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In [l], the notion of a rigid separable measurable space was defined, and such spaces were 

shown to exist. We expand upon this idea and ask what are the possible automorphism groups 

for such spaces. We show that there is only one such non-trivial group which is Abelian (a 

countable product of two element groups), and that this group is realised as the automorphism 

group of some separable space. A particular class of such spaces is characterised in terms of rigid 

components. 
Finally, an example of a measurable space which is rigid in the strict sense is constructed. This 

answers a question of K.P.S. Bhaskara Rao and B.V. Rao. 

0. Preliminaries 

We work in the context of separable spaces. A measurable space (X, 6%‘) is separable 

if its Bore1 structure 3 is countably generated and contains all singleton subsets of 

X. If (X, 2) is separable, and A E X, then A becomes a separable space with Bore1 

structure %(A) = {B n A: B E 933). 

0.1. Lemma. Let (X, 3) be a separable space. There is a metric d on X such that 

(X, d) is homeomorphic with a subset of the line R, and 93 is the Bore1 u-algebra 

generated by d. 

Indication. Originally due to Marczewski. A proof may be found in [l, p. 91. 

A separable space (X, 3) is standard if there is a complete separable metric (i.e. 

Polish) topology on X for which 3 is the Bore1 u-algebra. In view of Lemma 0.1, 
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every separable space is isomorphic with a subset of some standard space. The 

following result is easily proved: 

0.2. Lemma. Let (X, 93) be an uncountable separable space. Then there are pair-wise 

disjoint uncountable sets B, B2 . . . in 93 with X = B, u B, v . . . . 

If (Xl 2 33,) . . . (xl, 33,) are separable spaces with X, , . . . , X,, pairwise disjoint, 

define 

S=UX,, 9? = {u B,: B, E si, i = 1,. . . , n}. 

Then the separable space (S, 9) is the direct union of the (X,, ai). 

A function f: X + Y between separable spaces (X, 33) and ( Y, 55’) is measurable 

if fP’( C) E 93 whenever C E %‘. If f is a one-one correspondence of X and Y, and 

both f and f-’ are measurable, then f is an isomorphism. An isomorphism f: X + X 

of (X, 98) onto itself is an automorphism. 

0.3. Lemma. Let (S, 93) be a standard space and XG S. Suppose f: X-+X is an 

automorphism of (X, s(X)). Then there is an automorphism g : S + S such that f is 

the restriction of g to X. 

Indication. This follows from the Kuratowski-Lavrentiev extension theorem 

[5, p. 4361. 

In view of Lemmas 0.1 and 0.3 and the fact that there are exactly c Bore1 

automorphisms of R, we have: 

0.4. Lemma. Let (X, 6%) be an injinite separable space, There are exactly c automor- 

phisms of X. 

Let f: X + X be an automorphism of a separable space X. We define f” : X + X 

for n E Z such that for x E X, 

f”(x) = x, 

f”+‘(x)=f(fn(x)) fornZ0, 

f-“-‘(x)=f-‘(f-“(x)) forn<O. 

An orbit off is a set of the form 

{. . . ,f-*(x),f-‘(x), x,f(x),f’(x), . . .>. 

Clearly, if V is an orbit off, then f(V) = V. For each x E X, define 

O(f; x) = min{n: f”(x) =x, n > l}, 

putting O(f; x) = CO if f”(x) # x for each n 2 1. We call 0( f, x) the order off at x. 

Note that the function x + O(J x) is measurable. 
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0.5. Lemma. Let f :X-+ X be an automorphism of a separable space X such that 

O(f, x) <co for each x E X. Then there is a set BE B(X) that contains exactly one 

point from each orbit off: 

Proof. By Lemma 0.1, we may suppose that X is a subset of R. Set 

B = {x: f”(x) 2 x for each n}. 

Compare III. 8.3 in [3]. 0 

Let (X, 9) be a separable space. Let F(X) be the set of all automorphisms of 

X. Then F(X) is a group under the operation of composition. Let C(X) be the 

normal subgroup of F(X) comprising all automorphisms f: X+ X such that 

{x: f(x) #x} is countable. Define G= F(X)/C(X). We call G the reduced 

automorphism group of X. 

A separable space (X, 5%) is rigid (as in [ 1, p. 201) if it is uncountable and there 

is no automorphism f: X -+ X such that {x: f(x) # x} is uncountable: otherwise put, 

the reduced automorphism group of X is trivial. In Proposition 4 of [ 11, the existence 

of rigid spaces was demonstrated. The axiom of choice was used in the proof. In 

this paper, we operate within ZFC; when the continuum hypothesis is used, it shall 

be indicated. We characterise rigid spaces as follows: 

0.6. Lemma. Let X be an uncountable separable space. The following are equivalent: 

(1) X is a rigid space; 

(2) No two disjoint uncountable sets in S’(X) are isomorphic; 

(3) Zf B, and B, are uncountable, isomorphic sets in B(X), then B,AB, is countable. 

