
Topology and its Applications 29 (1988) 245-265 

North-Holland 

245 

ON THE EXISTENCE OF FREE TOPOLOGICAL GROUPS 

W.W. COMFORT 

Department of Mathematics, Wesleyan University, Middletown, CT06457, USA 

Jan VAN MILL* 

Subfaculteit Wiskunde en Informatica, Vrije Universiteit, Amsterdam, The Netherlands 

Received 22 August 1986 

Revised 10 August 1987 

Given a Tychonoff space X and classes U and V of topological groups, we say that a topological 

group G = G(X, U, V) is a free (U, V)-group over X if (a) X is a subspace of G, (b) GE U, and 

(c) every continuous f:X+ H with H EV extends uniquely to a continuous homomorphism 

_?: G + H. For certain classes U and V, we consider the question of the existence of free (U, V)- 

groups. Our principal results are the following. Let PA and CA denote, respectively, the class of 

pseudocompact Abelian groups and the class of compact Abelian groups. Then 

(a) there is a free (PA, PA)-group over X iff X =0; and 

(b) there is for each X a free (PA, CA)-group over X in which X is closed. 

AMS (MOS) Subj. Class.: Primary 22A05, 18B30; 

secondary 54H10, 20K45 

free group pseudocompact group 

free topological group 

1. Introduction 

In this paper we consider only Tychonoff spaces; that is, completely regular, 

Hausdorff spaces. The word ‘space’ is to be interpreted in this way throughout. It 

is well known that if 9 is a Hausdorff topology for a group G such that the function 

(x, y) + x-y is continuous, then G = (G, ~7 is a space; we say in this case that G 

is a topological group. 

Given spaces X and Y we set 

C(X, Y) = {fF Yx: f is continuous}, 

and given topological groups G and H we set 

H( G, H) = {f~ C( G, H): fis a homomorphism}. 
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We denote by H, Q and R’ the integers, rationals and reals, respectively, and by 

U the circle group. In each case the usual algebraic and topological properties are 

assumed. We deal almost exclusively with Abelian groups, so it is convenient to 

use additive notation and to denote the identity of each group by 0. (No difficulty 

will arise in connection with U if one makes the identification T = R/Z.) 

For G a group and X L G, we denote by (X) the subgroup of G generated by 

X. For G abelian and X s G, the non-0 elements of (X) have the form C:=, kixi 

with 1 s n <w, with x, distinct elements of X, and with each k, E Z\(O). For G 

Abelian and X E G, we say that X is independent in G if the following condition 

is satisfied: 

If Cy=, kixi =0 (xi distinct), then each kixi = 0. 

When G is Abelian and X s G, the statement that X is independent in G and 

(X) is torsion-free is equivalent to the statement that the group (X) is algebraically 

isomorphic to the free Abelian group over X. 

Modifying terminology suggested by Engelking and Mrowka [8], for a space X 

and U a class of spaces we say that X is U-regular if X is homeomorphic to a 

subspace of a product of elements of U (repetitions permitted). And when U is a 

class of topological groups we denote by U the class of all groups which are 

(topologically isomorphic to) a closed subgroup of a product of a set of groups in 

U. We note that if U = {V} then fi is the class of all compact Abelian groups; this 

is a consequence of the fact that for every compact Abelian group G the set H( G, U) 

separates points of G [17] (22.17), so the usual evaluation function from G into 

UC’X,“’ is an isomorphism and a homeomorphism onto its range. 

For a set {G, : i E I} of topological groups we write 

2 Gi={x~ fl G,: I{icZ: x,#O}I<w}, 
is1 

and 

C Gi = {x E n Gi : I{i E I: x, # O}l s co}. 
itI it1 

We adopt notation as follows. 

P: the class of pseudocompact groups; 

PA: the class of pseudocompact Abelian groups; 

c: the class of compact groups; 

CA: the class of compact Abelian groups. 

1.1. The reader may well be familiar with several aspects of the following theorem. 

The general argument, which may be viewed as an application of the adjoint functor 

theorem of Freyd [lo], [ll], has been developed and exploited in other contexts 

(cf. [21], [l], [27], [24], [22], [23], [17], [9], [16], [30]). For a construction of G,(X) 

different from the one suggested by Kakutani [20] and Samuel [32], and for many 

applications, the reader may consult Thomas [35]. 
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The earliest version of the following result (with U the class of all Abelian 

topological groups) is due to Markov [25], [26]; see also [31] and [13], [ 141. Morris 

[29] gives a helpful, comprehensive survey of ‘varieties’ of topological groups and 

of constructions related to that of Theorem 1.3. 

We note with emphasis that in the following theorem the group G constructed 

satisfies G E 6, not necessarily G E U. (Thus G is not necessarily a free (U, U)-group 

over X in the sense of the definition given in our Abstract.) This should come as 

no surprise: If U = {W} or U = {U} then every space is U-regular, but of course not 

every U-regular space X satisfies X G GE U. 

1.2. Theorem. Let U be a class of topological groups and let X be a U-regular space. 

Then 

(1) There is a topological group G = G,(X) such that 

(a) X is a subspace of G; 

(b) GE 6; and 

(c) every f E C(X, H) with HE U extends uniquely to 7~ H(G, H). 

(2) For a group G as in (l), the following two conditions are equivalent: 

(d) (X) is dense in G. 

(d’) every f E C(X, H) with H E 6 extends uniquely to 7~ H( G, H). 

