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n-DIMENSIONAL TOTALLY DISCONNECTED
TOPOLOGICAL GROUPS

JAN van Mo (1)

(Received October 8, 1985)

Abstract. A space X is called totally disconnected if every two distinct points x, y e X
have disjoint neighborhoods which are both open and closed. We prove that if G isa LCA group
withdim G = n+1 then G contains a totally disconnected subgroup H withdim H > n. If

moreover (7 is metrizable then H can be constructed to be a Borel subset of G.

1. Introduction. A space X is called totally disconnected if every two distinct
points x, y € X have disjoint neighborhoods which are both open and closed ®) It
is clear that every zero-dimensional space is totally disconnected but the converse is
not true. Sierpifski [11] and Knaster and Kuratowski [6] constructed the first
examples of totally disconnected 1-dimensional spaces which in addition are topologi-
cally complete and separable metrizable. Later, Mazurkiewicz [9] even constructed
n-dimensional such spaces for every n € N. See Rubin, Schori and Walsh [10] for
elementary constructions of n-dimensional totally disconnected separable metrizable
spaces.

The standard example of a totally disconnected 1-dimensional topological group
is Erdos’ space [4], i.e. the subspace E of Hilbert space 22 consisting of all
points all of whose coordinatesare rational. As far as I know, the natural question
whether there exist totally disconnected n-dimensional topological groups for every
n € N is unanswered. A natural candidate for a 2-dimensional totally disconnected

topological group is E x E. However, it is easily seen that £ x E and £ are
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(2) Some authors define a space to be totally disconnected if all of its components are points.

We follow however the terminology in Engelking [3].
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homeomorphic and consequently, dim £” =1 for every n e N U {0 } . The aim
of this note is to show that every locally compact Abelian topological group G with
dim G > n+1 contains a totally disconnected subgroup H with dim H = n. If

G is metrizable then we can construct H in such a way that it is a Borel subset of G.

2. The construction. Throughout, 7 denotes the circle group and [ denotes
the interval [0, 1]. For all undefined notions see Hewitt and Ross [5]. Abelian
groups are written additively.

Let G be a locally compact Abelian group with dim G = n. It is well-known
that G contains a copy of the n-cell I™ . Since this is not stated explicitly in Hewitt
and Ross [5], we will sketch a proof of this fact using only results from [5] and
well-known facts from dimension theory. Let U be a symmetric neighborhood of the

identity in G such that U is compact. Then L= U n U isan open and closed
n=1

subgroup of & and since EQ 2U it follows that L is compactly generated. Since
G is the topological sum of copiesof L it follows that dim L = n. Since L is
compactly generated there are @, b ¢ N and a compact Abelian group F such that
L s isomorphic to R? x zb F, [5, 9.8]. Since Z° is zero-dimensional, it
follows that dim L =dim (R? x F) =g + dim F (the last equality is not a triviali-
ty). Let p =dim F. Inaddition, let g denote the torsion-free rank of the character
group of . Then p =g, [5,24.28], and the proofof [5, 24.28] shows that
F contains a copy of /9. Consequently, L contains a copy of [ x IP” which is
naturally homeomorphic to 7°*7 . Since n < a+p, we are done.

We now come to the main result in this note. Among others, our proof depends
on an interesting technique due to Rubin, Schori and Walsh [10].

2.1. Theorem. Let G be alocally compact Abelian group with dim G =n+1.
Then G contains a totally disconnected subgroup H with dim # = n. If moreover
G is metrizable then H can be constructed to be a Borel subset of G.

Proof. By the above remarks, G contains a copy 4 of the cube /"*! We
may assume that 0 e 4. Takeapoint xe A\ {0 }andlet X: G = T be a conti-
nuous homomorphism with X (x) # 0, [5,23.26]. Then X(A) is a nonde-
generate subcontinuum of 7T and therefore contains a nonempty connected open
set /. We choose U to be a proper subset of T which implies that U is home-
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omorphic to an interval (@, b) for certain @, b € R with a < b. By abuse of
notation we assume that U= (a,b). Let ¥=X~! (U) N A. Then V isa nonemp-
ty open subset of A4 and therefore has only countably many components. If the
image under X of each of these components is degenerate then U is countable, which
is not the case. Consequently, there is a connected (relatively) openset £ C A4
such that X(E£) C U and X (F) is nondegenerate. Take two points p,q e &
with ¢ < X(p) < X(g) < b. Choose points @ and % in U such that

a<X(p)<a <b < X(q)<b.