Proof. (l)+(2) Suppose that B, and B2 are disjoint uncountable isomorphic sets 

in 9(X). Let h : B, + B, be an isomorphism. Then the mapping f: X + X defined by 

f(x) = 

( 

h(x) ifxE B,, 

h-‘(x) if xE B,, 

X if x E X\( B, u B2), 

is a non-trivial automorphism of X. Thus, X is not a rigid space. 

(2) + (1) Suppose that X is not rigid and that f: X + X is a non-trivial automor- 

phism of X. We may consider X as a subset of the real line (Lemma 0.1) with its 

usual order structure. One of the sets 

D- = {x: f(x) < x}, D+ = {x: f(x) > x}, 

is an uncountable member of B(X). Without loss of generality, we suppose that 

D- is uncountable. Then there is some E > 0 such that D(F) = {x: f (x) < x - E} is 

uncountable. Also, there is some open interval NE R of length e such that B, = 

N n D(F) is an uncountable set in W(X). Whenever x and x’ are elements of B,, 

then f (x) < x’: so B, n f (B,) = 0. The disjoint sets B, and B, = f (B,) are uncountable 

and isomorphic elements of 93(X). 
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(3) + (2) Immediate. 

(2)*(3) Suppose that B, and B2 are isomorphic uncountable sets in C%‘(X). Let 

f: B, + B, be an isomorphism. Then B,\B2 and f( B,\B,) are disjoint, and so must 

be countable sets in 9(X). The same applies to B,\B, and fP’(B2\BI). So B,AB2 

is countable. 0 

We conclude the introduction on an algebraic note. If G is a group, then G” 

denotes the (strong) direct product of denumerably many copies of G. Likewise, 

G,xGzx-., denotes the direct product of the groups G,. For each positive integer 

n, let S,, denote the symmetric group of all permutations of (1,. . . , n}. Let S, be 

the group of permutations of {1,2,3,. . .}. 

If f: X + X is an automorphism of X, we indicate the corresponding coset in G 

as j: 

0.7. Lemma. Let G be the reduced automorphism group of a separable space X. The 

order of an element a E G is 

n=inf{mzl: a=?forsomefEF(X) such thatf”(x)=x, eachxEX}. 

The result applies whether n is a positive integer or ~0. 

Proof. Suppose that a E G is of order n and that a = g^ for some g E F(X). Then 

n = inf{m 2 1: {x: g”(x) #x} is countable}. 

Suppose that n is finite and put U = {x: g”(x) f x}. Define the countable set 

N = u{g”( U): k = 0, *l, *2,. . .} 

and define f: X + X by 

Then f= 6 = a, and j-“(x) = x, each x E X. The lemma follows. 0 

1. The structure of reduced automorphism groups 

The following result discovers some of the structure of 

groups. Note that tf k,, . . . , k, are positive integers, then 

least common multiple. 

reduced automorphism 

lcm( k, , . . . , k,) is their 

1.1. Proposition. Let X be a separable space with reduced automorphism group G. 

(1) If G has an element of order n 3 1, then there are divisors k, , . . . , k, of n with 

n=lcm(k,,..., k,) such that G contains a subgroup isomorphic with Sr, x ’ . . x Sz$. 

(2) If G has an element of infinite order, then there is a sequence k, < k2 < ’ . * of 

positive integers such that G contains a subgroup isomorphic with Sr, x Sr, x . . . . 
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Demonstration. (1) Suppose that a E G is order n. Write a =f as in Lemma 0.7. For 

k=l,..., n, define B(k) = {x: O(L x) = k}. Lemma 0.5 implies the existence of a 

set BE 93(X) containing exactly one point from each orbit of J: Put B(k, 1) = B n 

B(k) and for r=l,..., k, set B(k, r) =f’-‘(B(k, 1)). Then we have 

X= ij B(k) 
I=1 

as a disjoint union. Also, for each k = 1,. . . , n 

B(k) = b B(k, r) 

as a disjoint union. 

For some k, the set B(k) is uncountable. Let {k, , . . . , k,} be the set of such k. 

Clearly, k,, . . . , k, are divisors of n. Put rn = lcm( k, , . , k,) and note that up to a 

countable set f” is the identity map on X. This forces rn = n. 

Now for 1 c is s, the set B(k,, 1) is uncountable and so (Lemma 0.2) can be 

written as a countable disjoint union of uncountable sets in B(X), viz. 

B(ki, 1) = fi B(ki, 1, t). 
,=, 

For r= 1,. . ., k,, define 

B(k,, r, t) =f’-‘(Hk,, I, t)). 

Notice that for each i = 1,. . . , s and t Z 1, the sets B( ki, r, t) for r = 1, . . . , k, are 

disjoint, uncountable, isomorphic elements of 93 (X). 

We now construct a one-one homomorphism #J of H = SF1 x . . . x Sz, into G. 

