done.

Claim 2. E is admissible.

To this end, let A C E be compact. Suppose first that the algebraic dimension
of A is uncountable. Then by e.g. [11] A contains a linearly independent Cantor
set. This Cantor set contains two disjoint Cantor sets which by (1) both have to
intersect F. This contradicts (2) since A C E. We conclude that the algebraic
dimension of A is countable from which it follows that A is contained in an Ro-
dimensional linear subspace H of E. Since H is an AR (again by Haver’s Theorem),



LINEAR SPACES, ARS AND THE CEP 951

H is admissible e.g. by Corollary 3.7. So A admits arbitrarily small displacements
into finite-dimensional linear subspaces of H and hence of E.

Claim 3. E is not an ANR.

To the contrary, assume that E is an ANR. Since E is contractible, the Borsuk
Homotopy Extension Theorem implies that E is an AR [1, Theorem IV.9.1]. By a
similar technique as in [10] we shall derive a contradiction. We may assume that L*
is a subspace of the endface W = {1};x [—1,1]o x [=1,1]3 X - - - of the Hilbert cube
Q =112, [-1,1],. The following result is well known and its proof is included for
completeness sake.

Subclaim 3.1. For every subset P of W, (Q\W) U P is an AR.

Proof. Indeed, let Z be any space, let A C Z be closed and let f: A — (Q\W)UP
be continuous. It is clear that there is a deformation H: @xI — Q such that Hy = 1
and H(Qx(0,1]) C Q\W (e.g. define H by H((z1,22,...),t) = (1—t)z1,za,...)).
Since @ is an AR there is a continuous extension F: Z — Q. Now define f:zZ -
(Q\W) U P by the formula

f(2) = Hyz 4)(F(2)).

This completes the proof of the subclaim.

Put T = (Q\W)U E. Then E is closed in T and E is an AR, so there is a
retraction r: T — E C W. There is a Gs-subset S of Q which contains T such that
r can be extended to a continuous function s: S — W. Then SNL* is a Gs-subset
of L* containing E. Write L*\S as {J,.., K, with each K,, closed in L*. Observe
that K,NE = & for every n. From (1) we conclude that all the K,,’s have algebraic
dimension less than ¢ which, again by the fact that ¢ is not the sum of countably
many smaller cardinal numbers, implies that L*\S has algebraic dimension less
than c. Now consider the projection m: L* — [2. Since 7 is linear, the algebraic
dimension of 7(L*\S) is also less than ¢. Since the algebraic dimension of {2 is
certainly c, there exists z € I missing 7(L*\S). Now consider L, = L x {z}. Then
Ly € S and by Claim 1, EN L, is dense in L;. Since s|ENL, = r|ENL;, and since
L; is contained in the domain of s, we conclude that s | L, is the identity. Now put
T' = TUL,. Then by Subclaim 3.1, 7" is an AR and the function s |T': T" — EUL,
is a retraction. Consequently, £ U L, is an AR and since L; is clearly a retract of
E U L; this implies that L., and hence L, is an AR. Contradiction.
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