(3) G may be chosen to satisfy (d) and (d’). 

(4) 7’he group G= G,(X) with (a), (b), (c) and (d) is unique in the sense that if 

G’ is another topological group with properties (a), (b), (c) and (d) then there 

is a topological isomorphism 77 from G onto G’ such that T(X) = x for all x E X. 

Proof. (1) Let {(K,f;): i E I} be a listing of all pairs with Ki a closed subgroup of 

an element of U, with f; E C(X, K,), with (f;[X]) a dense subgroup of Ki, and with 

the additional technical condition that (as a set) Ki is a subset of the set S(Y(lX] + 

w)). (This last condition assures us that I is a set rather than a proper class, so the 

product K = fli,, Ki is a topological group.) Since X is U-regular, the evaluation 

function e: X -)r K defined by (ex), =J(x) is an homeomorphism. Identify X with 

e[X], and let G be the closure in K of the group (X). Properties (a), (b) and (d) 

clearly hold. 

To see (c), note that for every f E C(X, H) with HE U there is i E I such that 

(cl,f [Xl, f) is naturally isomorphic to the pair (Ki, f;); thus f extends even to 

g E H( K, Ki) = H(K, H), and J= g 1 G is a homomorphism as required. It is clear 

that iff’EH(G, H) andf’lX=f(X=J; thenf((X)=f((X) (becausef’andfare 

homomorphisms) and hence f’ = 7 (because f’ and f are continuous on G and (X) 

is dense in G); this establishes uniqueness in (c). 

(2) (d)d(d’). (This is a standard argument.) Given f E C(X, H) with H closed 

inni,, Hi and each H,EU, setJ=riof; let 

anddefinef:G+ni,, Hi byf(p)i=x(p).ThenfEH(G,niE, H,),andsince H is 
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closed in niel Hi and 

mx)l= mw> = (f[Xl> c H 

we have f[ G] G H from (d), as required. 

(d’)+(d). Let H be the closure of (X) in G and let i denote the inclusion 

function from X into H. Since H E 6 there is FE H( G, H) such that i s E Now define 

j:G+G by 

j(p)=p (allPEG). 

We have FE H( G, G), j E H( G, G), and 

TlX=jlX=iEC(X,G). 

It follows that r= j and hence G = H. 

(3) We have noted already that G may be chosen to satisfy (d). 

(4) (This also is a familiar argument.) Let G’ be another object with (a), (b), (c) 

and (d). The inclusion function i : X + X c G’ extends to r: G + G’ and the inclusion 

function h :X + X c G extends to 6: G’ + G; the function n = r= 6-l is then as 

required. 

The proof is complete. 0 

The following consequence of Theorem 1.2, to be used in Theorem 4.3, is closely 

related to work of Morris [28] on co-products of free objects. 

1.3. Theorem. Let U be a class of Abelian topological groups, let X and Y be (disjoint) 

U-regular spaces, and let Z be the disjoint union space Z = Xi, Y Then G,(Z) = 

G,(X) x G,( Y). 

Proof. Set G = G,(X) x G,( Y) and note G E U. Let K(X) and K( Y) be the groups 

K defined (for X and Y respectively) in the proof of Theorem 1.2(l), define 

+:Z+K(X)xK(Y) by 

4(x) =(x, 0) for x E X and 4(y) = (0, y) for y E Y 

and note that 4 is a homeomorphism of 2 onto a a subspace (also denoted 2) of 

G. From the relation 

and the fact that (X) and (Y) are dense in G,(X) and G,(Y) respectively, it is 

immediate that (2) is dense in G. Now 1etfE C(Z, H) with HE U, and setf, =fl X 

and fi =f] Y. It is clear, denoting by f1 and fz the continuous homeomorphisms to 

G,(X) and G,(Y) extending f, and f2 respectively, and using the fact that the 

group H is Abelian, that the function 
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defined by f( p, q) = fr(p) . f2(q) satisfies f~- f and SE H( G, H); the uniqueness of 

T follows from the uniqueness off;. The desired relation G = G,(Z) then follows 

from Theorem 1.2(4) (applied to 2 in place of X). 

1.4. Remark. Theorem 1.3 does not generalize directly to disjoint union spaces 

Z=uic, Xi with 111 2 w. (Let Gi = Gu(X,) and define G(O), G(1) by 

G(O)=@ Gic fl Gi=G(l). 
iel is1 

The natural embedding of 2 into G(0) satisfies 

(2) = 0 (Xi>; 
iel 

thus (Z) is dense in G(O), hence also in G(1). Neither G(0) nor G(1) satisfies the 

conditions imposed on GU(Z) in Theorem 1.2(l), however: G(0) satisfies (c) but 

(in general) not (b), and G(1) satisfies (b) but (in general) not (c). 