A typical element of H is given by a matrix (m( i, t)), where for i = 1, . , s and 

tzl,rr(i,t)isapermutationof{1,2,...,k,}. Wedefine$(-ir(i,t)):X+Xby 

cf”‘i3’““~‘(x) if x E B(ki, r, t), 

4(di, t))(x) = r X if xg 5 B(ki). 
i=l 

Notice that 

4444 t))(B(k,, r, t)) = B(k,, r(i, t)(r), t). 

In words, +(n(i, t)) permutes the isomorphic sets B(ki, r, t) according to the rule 

r( i, t). It is easily checked that 7r --z 4( z-)~ is a monomorphism. 

(2) Suppose that for some f in F(X), the element f is of infinite order. There 

are two cases. 

Case 1. The set {x: O(f; x) = CO} is countable. As in the proof of part 1, we define 

B(k) = {x: O(f; x) = k}. The set of k for which B(k) is uncountable must be infinite: 

if it were finite {k,, . . . , k,%}, then f would be of order n = lcm(k, , . . . , k,). Let 

k,<k,<... be the sequence of such k. 
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One may now proceed exactly as in the proof of part (l), defining the sets B( ki, r, t) 
for i 2 1, 1 s rs kip and f 2 1. As before (mutatis mutandis), one may construct a 

monomorphism of SL, x Srz x * . . into G, as desired. 

Case 2. The set V= {x: O(f; x) = 00) is uncountable. 

Case 2a. 3’(V) contains a rigid set. Let R0 be such a rigid set. Define R, =f”(R,) 

forn=1,2,.... Then no two of the isomorphic sets R, can intersect in an uncount- 

able set: if R, n R, is uncountable for n < m, then put k = m -n and consider 

f”(R,, n R,) c R,. Since R, n R, and f”(R,, n R,) are uncountable isomorphic sets 

in B(R,) and R, is rigid, we must have R, n R, = f”(R,, n R,) up to a countable 

set. Then define h : R, + R, by 

h(x) = 
fk(x) ifxER,nR,, 

X if x E R,\R,. 

The function h is well-defined up to a countable set and provides a non-trivial 

automorphism of the rigid space R,, a contradiction. 

Now define T=UR,nR,, where the union is over all n # m. T is countable, 

and so the sets U,, = R,\ T form a sequence of disjoint uncountable sets in %‘(X). 

Now suppose that r is a permutation of {1,2,3,. . .}. Define an automorphism 

4(r):X+X by 

( 

f 
dr,-r(,) when XE U,, 

4(n)(x) = 
X if XE X \ fi U,. 

r=l 

Note that +(r)( U,) = U,(,,, so that 4(rr) permutes the U, according to rr. It is easy 

to see that 7~ + +( rTT)* is a one-one homomorphism of S, into G. 

It remains only to note that whenever k, < k,< . . . is a sequence of positive 

integers, then S, has a subgroup isomorphic with Sri x SF2 x . . . . 

Case 2b. 9’3( V) contains no rigid sets. By Lemma 0.6, there are disjoint uncount- 

able isomorphic sets A(0) and A( 1) in B(V). Applying Lemma 0.6 once more, we 

find disjoint uncountable isomorphic sets A(0, 0), A(0, l), A(l, 0), A(l, 1) in 9?(V) 

such that 

A(O,O) u A(0, 1) c A(O), A(l,O)uA(l, 1)&A(l). 

Continue in inductive fashion to produce sets A( Ed, . . . , &k) indexed by finite strings 

(El,. . . , &k) of O’s and 1’s. We choose these sets so that for each string 

(a,, . . . , &k), A(&, , . . . , i?k, 0) and A( Ed,. . . , &k, 1) are disjoint uncountable sets in 

93( V) such that 

A(&, , . . . , Ek,O)UA(E ,,..., Ek, l)cA(~r ,..., Ek). 

For each k > 1, define dk to be the collection of all A(E,, . . . , &k, TV,. . . , qk) 

such that E~=E~=...= &k-l = 0 and Ek = 1, and r), . . . r)k are arbitrary. Put d = 

&,u&&u.. . . For each k 2 1, tik is a collection of 2k isomorphic uncountable sets 

in .%‘( V). We index the sets in tik so that 

& = {B(k, r): r = 1,. . . , 2k}. 
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For each k, let g, : IJ dk + IJ dk be an isomorphism such that 

g,(B(k,r))=B(k,r+l), r=l,..., 2k-l, 

g,(B(k, 2k)) = B(k, 1). 

Since B(k, 1) is uncountable, Lemma 0.6 enables us to write 

B(k, 1) = fi B(k, 1, t) 
,=, 

as a disjoint union of uncountable sets in %( V). For each k 2 1, t > 1, 1 < r < 2k, we 

define 

B(k, r, t) = g;-‘(B(k, 1, t)). 

We shall now construct a one-one homomorphism of H= ST x S,WxS,“x . . . 

into G. 