Since X! ((a,2)) and X! ((b, b)) are open neighborhoods of p and g,
respectively, it is clear that there is a copy B of I"*1 in £ such that for some pair
of opposite faces (F, , F, ) of B we have

X(F) C (a,a)and X(F,) C (b,b).

Observe that X (B) C (a, b). So again by abuse of notation we assume that
I"*1 C @G and that

(1) x(I"1')C (a,b),
(2) X({0}xI")C (a,7)and X({1}x I")C (b, b).

By Mauldin [8] there is an (algebraically) independent Cantor set in 7. An in-
spection of Mauldin’s proof yields that independent Cantor sets exist in every nonemp-
ty open subset of 7. Consequently, there is an independent Cantor set K C (@, E)
Let r € KX be a point of infinite order and let A C K\ {7 } be a Cantor set. By in-
dependence, the subgroups generated by A and by {r} only meet in the identity
element of 7. Consequently, since the subgroup generated by {n} is densein T,
the subgroup generated by A is zero-dimensional.
Now we closely follow a construction in Rubin, Schori and Walsh [10]. Let

% denote the collection of all continua in 7”*! meeting both { &} x /7 and
{1} x I". Then ¥, topologized by the Hausdorff metric, is a compact metrizable
space and consequently there exists a continuous surjection a: A = &, If Ce &

then both X(C) N (a,@) and X(C) N (b ,b) are nonempty and consequent-
ly, by connectivity of C and by the fact that X (C) C (a, b ), we have AC X(C).
Put



270 J. van MILL

Z=U{X'(t)Nna(r):teh}

It is easy to see that Z is compact (use that A is compact and that « is continuous).
Since A C X(C) forevery Ce % it follows that X~' () .N a(z)# ¢ for
every t € A. Consequently, the function 1=X|Z : Z ~ A is a-continuous surjection.
By Rubin, Schori and Walsh [10, Theorem 4. 2], every subset of Z that intersecis
every fiber of = is at least n-dimensional. By Bourkaki [1, page 262, exercise 9a],
there isa G 5-subset P of Z such that P intersects every fiber of 7 in precisely one
point (observe that Z is metrizable). Now let < P> and < A> denote the sub-
groups of G and T generated by P and A, respectively. Since X(P)=A, clearly
X(<P>)=<A> . Take a point ze<P> such that X (z)=0. There exist

distinct p, ,...,P, € P and elements m m, € Z suchthat z=m p, +

...+m,p, . Then 0=X(z)=m X(p, ;Jr ..+m X(p,). Since X restricted
to P isone to one, the X(p;) 's are pairwise distinct. The fact that A is inde-
pendent now implies that m = ...=m, =0. Consequently, X restricted to <P >
is one to one from which follows that < P> is totally disconnected since we already
observed that < A > is zero-dimensional.

We shall now verify that dim < P> > n. Observe that < P> is a continuous
image of the topological sum of countably many finite powers of P. Since P is
separable and metrizable, it therefore follows that < P> is Lindel6f, hence normal.
Also X restricted to < P> isone to one, from which follows that

<Ps> N £=P,

ie. P isclosed in < P> . Since dim P = n, the normality of < P> now implies
that dim < P> > n, [3, Theorem 7.18].

It remains to verify that < P> is Borel if G is metrizable. To thisend, let &
be metrizable. Since P isa Gs-subset of Z and Z isclosed in G it folows that P
is a Borel subset of G. Let 4 be acountable open basis for P. Fix a pairwise dis-
joint collection B, ,...,B, ¢ # andapoint (m ,..., m )eZ"\{(0,

n
...,0)}. Defineafunction ®: MM B — <P > by
i=1 I

®(b,,...,b, )=mb + ...+ mpb

1 nonr-

We claim that @ is one to one. To this end, take distinct points (b1 — bn ),
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n
( By 1w o .e,) € I B, . Without loss of generality assume that for a certain
i=1
k<n wehave b,=e, iff i <k. Suppose that ® (5, , . . B, ) =B, o s By ).
Then clearly
n n
;aék mRb;2 - sz mge, = 0

from which follows that

n n
T m, X(b_)— £ m, X(e,)=0.
oo 2 ) ook B 2

Since X is onetooneon P andsince thesets B, ,...,B, are pairwise disjoint, it

TN

follows that the points X (b, ),...,X (b, ), X(¢),..,X(e, ) are pairwise
distinct. Since A is independent it therefore follows that m, =...=m =0,
which is a contradiction.