For a concrete instance of the failure of the relation GU(UjSl Xi) = fli,, Gu(Xi) 

let I = o with X, = {n} for n i w, so that u,,, X,, is the discrete space w, take 

U = {T}, and for notational simplicity set 

A(O)= G,(w) and A(l)= n G”({n)). 
“<W 

We claim not only that the groups A(i) are not topologically isomorphic but indeed 

that they are not homeomorphic as topological spaces. Let C(i) be the identity 

component of the compact group A(i), let D(i) and E(i) be the (discrete) Pontrjagin 

dual of A(i) and A(i)/ C( i) respectively, and let S(i) be the torsion subgroup of 

D(i). It is clear (as in 3.2) that 

D(O) = C(w, T) = T”, 

while from 23.21 of [17] it follows that 

D(l)= @ T. 
new 

From 24.15 and 24.20 of [17] we have 

so that w(A(O)/C(O))=c and w(A(l)/C(l))= w. It follows that C(i) is a G,-set 

of A(i) for i = 1 but not for i = 0, so that A(0) and A( 1) are not homeomorphic. 

w(A(i)lC(i)) = IE(i)l = IS(i 

2. Concerning free pseudocompact groups 

The following definition is consistent with standard usage: For X a space and U 

a class of topological groups, a group G is a free U-group over X if X c G E U and 

every f E C(X, H) with H E U extends uniquely to _?E H( G, H). 
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In this terminology, Theorem 1.2 may be summarized into the statement that for 
I 

every U-regular space X there is a unique free U-group over X in which (X) is dense. 

We generalize the definition just given. 

Definition. Let X be a space and let U and V be classes of topological groups. 

A topological group G = G(X, U, V) is a free (U, V)-group over X if 

(a) XcG; 
(b) G E U; and 

(c) every f~ C(X, H) with HE V extends uniquely to f~ H(G, H). 

We note that it is not required in these definitions that X be closed in G. 

Concerning these definitions we sound a note of caution: A free (U,V)-group 

over X is not, in general, the free group over X appropriately topologized. In the 

definition above we do not demand (X) = G, and in fact in interesting cases the 

inclusion (X) E G is proper. Further, (X) itself may fail to be freely generated (in 

the usual algebraic sense) by X. An example: If X has a basis of open-and-closed 

sets then X is U-regular with U = ((0, l}}, and 2p = 0 for all p E G,(X). 
We say as usual that a topological group H is totally bounded if for every 

non-empty open subset U of H there is a finite subset S of H such that H = 

LJpES (p+ U). It is a theorem of Weil [36] that the totally bounded groups are 

exactly the subgroups of the compact groups. Further, when H is totally bounded 

there is (up to a topological isomorphism fixing H pointwise) a unique compact 

group K in which H is dense. We write K = fi and we refer to K as the Weil 

completion [36] of H. 

2.1. Lemma. Every totally bounded topological group H is (topologically isomorphic 

with) a closed subgroup of a pseudocompact group G: if H is Abelian then G may be 
chosen Abelian. 

Proof. Let ti be the Weil completion of H, let (Y be an uncountable cardinal number, 

and let A and d denote, respectively, the diagonal of H and the diagonal of H 

within the product fi*. Define 

G=(AuLTH”)cfi”, 

with El?” the E-product defined above. Since El? is dense in H* and is pseudocom- 

pact (see [12], [6] and [23]), G itself is pseudocompact. It is easy to check that 

A = G n d so that A, a topological isomorph of H, is closed in G. 

Any group with a dense Abelian subgroup is itself Abelian, so the second assertion 

in the statement follows from the first. In any case, for H Abelian the construction 

indicated yields I? Abelian and hence G Abelian. 0 

Some of the essentials of the argument just given appeared in [5, (2.4)]. Recently 

we have learned from M.G. Tkchenko that he too has proved that every totally 
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bounded topological group is topologically isomorphic with a closed subgroup of 

a pseudocompact group; we do not know if his proof is similar to the proof given 

above. 

We turn now to the principal negative result of this paper. 

2.2. Theorem. Let U = PA, and let X be a space. 

Then there is a free U-group over X if and only if X = 0. 

Proof. Clearly the group (0) is a free PA-group over X. Suppose now that X # 0 

and that 6X is a free PA-group over X. 

We claim first that (X) is dense in 5X. Set N = clcx(X), suppose IV5 5X, let h 

be the canonical homomorphism from the pseudocompact group {X onto the 

pseudocompact group H = 6X/ IV, and define g : 5X + H by g(p) = 0 (all p E 6X). 

We have g, h E H(JX, H), g # h, and 

glX=hlXEC(X, H). 

This contradiction establishes the claim. 

The group gX satisfies conditions (a), (b), ( ) c and (d) (on G) of Theorem 1.2. 

From (X) c 5X it follows that (X) itself is totally bounded and hence (X) E U from 

Lemma 2.1. The inclusion function i : X + (X) extends (uniquely) to a continuous 

surjection LE H(lX, (X)), and since (X) is dense in JX we then have (X) = 6X; 

thus (X) is pseudocompact. 

Now choose a non-torsion element 5 of T and define f: X + T by f(x) = 5 (all 

x E X). The extension f: [X + T satisfies 

Jwu =f[Wl =(W). 

The continuous image of a pseudocompact space is pseudocompact and hence ({l}), 

a proper dense subgroup of T, is psuedocompact. This contradiction completes the 

proof. 0 

3. The groups C,(X) with U = (8) 

The construction of 1.1 furnishes for each space X the free CA-group over X, 

namely the group G{T)(~) = G,-*(X). Of course, X is closed in GCA(X) if and only 

if X is compact. In this and the following section we show the existence of a free 

(PA, CA)-group over X in which X is closed. For simplicity we write 

FX = GCA(X) for each space X. 

We note some simple properties of the groups FX. 

3.1. Lemma. Let X be a space. Then 
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(a) X is closed in (X); 

(b) X is independent in (X); 

(c) (X) is torsion-free; and 

(d) if D is dense in X then (D) is dense in FX. 

Proof. Let 5 be an element of T of infinite order. 