Each element of H is a matrix (r( k, t)), where for each k 2 1 and t 2 1, r( k, t) 

is a permutation of {1,2, . . . , 2k}. We define +( r(k, t)) : X + X by 

ifxe B(k, r, t), 

ifxEX\u&. 

Note that 

&(n(k, t))(B(k, r, t)) = B(k, n(S t)(r), t), 

so that, as in earlier parts of the proof, +( r(k, t)) permutes the isomorphic sets 

B( k, r, t) according as n( k, t). Again, the homomorphism r + 4( 7~)~ is one-one. 0 

1.2. Corollary. Let G be the reduced automorphism group of a separable space. Then 

G has cardinality either 1 or c. 

The following result shows that an Abelian automorphism group must have a 

very special form. 

1.3. Proposition. Let X be a separable space with reduced automorphism group G. 

The following are equivalent: 

(1) G is Abelian. 

(2) G is either trivial or isomorphic with Sy. 

(3) For each a E G, one has a’ = {e}. 

Demonstration. Suppose that G is Abelian and non-trivial. Proposition 1.1 implies 

that every element of G is of order 2. A well-known structure theorem [4, p. 171 

says that G is a direct sum of copies of S,. If G is non-trivial, Proposition 1.1 

implies that G contains a sub-group isomorphic with Sy and so has cardinality at 

least c. By Lemma 0.4, this forces G to have cardinality exactly c. It must be that 

G is a direct sum of c copies of Sz. 
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The same structure theorem quoted above implies that Sy, being of cardinality 

c, is also a weak direct sum of c copies of &. We have proved that G and Sy are 

isomorphic. 0 

The next matter to be resolved is whether there is a separable space whose reduced 

automorphism group is non-trivially Abelian. The answer is in the affirmative, which 

fact will be proved in Proposition 1.4, after the following definitions. 

Let 2 be a separable space and let H be a group. Let F(Z, H) denote the set of 

all functions f: Z + H such that f-‘(A) E S’(Z) whenever A s H. Under point-wise 

multiplication (in H), the set F(Z, H) becomes a group. 

Let K(Z, H) be the set of functionsfE F(Z, H) such that {z: f(z) # e} is countable, 

where e is the identity element of H. Then K(Z, H) is a normal subgroup of F(Z, H), 

and we define G(Z, H) = F(Z, H)/K(Z, H). 

Note that if Z is an uncountable separable space, then G(Z, S,,) contains Sr as 

a subgroup. 

1.4. Proposition. Let X be a direct union of n copies of a rigid space Z. Let G be the 

reduced automorphism group of X. Then G is isomorphic with G(Z, S,,). 

Demonstration. We write X = Z, u . . . u Z,,, where the Z, are disjoint sets in 93(X), 

each isomorphic with the rigid space Z. Now fix an automorphism f: X + X such 

thatf(Z8) = Z,,, for i = 1,. . . , n - 1 andf(Z,,) = Z,. We shall define a homomorphism 

from G(Z,, S,) to G. 

Given a function h : Z, + S,,, we define an automorphism 4(h) : X + X by setting 

+(h)(x) = f”“‘-‘(x) 

whenever x Ef-‘(h-‘( z-)). Note that the sets _T’(hP’(n)) form a partition of X 

for r=l,..., n - 1 and n E S,,. It is not hard to check that h + +(h)^= 4^(h) is a 

one-one homomorphism. 

We now prove that 4^ maps onto G. Let k: X+ X be an automorphism. For 

each i=l,..., n andj=l,...,n,define 

A( i, j) = {x E Z,: k(x) E Z,}. 

Put 

B(j,, . ,.L) = A(l,j,) nf P’(A(2,j,)) n . . . nf -“+‘(A(n,j,)). 

As j, , . . . , j, range over { 1,. . . , n}, the sets B(j, , . . , j,,) constitute a partition of 

Z, into sets in 93(X). 

Claim 1. If r < s and j, = j,, then B( j, , . . . , j,) is countable. 

To see the claim, note that if B = B( j, , . . . , j,), then k(f’-‘(B)) and k(f”-‘(B)) 

are isomorphic subsets of Z,, = Z,,. By Lemma 0.6, k(f’-‘(B)) n k(f’-‘(B)) is 

countable. Then B nf”‘(B) = B uf”( B) is countable, as desired. 
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Now define h : Z, --z S, by setting 

i 

(jl,...,jn) ifxEB(_h,...,j,) 

h(x) = 
and B( j,, . . . , j,) uncountable, 

(l,..., n) ifxEB(j ,,..., j,) 

and B( j, , . . . , j,) countable. 

Claim 1 ensures that h is well-defined. 

Claim 2. Except on a countable set, we have 4(h) = k: Suppose that B( j, , . . . , j,,) 

is uncountable, so that rr = (j, , . . . , j,) is a permutation. Then for each fixed 

r=l,...,n, we note that f’m’(B(j,,...,j,))sA(r,j,), so that k maps 

f’-‘(B(j,, . . . ,j,)) into Z,,. So also does 4(h). The rigidity of Z,, implies that 

4(h) = k on f’-‘(B(j,, . . . , j,)), except on a countable set. The claim follows. 