n
Consequently & is one to one and clearly continuous. Since I B, is topolo-
i=1

n

gically complete and separable metrizable it now follows that @ ( 11 Br.) is a Borel
i=1

subset of G, Kuratowski [7, R39 V]. Since < P>\ {0 } is clearly a countable

n
union of sets of the form @ ( I B, ), we find that < P> isa Borel subset of G.
i=1

RH+1

2. 2. Corollary . contains an n-dimensional subgroup A which is dense,

Borel and totally disconnected.

Proof. By Theorem 2. 1. R"*! contains a subgroup H with dim H > »n and
which is Borel and totally disconnected. We claim that H is densein R"*! Sup-

pose that H is not dense and let H denote the closure of . Then H is nowhere
dense, being a subgroup of R”*! | By Engelking [3, Exercise 7 . 4 .18 ] it follows

that dim A < n and since dimH =n we get dim H =n. By Hewitt and Ross
[5, Theorem 9.11], H is isomorphic to R? x Z? for certain a, b e N. Since
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Z? is zero-dimensional, it clearly follows that dim (R? x Z?)=a, [3,7.13.19].
Consequently, H is isomorphic to R” x Z b for certain be N Let C be the
component of the identity in H.If dim(CNH) < n-—1 thensince Z b is count-
able, by the Countable Sum Theorem, [3,7.2.1],it follows that dimH# <n —1,
which is a contradiction. Consequently, dim (C N H)=n. Since C is open and
closed in H it follows that C N H is dense in C. In addition, since C is isomorphic

to R™ , it follows from [3, Exercise 7.4.18] that every n-dimensional subset of
C has nonempty interior in (. Consequently, A contains a nonempty open set
which has compact closure in A . Therefore, being a topological group, H is locally
compact. However, H is totally disconnected and every totally disconnected locally
compact metrizable space is clearly zero-dimensional. This is a contradiction.

By similar arguments as above it also follows that dim # # n+1, ie. dim H=n.

2.3. Remark. We adopt the notation in the proof of Theorem 2. 1 and we
assume that G is metrizable. There exists a Cantor set A  C (g, b )\A such

that A U A is independent while moreover the group generated by A U A is

zero-dimensional. There exists a compact set Z, in I"*1 such that X (Z,)=84

Let my=X|Z, : Z, ~ AO and let P be a & subset of Z, intersecting each
fiber of =« 5 in precisely one point. Let N " bea G a-subset of PO homeomorphic

to the space of irrational numbers, Kuratowski [7, § 36 V Corollary 2]. The
space N, contains Borel sets of arbitrarily large complexity, [7, §30 XIV].
These sets are also Borel subsets of G of arbitrarily large complexity. If B issucha
set then the subgroup of G generated by B U P is totally disconnected, its dimen-
sion is at least n and it clearly contains 5 as a closed set. This proves that G
contains totally disconnected Borel subgroups which are at least n-dimensional and
which are in addition of arbitrarily large Borel complexity. Consequently, R"*!
contains uncountably may pairwise nonhomeomorphic, n-dimensional, dense, totally

disconnected Borel subgroups. -

2. 4. Remark. By the method of Theorem 2. 2 'it is impossible to construct
topologically complete, separable metrizable, n-dimensional topological groups which
in addition are totally disconnected (n > 1). Simply observe that every topological-

ly complete subgroup of a locally compact group is locally compact and that every
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locally compact totally disconnected metrizable space is zero-dimensional, This leaves

open the following question :

Do there exist for every n = 1 topologically complete, separable

metrizable, n-dimensional, totally disconnected topological groups ?

For n=1, the answer to this question is in the affirmative. Brechner [2] construct-

ed a compact metrizable space X the autohomeomorphism group of which is totally

disconnected, topologically complete and 1-dimensional.
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