(a) Letp E (X)\X. Ifp = Odefine f(x) = lforall x E X; theextensionfE H(FX, T) 

satisfies O&J-‘((5)) 2 X. If p =Cy=, kixi with 1 s n < w, xi distinct elements of X, 

and ki EZ\{O}, set k =Cy=, lk,l and arrange the choice of 5 so that the ‘arc’ A = 

[-l, +l] G T does not contain k& Choose f E C(X, 8) so that 

f[W~A, 

f(xi) = 6 for ki > 0, 

f(xi)=-C forki<O. 

Then p C? J-‘(A) 2 X. 

For (b) and (c) let p = Cy=, k,x, with n, xi and ki as above and suppose that either 

p = 0 or kp = 0 for some k E Z\(O). Choose f E C(X, T) such that 

f(x,) = 5, f(xi)=O for2siGn. 

Ifp=O we have 

O=f(O)=f 

the assumption kp = 0 yields a similar contradiction. 

(d) Set K = cl,(D) and suppose that K $ FX. According to a standard result 

in the theory of compact Abelian groups [l, 22.171, there is h E H(FX, 8) such that 

h = 0 on K and h Z 0 on FX. Set f = h 1 X. From f = 0 on D and f E C(X, 8) follows 

f = 0 on X. The function f~ H( FX, 8) defined by f(p) = 0 (all p E FX) then satisfies 

f]X = h 1 X and f# h. This contradiction completes the proof. 0 

3.2. Since X G (X) E FX c TC(X3T) and each f E C(X, U) extends uniquely to f~ 

H( FX, IT), it is natural to identify C(X, 8) with H( FX, 8). We give this space the 

discrete topology and we note that so topologized the group H(FX, 8) is the 

Pontrjagin dual [ 171 of the compact group FX. For p E FX the homomorphism 

@(p):C(X,U)+U defined by @(p)(f)=f(p) is of course continuous; that is, we 

have @J(P) E H(C(X, U), U). According to the Pontrjagin duality theorem [18] the 

function @ maps FX onto H(C(X, U), U); that is, we have 

3.3. It is interesting to note that the groups FX may or may not be torsion-free. 

For examples to this effect let us denote by N(X) the group of null-homotopic 
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elements of C(X, T) and as usual by H’(X) the first cohomology group 

H’(X) = C(X, %)/N(X). 

We will verify the following statements. 

(i) If X is compact and H’(X) is trivial, then FX is torsion-free. 

(ii) FU is not torsion-free. 

For (i), suppose there is p E FX such that p has order n < o. Then 

@(p)[C(X,U)]={k/n:O~k<n}c[O,l)=U=R/Z (*) 

and there is f~ C( X, 8) such that f(p) = @(p)(f) = l/n. Since f is null-homotopic 

there is a g E C(X, R) such that 

f(x) = &) mod 1 forallxEX 

(see [33]). We set 

g’=g/n and fr=eg’ modl, 

so that f = nf’. From (*) it follows that 

@(P)(f) = n@(p)(f’) = 0, 

a contradiction. 

(ii) It is well-known that H’(U) is isomorphic to Z [34]. Consequently, since Z 

is a free group, C(U, 8) is isomorphic to Z x N(U). It follows from Pontrjagin duality 

that FU, the dual of C(U, U), is topologically isomorphic to the product of U with 

the (compact) dual of N(U) [17, 23.27(a), 23.22, 24.31. 

It follows in particular from (i) that if the compact space X is contractible or 

zero-dimensional, then FX is torsion-free. Indeed if X is contractible then surely 

H’(X) is trivial, and if X is zero-dimensional then every f~ C(X, U) extends 

continuously over the cone over X [34], hence again lies in N(X). 

For these and additional applications of the relation C( X, U) = H( FX, U) and its 

consequences, the reader may consult [IS] and [19]. 

4. A pseudocompact group 

Here we continue the notation introduced above and for every space X we define 

PX = {p E FX: Q(p) has countable range}. 

4.1. Lemma. Let X be a space. Then 

(a) PX is a subgroup of FX; 

(b) PX n(X) = (0); and 

(c) PX is Gs-dense in FX. 
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Proof. (a) is obvious. For (b), it is enough to show that if 

O#p= i k,x,E(X) 
i=l 

with k, E Z\(O) and xi E X, then every point of U is in the range of Q(p). To this 

end let t E 8, find s E U to that k,s = t, and find f~ C(X, T) so that f(xl) = s and 

f(x,)=O for 2cisn; then 

@(p)(f) =7(p) = k,s = t, 

as required. 

(c) A (basic) G,-set in U c(x*u) has the form 

I/ = ir> x gccx,n)\c 

with C a countable subset of C(X, 8) and r E UC. In what follows we fix such U, 

we assume there is q E U n FX, and we (will) show there is p E U n PX. 
Set N = (C) c C( X, 8) and let M be a subgroup of C(X, U) maximal with respect 

to the property that M n N = (0). We claim that for every f~ C(X, 8) there are 

n E Z\(O), g E M and h E N such that h = nf+ g. IffE M one may take n = 1, g = -f 

and h = 0. If f E M there is h E (M u {f}) n N with h # 0; from h = nf+ g E N with 

g E M and M n N = (0) follows n # 0, as required. The proof of the claim is complete. 

Now set A=(Mu N)&C(X,U) and define P:A+U by 

!P(g+h)=@(q)(h) forgEM,hEN. 