We have proved that $^ is an isomorphism onto G. 0 

Proposition 1.4 shows that the reduced automorphism group of a separable space 

can indeed be Abelian. Simply take as the space the direct union of two copies of 

a rigid space. In the next section, we obtain a partial converse to this result. 

2. Spaces with C.C.C. 

Let (X, 95’) be a separable space. A sub-collection 9 c 93 is a a-ideal if 

(1) 4EJJja, 
(2) N~BE.!J whenever NED and B~93, 

(3) U N,, E 9 whenever N, N2 . . . E 4. 

A a-ideal 9 is continuous if it contains all singleton subsets of X. Say that 4 satisfies 

the countable chain condition (c.c.c.) if every sub-collection of 93\9 comprising 

pair-wise disjoint sets is necessarily countable (one also says that 4 is “w,-satu- 

rated”). A separable space (X, 33) satisfies C.C.C. if every sub-collection of 93 compris- 

ing pair-wise disjoint uncountable sets is countable. 

Let (S, 93) be a separable space, and let 4 G 6% be a r-ideal with C.C.C. Suppose 

X E S has the property that X n N is countable whenever NE 4. If X is also 

uncountable, we say that X is 4-Lusin. Such a space X must have C.C.C. Two 

examples of this phenomenon are rather well known (see [2] for a survey): 

(1) Let S = [0, 11, let 9 be the Bore1 v-algebra on S, and let 4 be the u-ideal of 

Bore1 sets of Lebesgue measure zero. The 9-Lusin sets are called Sierpin’ski sets. 

(2) Let S and 93 be as in 1. Let 4 be the g-ideal of first category Bore1 subsets 

of S. The 9-Lusin sets are called Lusin sets. 

The existence of 9-Lusin sets can be demonstrated using the continuum hypothesis 

(CH). The reason for introducing them at this juncture is that the structure of such 

C.C.C. sets is accessible through the reduced automorphism group. First, we show 

that (under CH) rigid C.C.C. sets exist. (Compare Proposition 4 in [l].) 
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2.1. Proposition (CH). Let S be an uncountable standard space and let 4 be a 

continuous u-ideal in 93(S) with C.C.C. There is a rigid set X z S which is 4-Lusin. 

Construction. Let fOfi * 1 * fa . f . a < w, be a transfinite listing of all automorphisms 

of S such that A, = {x:f(x) f x} is a set in 93(S)\9. Let N,N, . . . IV,. . . (Y <CO, 

be a listing of all sets in 4. 

ForeachAsSandcz<W,, define 0, (A) to be the smallest set containing A and 

closed under fp and fi’ for all p s CY. It is easily checked that if card(A) < w, , then 

card(O,(A)) < w,. We choose points x0x, . . . x, . . . a <co, inductively so that 

Put X = {x,: a < w,}. Suppose that g : X + X is an automorphism. Then there is an 

automorphism f: S+ S whose restriction to X is g. 

Case 1. If {s: f(s) # s} E 9, then {x: g(x) f x} is countable. 

Case 2. If {s:f(s) # s}& 9, then f=& for some p <w,. Then we claim the 

following: 

Claim. Whenever p <(Y <w,, then&(x,)=x,. We know thatfa(x,) = g(xO) E X. 

If fp(xa) = x, for y> (Y, then the choice of x, is contradicted. If fp(x,) =x, for 

y < (Y, then x, =&‘(x,) contradicts the choice of x,. 

Therefore g : X + X moves only countably many points of X. 0 

What follows is a structure theorem for C.C.C. sets with Abelian automorphism 

group. 

2.2. Proposition. Let X be an uncountable separable space with reduced automorphism 

group G. Consider the following conditions: 

(1) X is the direct union of sets Z,,, Z, , Z,, such that 

(a) Z,uZ, and Z,,uZ, are rigid; 

(b) Z, and Z, are isomorphic. 

(2) G is Abelian. 

Then (l)*(Z); if X has c.c.c., then (2)+( 1). Additionally, (1) implies that G is trivial 

tf and only if card(Z,) = card(Z,) is countable. 

Demonstration. (l)*(2) 

Case 1. Assume Z, is countable. Then X is isomorphic to the direct union of the 

rigid spaces Z, and Z, . Propositions 1.4 and 1.3 imply that G is isomorphic with S,W. 

Case 2. Assume Z, is uncountable. Then Z, is a rigid space. Let f: X + X be an 

automorphism. Since Z, u Z, and Z, u Z, are rigid, f (Z,) n Z, and f (Z,,) n Z, are 

countable. So, up to a countable set, f(Z,) = Z,,, forcing f to be the identity map 

when restricted to Z,. It is then clear that G is isomorphic with the reduced 

automorphism group of Z, u Z,. Again, if Z, and Z, are uncountable, Propositions 

1.3 and 1.4 apply. 
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(2) + (1) (Assuming X c.c.c.): Consider the collection $P of all pairs (A, B), where 

A and B are disjoint uncountable isomorphic sets in 95’(X). We introduce a partial 

order on p by setting (A, B) < (A’, B’) in case 

A’=AuA” and B’ = B u B”, 

where 

AnA”=@ and BnB”=@ 

and 

(A”, B”) E 9’. 

If G is non-trivial and Abelian, then by Proposition 1.3 it is isomorphic with ST. 

Since X is not rigid, Y is non-empty. 

Claim. 9 has a maximal element. To see this, construct a transfinite series (A,, B,) 
of elements of 9 indexed by a <w, such that 

(A,, &) < (A,+,, &+r) all a: <ml, 

A,=U{Ap:P<a} 

B,=U{Bp:P<a} 
a a limit ordinal. 

Because X has c.c.c., this induction cannot be continued through all (Y < 0,. It will 

terminate in a maximal element (Z, , Z,). 

Define Z,, = X\(Z, u Z,). We must prove that Z,u Z, is rigid. Symmetry will then 

imply that Z,,u Z, is rigid. So suppose that U and V are disjoint uncountable 

isomorphic sets in 93(Z,u Z,). Let f: U + V supply the isomorphism. Also, let 

g : Z + Z, be an isomorphism. 

Claim. The set U n Z, is countable. If not, then U n Z, ,f( U n Z,), and g( U n Z,) 
are three disjoint uncountable sets in 93(X). By cyclically permuting these, one 

obtains an element of G of order 3. Proposition 1.1 implies that G is not Abelian. 

This is a contradiction. 

A similar argument shows that V n Z, is countable. So U n Z, and V n Z, are 

disjoint uncountable isomorphic elements of 93(Z,). This, however, contradicts the 

maximality of (Z, , Z,) in 8. So Z,, u Z, is rigid. q 

We now proceed to show that the requirement that X be C.C.C. cannot simply be 

removed from the implication (2)+( 1) in Proposition 2.2. A little machinery is 

needed. 

Let X be a separable space. Say that X satisfies condition D if 

(a) X is the direct union of sets Z,Z,Z, such that 

(1) Z,uZ, and Z,uZ, are rigid; 

(2) Z, and Z2 are isomorphic and uncountable. 

If G is the reduced automorphism group of a separable space X, then there is a 

partial order < on G defined by declaring f< g when 

{x:f(x) # x and g(x) = x} is countable 
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and 

{x: g(x) # x and f(x) =x} is uncountable. 

2.3. Lemma. Let X be a separable space satisfying condition A. Then there is an 

element of the reduced automorphism group G which is largest for the partial order < . 

Proof. We return to the proof of Proposition 1.4. Let f: Z, + Z, be an isomorphism 

and consider once more the group isomorphism c$*: G(Z, , S,) + G. We write S, = 

(0, 1). 
Claim. For h,, h,f G(Z,, S,), one has #(h,)^< cb(h,)^ if and only if 

{x: h,(x) = 1 and h,(x) = 0} is countable 

and 

{x: h,(x) = 0 and h,(x) = I} is uncountable. 

Verification of the claim is routine. It then follows that 4(h)^ is the largest element 

in G, where h(x)=1 for all xEZr. Cl 

2.4. Lemma. Let S be an uncountable standard space. There is a function f: S+ S 

such that 

(1) f is a one-one correspondence of S onto itself such that f = f-‘; 

(2) IfE E 93(S) and g: E + S is a one-one measurablefunction, then {s E S: f(s) = 

g(s)} is of cardinality less than c. 

Proof. We may take S = [O, 1) u [l, 2) under its usual Bore1 structure. List the points 

of [0, 1) without repetitions as x0x1 . . . x, . . . a CC, where x0 = 0. List all one-one 

measurable functions g: E + (0, l), where E is an uncountable set in ?XI[O, l), as 

g&l . . . IL . . . a <c and define, for each LY CC, N, = U {graph(g@): p 5 a}. We 

define points yU and z, for CY < c. Put y, = z0 = 0. The process is inductive: suppose 

that 0 < LY < c and that 

Y,={y,:p<a}u{xp:p~a}, z,={z,:p<a}u{xp:p<a} 

If possible, choose y, so that 

(x,,yu)~~N,u(Z,x[O,l))~([O,l)xY,). 