Since M n N = {0}, the function V is a well-defined homomorphism on A; a standard 

argument based on the divisibility of U shows that V extends to a homomorphism 

(also denoted ?P) from C(X,U) to 8. That is, we have !PEH(C(X, U), 8). As 

indicated earlier, there is p E FX such that q = Q(p). For h E C c N we have 

Ph = &p) = @(p)(h) = P(h) = @(q)(h) = &?) = qh, 

so that pc = qc = r and hence p E U. It remains to show p E PX. 

Define E = {t E U: there is n E Z\(O) such that nt E @( q)[ N]}. Since N is countable, 

so is E. For everyfE C(X, U) there are n # 0, g E M and h E N as in the claim above 

and we have n@(p)(f) = @(p)(nf) = @(p)(h -8) = p(h -8) = @(q)(h) E @(q)[Nl 
and hence @(p)(f) E E. Thus p E PX, as required. The proof is complete. 0 

We observe next that the groups PX are preserved by continuous homomorphisms 

between groups of the form FX. 

4.2. Lemma. Let X and Y be spaces and h E H(FX, FY). Then h[PX] E PY. 

Proof. Let p E PX and let C be the (countable) range of the function Q(p). To 

show h(p) E PY it is enough to show that everyfE C( Y, U) satisfies @(h(p))(f) E C. 
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Given such f, define g =fo h (X. Then g E C(X, 8) and we have g E H(FX, U), 

fo h EH(FX, T), and 

gjX=f~h(X=gEC(X,T). 

It follows that g =fo h and we have 

@(h(P))(f) =f(h(p)) = k!(P) = @(P)(g)E G, 

as required. 0 

We proceed to the principal positive result of this paper. 

4.3. Theorem. For every space X there is a topological group 8X such that 

(a) X is embedded in .$X as a closed subspace; 

(b) (X) is dense in &X; and 

(c) &X is a free (PA, CA)-group over X. 

The groups gX may be chosen so that in addition 

(d) ifX and Y are spaces then every f E C( X, Y) extends uniquely to7 E H( &X, 5Y); 

(e) if X and Y are homeomorphic spaces then gX and SY are topologically isomor- 

phic; and 

(f) $2 is the topological disjoint union Z = X 6 Y then &Z = 5X x &Y. 

Proof. Denoting by /3X the Stone-tech compactification of X, we have X c (X) E 

F/3X and PPX G FPX. We set 

&X = (X u Pj3X) G F/3X 

and we note that since P/3X c 6X C_ FPX and PPX is G,-dense in F@X by Lemma 

4.1(c), the group 6X is also G8-dense in FpX and hence pseudocompact [4]. 

Statement (b) is clear, since 

(X) c [X c FPX 

and (X) is dense in FPX (by Lemma 3.1(d), with X and pX replacing D and X, 

respectively). 

We prove (a). It follows from Lemma 3.1(b) that pX is independent in FpX (and 

hence PX n (X) = X). It then follows that /3X n &X = X and hence X is closed in 

6X. (In detail: let 

zEpXn~X=~Xn(XuPpX) 

and using 

(X) n P/3X G (/3X) n PPX = (0) 

write z = y +p with y E (X) and p E PPX. Then y, z E (/3X) and hence 

z-y=pE(PX)nPPX={O}, 

so that z = y E (X) n /3X = X.) 
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Every function f E C(X, H) with HE CA extends uniquely to a continuous func- 

tion (again denoted f) from PX to H, hence by Theorem 1.2(l)(c) uniquely to 

f~ H(FPX, H). Since /3X is dense in F/3X, the function _?I gX is the unique 

continuous homomorphism from gX to H extending J: This completes the proof 

of(c). 

(d) Given f as in (d), there is by Theorem 1.2(l)(c) a unique h E H(F@X, FPY) 

such that h 1 X =f: We set f = h 1 gX, and we use Lemma 4.2 to write 

f[~X]=h[~X]=(h[X]uh[P~X])!&(YuP/3Y)=~Y 

The uniqueness of h (on FPX) yields the uniqueness off (on 5X). 

(e) follows from (d). 

(f) Identifying 2 as before with X x (0) u (0) x Y we use Theorem 1.3 to write 

~Z=/?Xx{O}u{O}x~Y~ F/3Xx FpY= FPZ. 

Since (Z) = (X)X (Y), to verify (f) it is enough to show PPZ = PpX+ PPY For 

(P, q) E FPZ and (J; g) E C(PX, T) x C(PY, T) we have 

@(P, 4)(f; g) = (f; !I)(P, 4) =7(&+&I) = @(p)(f)+ @(q)(g); 

thus (range @(p, q)) = (range @(p))+(range Q(q)), and PpZ = PpX x PpY is 

immediate. 0 

4.4. Remark. The foregoing theorem shows among other things that every space X 

embeds as a closed subspace of a pseudocompact Abelian group. This fragment of 

Theorem 4.3 can be established rather quickly, without recourse to the full apparatus 

of Theorem 4.3, as follows: Use Lemma 3.1(a) to embed X as a closed subspace 

of a totally bounded Abelian group (X) & FX, and then appeal to Lemma 2.1. 

5. Other free (PA, CA)-groups 

In the preceding section we constructed, for each space X, a free (PA, CA)-group 

5X over X such that X is closed in 6X and (X) is dense in 6X. It is tempting 

(though perhaps naive) to inquire whether 5X is the only group with these properties. 