If the choice is not possible, it must be that x, = zp for some /3 < LY. In this case, 

put yu = 0. Likewise, if possible, choose z,, so that 

~~~,~,~~~N,~~~~~~~~,~~~~~,~~~~~~~,~~~~~~~~Y,~~~. 

If the choice is not possible, it must be that x, = yp for some j3 s (Y. In this case, 

put z, = 0. Then define 

G = {(x,, y<x), (~0, x0): Y, + 0, z, # 0, a < clu {(O,O)l. 
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Then it is easily verified that G is the graph of a one-one correspondence fO: [0, 1) --, 

[O,l). Definef:S+S by 

The function f has the desired properties. q 

2.5. Lemma. Let S be an uncountable standard space and suppose that A E B(S x S). 

Let p : S x S + S be projection to the first factor. If p(A) is uncountable, then there is 

an uncountable E E B(S) with E & p(A) and a measurable function k : E + S such 

that graph (k) c A. 

Indication. This follows from the Jankov-von Neumann selection theorem. See 

[6, p. 8711. 

2.6. Proposition. There is a separable space X with reduced automorphism group G 

such that 

(1) G is Abelian, but non-trivial; 

(2) X does not satisfy condition A. 

Demonstration. Let S be an uncountable standard space and let f: S+ S be as in 

Lemma 2.4. Define F:SxS+SxS by F(s, t)=(f(s), t). Let g,g, . . . g; . . (Y <c 

be a listing in transfinite series of all automorphisms of S x S. Given A c S x S and 

(Y < c, define O’e (A) to be the smallest set containing A and closed under the functions 

g,, gi’ and F= F-’ for all p s cy. If card(A)<c, then card OO(A)<c. Let 

B”B, * . . B, . . * (Y < c be a listing of all uncountable sets in %(S x S). We choose 

points x,x, . . . x, . . . a CC inductively so that 

Put X=(x,: cx<c}u{F(x,): a<~}. 

Claim 1. If pi cy cc, then gfi({x,r, F(x,)})s {x,, F(x,)}u ((SX S)\X). Verifica- 

tion of the claim is routine, given the selection of x, and the definition of Qe. 

The reduced automorphism group G of X is non-trivial. To see this, note that 

for any countable set C s S the function h,. : X + X defined by 

h,.(s, t) = 
{ 

F(s, t), s E c 
(5 t), S&C 

uf(C), 

uf(C), 

is an automorphism of X. Since X intersects every uncountable set in %‘( S x S), 

the map h,. moves uncountably many points of X. 

The group G is, however, Abelian. For every automorphism of X extends to an 

automorphism of S x S (Lemma 0.3). This automorphism has been listed as some 

gp. From Claim 1, it follows that {x E X: O(g,, x) > 2) is of cardinality less than c. 
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Since X meets every uncountable set in a( S x S) in c many points, it follows that 

{s E S: O(g,, S) > 2) is countable. Therefore, g;(s) = s for all but countably many 

s. So G is Abelian. 

We now show that X does not satisfy condition A. Suppose it did. By Lemma 

2.3, there is some element g^ of G which is largest for the partial order <. This 

automorphism g extends to some automorphism g, of S x S. Certainly T= 

{s E S: O(g@, s) = 2) is an uncountable set in %(Sx S). 

Claim 2. Except for a set of points of cardinality less than c, gp = F on T n X. 

Claim 2 follows from Claim 1. Note that card( T n X) = c. 

Now apply Lemma 0.5 to find a set BE ~(SX S) which contains exactly one 

point from each orbit of g,. Let p : S x S + S be projection to the first factor. 

Claim 3. The set p(B n T) is uncountable. 

This follows from the maximality of gp. Otherwise, gp will move points in only 

countably many vertical sections of S x S. This contradicts the existence of the 

automorphisms kc mentioned above. 

Apply Lemma 2.5 to find an uncountable set E E B(S) with E G p( B n T) and a 

measurable function k : E + S such that graph (k) G B n T. Consider the mapping 

I: E + S defined by Z(s) =p(gp(s, k(s))). 

Claim 4. The Bore1 set g,(graph(k)) has countable vertical sections. 

Suppose not, and let s,, E S be such that D = {(s, t): s = Q} n gp(graph( k)) is 

uncountable. The X n g;‘(D) G X n B n T has cardinality c. Now p(gp(a, b)) = s0 

for all (a, b) E g;‘(D). But by Claim 2, g, = F on c many points of X n gp’(O). 

Noting that p 0 F is one-one on graph(k) provides a contradiction. 

Apply the selection theorem 111.9.4 (p. 137) of [3] to find an uncountable HE 

a(S x S) with H s gp(graph(k)) such that every vertical section of H is either 

empty or singleton. Then p 0 g, is one-one on g;‘(H). Define E,= p(gP’(H)), an 

uncountable set in a(S). Define lo to be the restriction of I to EO. Then lo is a 

one-one measurable function. 

Using claim 2, we find a set 2 c X n g;‘(H) s X n T of cardinality c such that 

gp = F on 2. Then card (p(Z)) = c and I, = f on p(Z). This contradicts the construc- 

tion off given in Lemma 2.4. q 

3. A strictly rigid measurable space 

In this section, we consider measurable spaces (X, %‘) which are not separable. 

As before, an automorphism of (X, 2) is a one-one correspondence f: X + X such 

that f(B) E ?8 if and only if BE 3. Say that (X, a) is strictly rigid if the only 

automorphism f: X + X is the identity map. We prove the existence of a strictly 

rigid measurable space, thus solving Problem P3 (p. 21) of [l]. 

A completely regular topological space X is a P-space if every G8 subset of X 

is open. If X is a P-space, and 3 is the collection of clopen subsets of X, then ?j3 

is a u-algebra. 
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3.1. Lemma. Let X be a P-space and let 3 be the a-algebra of ciopen subsets of X. 

Every automorphism of (X, LB) is a (topological) homeomorphism of X onto itself: 

Proof. Immediate, noting that B is a base for X. 0 

The rest of this section is devoted to a proof of the following: 

3.2. Proposition. There is a non-trivial strictly rigid measurable space (X, $33). 

Demonstration. We construct an infinite O-dimensional P-space X which is topologi- 

tally rigid, i.e. the only homeomorphism of X onto itself is the identity map. If 9 

is the clopen u-algebra of X, then Lemma 3.1 implies that (X, 6%) is strictly rigid. 

Let X,,= (0). Suppose that X,, has been constructed for some n <w. For each 

x E X,, there clearly exists a set B(x, n) such that 

(1) B(x, nlnX,=0; 

(2) if x, y E X,, are distinct, then B(x, n) n B( y, n) = 0; 

(3) card(B(x, n)) is regular and has uncountable cofinality; 

(4) card(B(x, n)) > card(X,,); 

(5) if x, y E X,, are distinct, then card(B(x, n)) f card(B( y, n)). 

Define X,,, = U{B(x, n): x E X,,}. Also put X = l._{X,,: n <w}. For every x E X, 

there is a unique n(x) < w with x E X,,(.+ For every x E X and n < w, define T(x, n) G 

X by 

T-(x, 0) = 1x1, T(x,n+l)=U{B(y,n(x)+n):yET(x,n)} 

Also, put T(x) = U{ T(X, n): n <w}. 

3.3. Lemma. I.. x, y E X and T(x) n T(y) # 0, then either T(x) E T(y) or T(y) G 

T(x). 

Proof. If n(x) = n(y) and x # y, then clearly T(x) n T(y) = 0. So suppose 

n(x)<n(y). If y&T(x,n(y)-n(x)), then clearly T(x)nT(y)=(d. So ye 

T(x, n(y) - n(x)), from which it follows that T(y) c_ T(x). 0 

For every XE X, and FG B(x, n) such that card(F) < card(B(x, n)), put 

LJ(x, P)={~}uU{T(Y):YEB(~, n)\P). 

Let % be the set of all such I/(x, F). 

3.4. Lemma. For all U,, U, E % and x E U, n U, , there exists F c B(x, n(x)) such 

that card(F) < card(B(x, n(x))) and U(x, F) G U,,n I/,. 

Proof. Let I-J, = U( pi, Fi), with appropriate pi and F,, i = 0, 1. Since T( p,,) n T( p,) # 

0, we may assume T(p,) E T(p,) by Lemma 3.3. 

Case 1. po=p,. If x=pO=p,, then put F=F,vF,. If xfp,, put F=0. 

Case 2. p. # p,. Then U, E T(p,) c U( p,, F,). Consequently x E U,. If x = p,,, 

then put F=F,. If x#p,, then put F=0. q 
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Lemma 3.4 implies that % is the base for a topology on X. We supply X with 

this topology. 

3.5. Lemma. For every U E 021 andp E U, there is some V E % with p E Vand U n V = 0. 

Proof. Let U = U( p, F) with appropriate p and F. 

Case 1. p E T(p). Then T(p) n U = 0. So without loss of generality p g T( 0). 

Case 2. FE T(p). There is some qEB(p, n(p)) such that FE T(q). Put F=(q) 

and let V = U(p, F). So without loss of generality pa T(p). 

By Lemma 3.3, we now have T(p) n T(p) = 0. So put V = T(p). 0 

3.6. Lemma. For all distinct x, y E X, there exists some U E % with x E U and y & U. 

Proof. If y & T(x), then we are done. If y E T(x), then there exists q E B(x, n(x)) 

with YE T(q). Put F= B(x, n(x))\{q} and let U = U(x, F). 0 

From Lemmas 3.5 and 3.6 we conclude that the topology on X is Hausdorff and 

that elements of 021 are clopen; hence, the topology is O-dimensional and completely 

regular. By construction and Lemma 3.4, X is a P-space. Since the least cardinality 

of a local base at x E X (the character at x) equals card (B(x, n)), and the cardinalities 

of the sets B(x, n) are pairwise distinct for distinct x, y E X, it follows that the 

character at x and at y are distinct. Hence X is topologically rigid. 0 

The referee has suggested an alternate proof: Construct X as a tree of height w 

in which every element has a different uncountable, regular cardinal number of 

successors. Take 3 as the a-algebra generated by the sets {y: y 2 x}. Then show 

that for any x, the number of successors of x equals its pseudo-character (the 

smallest number of measurable sets with intersection {x}). 
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