Here we show that for many spaces X the answer is No. (Our construction applies 

to every X with [PX] < lC(X, U)(--in particular, to X with (XI = 1. It should not be 

difficult to modify our reasoning so that it applies to every space X, but we are 

content with the present less general, more succinct, argument.) We have not counted 

the number of isomorphism classes which our construction yields, but each of the 

free (PA, CA)-groups 7X differs strikingly from gX: Every h E H(gX, QX) satisfies 

h(p)=OforallpEgX. 

5.1. Remark. Aside from the small (finite) spaces alluded to above, there are 

arbitrarily large spaces X which satisfy /pXJ s IC(X, T)I. To see this, observe first that 

IC(PX, T)I = IC(X, T)l= IC(X, R)l= MPX, R)l 
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for every space X, and recall the familiar fact that every space X satisfies (C(X, R)] = 

IC(X, R)l“‘. Now let (Y be an uncountable limit cardinal of countable cofinality (that 

is, a =C,,, a(n) with a (0) an arbitrary infinite cardinal and a( n + 1) = 2”‘“’ for 

n <w) and let X = (0, l}* or X = 8”. Then l/3X] = IX]= 2*; the projection functions 

are continuous and hence, writing 

IC(X, T)( = IC(X, R)] = K 2 Ct’, 

we have 

2”=2 =JPmq 24"'< aw < KW =K, 

as asserted. 

5.2. Lemma. Let X be a space and let N be a subgroup of C(X, U) such that 

I N( < IC(X, 8)\ = K. 

Then there is F c C(X, 8) such that (FI = K, F is independent, (F) is torsion-free, and 

(F) r~ N = (0). 

Proof. Define 0 : C(X, R) + C(X, U) by 

o(f)(x) = ef’“‘, 

and note that R is a homomorphism with 

(kernel a) = {f~ C(X, R): f[X] G Z}. 

Define 

A = {f~ C(X, R): f[X] c Q} 

and 

B={feC(X, R):f[X]z rr.Q}, 

and note that [A( = IB( and (k ernel a) G A. Since C(X, R) is a vector space over Q 

and A and B are Q-linear subspaces with An B = {0}, there is a Q-linear subspace 

M of C(X, R) maximal with respect to the properties B c M and A I-I M = (0). The 

maximality property guarantees that A + M = C(X, R): iffa A+ M there are q E Q, 

g E A\(O) and m E M such that qf+ m = g, and then from A n M = {0} follows q f 0 

and hence 

f=g/q-m/qEA+M. 

It then follows that ]M] = K (since otherwise from JAI G IM( we have 

K = \c(x, k!)] = IA+ Ml = IAl + lkf\ < K). 
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Now let S be a Hamel basis for A4 over Q. We have 

(SJ = K, S is independent, and (S) is torsion-free. (*I 

It follows from A4 n (kernel 0) = (0) that 0 1 A4 is an isomorphism, so from (*) we 

have 

]fl[S]] = K, fl[S] is independent, and (n[S]) is torsion-free. 

Now write S = US+ S, with each IS,/ = K and with 

S<n&=t!Ifor[<&‘<K, 

and note from the conditions on S that 

(0[S,])n(.f2[S,~])={O}for~<~‘<~. 

Since INI < K there is 5 < K such that 

N n WC&l) = VI; 

the set F = fi[S,] is as required. 0 

5.3. Lemma. Let X be a space such that 

IPXl s IC(X, u)l= 4 

let G be a subgroup of F/3X such that 1 GJ < K and G n ijX = {0}, and let U be a 

non-empty G,-subset of FPX. Then there is p E U such that 

(G u (~1) n gX = (01. 

Proof. There are q E U and a closed, G,-subgroup S of FpX such that q + S c U; 

we write 

S = n,&J J-‘({O]) 

with N a countable subgroup of C(pX, 8) and with YE H( FPX, T) for f E N. Using 

Lemma 5.2 we find FL C(pX, U) such that (F( = K, F is independent, (F) is 

torsion-free, and (F) n N = (0); and using the relation K = K x K x c we faithfully 

index F in the form 

F={f(5,5’,77):5<K,r1<K,77<c}. 

Using /(/3X)1 6 K we write (PX) = {w,: & < K}, with repetitions permitted. 

Now fix 5, e’< K. Choose t(.$, t’, 0) E U\(O) and, if 7~ <c and t(& 5’. 77’) has been 

defined for all n’ < 7, define 

I-(5,5’, 77) = {@(%,)f(5,5’, 17) -f(5,5’, 17’)) 

+ nt(5,5’, 7’): rl’< 17, n E z\{Oll 

and choose t(&, e’, 7) E T\(O) so that every m E Z\(O) satisfies mt(& &‘, ~)a 

T(&, [‘, 7). (The existence of such t(& LJ’, 7) is immediate from the fact that 



W. W. Comfort, J. uan Mill / Free topological groups 259 

IU5, 5’9 7711 cc.1 w e note in particular that for n E Z\(O) and 77’~ 71 we have 

45,5’, 77) - Q(w*,)(f(5,5’, 77)) 

f ur(5, 5’, rl’) - @(WS~)(f(& 5’, 17’)). (*) 

Now for .$<K define ?P6: Nu F+U by 

i 

0 iffE N, 

P<(f) = 0 iff =f(r, [‘, 7) E F with t”# 5, 

$5, 5’, 77) iff=f(& 5’, 77) E F. 

The properties of F ensure that !P* extends to a homomorphism from (N u F) to 

8, and since U is divisible this in turn extends to a homomorphism (also denoted 

YP,& from C(pX, 8) to 8. As indicated earlier, there is pp E F/IX such that F4 = @( pc). 

Of course from 

0= ?Pc(f)=f(pc) forallfE N 

it follows that each pE E S and hence q+ps E U. It remains to show that there is 

5 < K such that 

(Gu{q+p&nSX={O). 

If not, then for every .$ < K there are g* E G and nc E Z such that 

O#&+n*(q+P*)E5X; 

we have ng # 0 since G n 5X = (0). Since IG x Zl < K the function 5 + (gc, nS) is not 

one-to-one, so there are distinct [,[” < K, g E G and n E Z\(O) such that 

g+n(q+pc)E5X and g+n(q+P5”)E5X 

and hence np, - np5.g &X = (X u P/3X). Since (X) n @IX = (0) there are wgs E (/3X) 

and u E P/3X such that np, - npc = wet+ u, and from 

u = np, - np,,, - wc 

we have for every q < c (writing f([, t’, 7) = f for simplicity) that 

@(u)(f(& 5’, 17)) = @(u)(f) 

= Wpc)(f) - n@(pfM)(f) - @(w,,)(f)) 

= d&5’, 77) -n . 0 - @(w,,)(f) 

E range Q(u) 

for every 71 cc. Since 

@(u)(f(& 5”, 7)) + @(u)(f(t, 67, 77’)) for 77’< rl 

by (*), we have lrange Q(u)1 = c and hence u EY P/3X. This contradiction completes 

the proof. 0 
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5.4. Theorem. Let X be a space such that 

lpxl s lc(x, u)I = K. 

Then there is a dense, pseudocompact subgroup G of F@X such that 

IGI SK and GnkX={O}. 

Proof. If X = 0 one takes G = {0}, so we assume in what follows that X f 0. From 

the relation 

wFPX = IC(pX, a)/ = IC(X, 8)/ = Ku, 

it follows that there is a set {U, : 5 < K} of non-empty G,-subsets of FPX such that 

every non-empty G,-set U of F/3X contains one of the setsU,. 

To begin the induction, define G(0) = (0) and use 5.3 to find p0 E U, such that 

(G(O) u { PJ) n gX = (01. 

Now let 0 < 6 < K and suppose that p,,, G(v) have been defined for all n < 5 so 

that \G(~)~cK, p?~ U,, and 

(G(rl)u{p,])nSX={O]. 

We define G(t) =lJoc5 G(n), we note ]G([)[ S K and G(t) n 5X = {0}, and we use 

Lemma 5.3 to find p6 E U, such that 

(G(5) u {ppl) n 5X = {O]. 

The group G = UcxK Gc satisfies I GI s K and G n 8X = (0); and G, since it meets 

every non-empty G,-set of F/3X, is pseudocompact [5]. 

5.5. Theorem. Let X be a space such that 

lpX/ 6 IC(X, T)I = K. 

Then there is a group qX such that 

(a) qX c FPX; 
(b) X is embedded in qX as a closed subspace; 

(c) (X) is dense in qX; 

(d) qX n PPX = (0); 

(e) I11XIsK; 
(f) qX is a free (PA, CA)-group over X; and 

(g) IH(gX, qX)( = l-that is, every h E H(gX, qX) satisfies h(p) = Oforallp E &X. 

Proof. Choose G as in Theorem 5.4 and define 

(a) is obvious. 

(b) follows from the relation /3Xn qX =X, whose proof is identical in all 

essential features to the proof of Theorem 4.3(a) that /3X n 6X = X. 
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(c) follows from the relation (X) c VX c FPX and the fact that (X) is dense in 

FPX. 

(d) is immediate from the relation 

G n PPX = (X) n P/3X = (0). 

(e) Using Theorem 5.4 we have 

I~XISIXI+JG(~K. 

(f) The group G is dense in qX, and GE PA; hence 11X E PA. The proof that 

qX is a free (PA, CA)-group over X closely parallels the corresponding proof about 

gX in Theorem 4.3(c). 

(g) For every h E H(&X, qX) there is a unique 6~ H(F@X, FpX) such that h !z h 

(This may be proved by appeal to the fact that every continuous homomorphism 

between totally bounded groups is uniformly continuous, or by applying Theorem 

1.2 with U = CA; see also [4].) From Lemma 4.2 we have h[PPX] c PPX, and hence 

h[ P/3X] c_ 71x n P/3X = {0} 

from (d). Since h is continuous and PpX is dense in gX we then have h(p) = 0 for 

all p E gX, as required. Cl 

5.6. Remarks. (a) The preceding construction of the groups 7X was complicated 

by the need to arrange G n P/3X = (0) with G pseudocompact and dense in F/3X. 

If PpX were ‘small’ in FpX, this might have been achieved by a simpler argument. 

Let us note now that P/3X has full cardinality in F/3X, that is, 

To see this apply Lemma 5.2 with N = (0) to find a subset F of C(X, T) such that 

(F( = K, F is independent, and (F) is torsion-free, and for every E c F define 

hE:F+% by 

The properties of F ensure that hE extends to a (unique) homomorphism from (F) 

into the subgroup (0, $} of 8, and since the torsion subgroup V of U is divisible this 

in turn extends to a homomorphism (again denoted hE) from C(X, U) to V. As 

before there is pE E FPX such that h, = @(pE), and since V is countable we have 

pE E P/?X. The function E + pE is one-to-one from 9’(F) into P/3X, and we have 

(b) Theorem 5.5(g) shows among other things that for X as in Theorem 5.5 none 

of the groups ?X are topologically isomorphic to the group 5X. Of course, (a) 

above provides an alternative argument to this effect. 

(c) The group 6X and the group G of Theorem 5.4 are G,-dense subgroups of 

FpX with certain ‘disjointness properties’. It is a tribute to the power of Pontrjagin 



262 W. W. Comfort, .I. oan Mill / Free topological groups 

duality and the isomorphism H(@X, T) = C(X, T) that we were able to find these 

groups in the manner indicated. Our initial efforts at constructing such groups, 

working directly in FpX, were unsuccessful. We have not attempted to recast our 

argument subsequently into the exclusive context of F/3X, thus essentially avoiding 

duality theory, and we do not know whether such a project would be worthwhile 

or illuminating. 

6. Some unsolved questions 

Here we gather together a few questions, closely related to the topic of this paper, 

which our methods seem inadequate to solve. 

6.1. As Remark 1.4 indicates, even for U=(U) we have not found the correct 

generalization of Theorem 1.2 to spaces of the form u ia I Xi with I infinite. Theorem 

4.3(g) suggests a similar challenge concerning the groups g(u,,, Xi). Specifically, 

we ask: 

Let {Xi: i E I} be a set of (disjoint) spaces and set 2 = uiEl Xi. 

(a) Determine the group F&Z in terms of the groups FpX,; and 

(b) determine the group &Z in terms of the groups gXi. 

An example as in Remark 1.4 shows that the three relations 

S-Z=@ SX,, gz= C &Xi, tz= II tZxi 

it1 isI itl 

can all fail; we note in this connection that both xi,, 6X, and ni,, 5X, are 

pseudocompact Abelian groups [4]. 

6.2. It is natural to consider questions of the kind treated here for other classes of 

topological groups. For the sake of simplicity, let CCA denote the class of countably 

compact Abelian groups. From 1.3, every space X admits a free (CA, CA)-group; 

this is of course a free (CCA, CA)-group and a free (PA, CA)-group. 

(a) Are there spaces with a free (CCA, CCA)-group? 

(b) Does every countably compact space X admit a free (CCA, CCA)-group in 

which X is closed? 

A positive solution to (b) would show, in particular, that every countably compact 

space X embeds as a closed subspace into an (Abelian) countably compact group. 

Since there are countably compact spaces X and Y such that X x Y is not countably 

compact (even with X = Y), this would furnish groups G, HE CCA (even with 

G = H) such that G x HE CCA. Since the existence of such groups is known only 

in ZFC + MA [7], it may be difficult to establish a positive answer to (b). Our own 

efforts to answer (a) and (b) have been unsuccessful even in ZFC+MA. 

6.3. The construction of Theorem 4.3 associates with every space X a group 5X E PA, 

containing X as a closed subspace, with the property that everyfe C(X, Y) extends 

uniquely to f~ H(&X, gY>. (For present purposes, let us agree to write 7 = f(f).) 
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The uniqueness condition assures us that if X, Y and 2 are spaces and f~ C(X, Y) 

and g E C( Y, Z), then &(g of) = S(g) 0 S(f). It is clear also, denoting by id, the 

identity function on X, that g(id,) = id,,. The situation may be summarized in 

categorical language: 6 is a functor from the category TYCH of Tychonoff spaces 

(and continuous maps) into the category PA of Hausdorff pseudocompact Abelian 

groups (and continuous homomorphisms). Of course, & is not the only functor from 

TYCH to PA: the functor 

is another (but X is not closed in FX), and the functor 

is another (but (X) is not dense in &X x U). Accordingly, we ask this question: Is 

there another functor g :TYCH+ PA with X closed in 5X and with (X) dense in 

<X for each X E TYCH? 

6.4. We have been concerned throughout this paper with several questions of this 

form: Given X, is there G such that every f~ C(X, H) with H E V extends uniquely 

to _?E H(G, H)? If the word ‘unique’ is omitted, there arise a host of related 

questions-many of which, of course, are already answered by our results. Of those 

unsolved, the following is perhaps the most interesting specific problem. 

(a) Does every space X embed into a group GE PA in such a way that every 

JEC(X, H) with HEPA extends to fEH(G, H)? 

The difficulty is that there are ‘too many’ groups H to consider: In contrast with 

the device used in the proof of Theorem 1.2(l), we here see no way to replace the 

proper class of pseudocompact groups into which X can map continuously with a 

set which is adequate to our purposes. The following specific question arises. 

(b) Let CN be the class of cardinal numbers. Is there a function 4 : CN + CN 

such that if X G G with IX\= (Y and G is a pseudocompact Abelian group, then 

there is a pseudocompact subgroup H of G such that X s H and IH1 s +(a)? 

For a related question without algebraic overtones one may replace “Abelian 

group” and “subgroup” by “space” and “subspace”, respectively. An attractive 

formulation runs as follows. 

(c) Are there, for every two cardinals (Y and p, spaces X and Y such that X c Y, 

Y is pseudocompact, 1x1~ (Y, and every pseudocompact space Y’ such that X c Y’r 

Y satisfies I Y’I > p? 

[Note added August, 1987. The answer to 6.4(c) is “Yes”. See [2] and [3] for a 

proof and generalizations.] 
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