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0. Introduction

If X is a space then C*(X) denotes the set of continuous bounded real-
valued functions on X endowed with the topology of uniform convergence.
There are classification results for these spaces. For details see [18] and [6].
There is another topology on function spaces that is of interest in abstract
functional analysis, namely the topology of point-wise convergence. For any
space X, the set of continuous real-valued bounded functions on X endowed
with the topology of point-wise convergence shall be denoted by C;(X). For
a recent survey on point-wise convergence function spaces, see [16]. So far,
no classification results have been obtained for the spaces C*p(X). Results in
[3], [4] and [17] indicate that a classification result for the spaces C*p(X)
in the linear world promises to be extremely complicated. Trying to get a
topological classification result for the spaces C*p(X) seems to be more
promising since no obstacles for obtaining topological homeomorphisms
are known. The aim of this paper is to prove that if X is any countable,
metric space which fails to be locally compact at some point then C*p(X) is
homeomorphic to the countable infinite product

l2f  l2f  l2f  ...,

where l2f = {x E l2 : Xi 0 for almost all i 1 and 12 denotes the separable
Hilbert space of course. It is clear that "countable" is essential in this result.

In addition, "metric" is essential by results in [14]. 1 conjecture that "fails
to be locally compact at some point" can be replaced by "is not discrete".
1 am indebted to the referee for many valuable comments.

Compositio Mathematica 63: 159-188 (1987)
© Martinus Nijhoff Publishers, Dordrecht - Printed in the Netherlands
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1. Preliminaries

Unless otherwise stated, all spaces under discussion are separable metric. All
mappings are continuous functions. Let X and Y be spaces. A homotopy
from X to Y is a map F: X x I ~ Y (I denotes the interval [0, 1] of course)
and for t E I we define Ft: X ~ Y by Ft(x) = F(x, t). If F: X x I ~ Y is
a homotopy and WY is an open cover of Y, then we say that F is limited by
WY provided that for each x E X there exists an element U e WY containing
F({x}  I). Now let e be a collection of open subsets of Y. Mappings f, g:
X - Y are called *-close if for each x E X with f(x) ~ g(x) there exists a
U E 0/1 containing both f (x) and g(x) (note that we did not require 4Y to
cover Y). Observe that if f: Y - Y is *-close to the identity then f is
supported on Uo/1, i.e. f restricts to the identity mapping on Y/~U. The
identity mapping on X shall be denoted by 1, or, if no confusion seems
likely, simply by 1. We shall frequently use the following result due to
Anderson [1].

1.1. INDUCTIVE CONVERGENCE CRITERION. Suppose that a sequence {hn}~1 of
homeomorphisms of a compact space X is chosen inductively so that each h,,
is sufficiently close to the identity. Then limn~~ hn ~···~ hl exists and is a
homeomorphism of X.

We consider the Hilbert cube Q = II;[- 1, 1]i, with metric d (x, y) =
03A3~1 2-ilxi - yi|. A Hilbert cube is a space homeomorphic to Q. We shall now
define several notions in Q which are all stated in purely topological terms.
For this reason we assume that we defined these concepts simultaneously for
spaces homeomorphic to Q.
A closed subset F of a space X is a Z-set in X if every map f: Q ~ X can

be approximated by maps g: Q ~ X with g(Q) n F = 0. Note that every
endface of Q (a subset of the form ni 11) or 03C0-1i({1}), where ni : Q -
[-1, 1]; is the projection) is a Z-set in Q. We let L(X) denote the collection
of all Z-sets in X. A countable union of Z-sets is called a (J-Z-set. We let

L03C3(X) denote the collection of Q-Z-sets in X. An imbedding h: X - Y is
a Z-imbedding if h(X) is a Z-set. A z-(J-pair in X is a pair (A, B) with
A E L(X), B E L03C3(X) and B z A. If (A, B) and (E, F) are two z-6-pairs
then we write (A, B)  (E, F) whenever A z E and F n A = B.

Observe that "  " is a partial order on the family of all z-Q-pairs in
X. For a discussion of Z-sets see [6] and [9]. We shall now define two
important concepts. A skeleton in (a topological copy of) Q is an increasing
sequence A1 ~ A2 £; ... of Z-sets in Q having the following absorption
property:
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For every e &#x3E; 0 and n E N and for every Z E L(Q) there exist a

homeomorphism h: Q - Q and an m ~ N such that d(h, 1)  e, hIA, = 1,
and h(Z) ~ Am.
The idea of a skeleton for a given class of compacta is due independently

to Anderson [2] and Bessaga-Pelczynski [5].

1.2. THEOREM. For every n E N let An = 03A0~i=1 [- 1 + lin, 1 - lin];. Thelf
the sequence {An}~1 is a skeleton in Q.

For a proof of this basic result due to Anderson and Bessaga-Pelczyùski, see
[9], chapter 5.

If the sequence lanllo is a skeleton in Q then A = lJ; An is called a
skeletoid.

1.3. THEOREM. If A and B are skeletoids in Q and K E L03C3(Q) then for every
collection 0/1 of open subsets of Q there is a homeomorphism h: Q ~ Q that
is *-close to 1 while moreover h((A ~ K) n Uo/1) = B n Uo/1.

For details see e.g. [6], pp. 124, 129 and 131.

Let X be a compact space. An isotopy on X is a homotopy H: X x I ~ X
such that for each t E I the mapping H, : X ~ X is a homeomorphism. We
shall also need the following consequence of a result due to Anderson-
Chapman. For details see [9], §19.

1.4. THEOREM. Let X be a compact space and let H: X x I ~ Q be a
homotopy such that Ho and Hl are L-imbeddings. Then for every open
covering Gll of Q such that H is limited by 0/1 there is an isotopy F: Q x I ~ Q
having the following properties:
1. F is limited by 0/1,
2. F0 = 1 and F1 ~ H0 = H1.

Finally, we shall need the following result, [9], 11.2.

1.5. THEOREM. If (A, Ao) is a compact pair and f: A ~ Q is a map such that
f JAO is a Z-imbedding, then there is a Z-imbedding g: A ~ Q which agrees
with f on Ao. Moreover, g can be constructed arbitrarily close to f and such that
g(ABA0) misses a pre-given a-Z-set in Q.

2. N-skeletons

In this section we shall define the concept of an N-skeleton, which is

roughly speaking a decreasing sequence of skeletons with some absorption
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property. In addition, we prove that N-skeletons are "unique" up to

homeomorphism.
Let X be a compact space. A L-matrix in X is a collection d = {Anm:

n, m ~ N) of Z-sets in X having the following properties:
1. An1 = 0 for every n E N,
2. Anm ~ Anm+ 1 for all n, m ~ N, and
3. An+1m ~ Anm for all n, m ~ N.
If A = {Anm: n, m ~ N} is a L-matrix then for each n E N the union of the
nth row of A shall be denoted by den), i.e.

Also, for all n, m ~ N put

Observe that (Am, Anm) is a z-03C3-pair. A decreasing collection

of subsets of X is called an n-sieve if

1. Zi ~ L(X) for i  n, and
2. Si E L03C3(X) for i  n.

We are now in a position to define the concept of an N-skeleton. An
N-skeleton in X is a Y-matrix d = {Anm: n, m ~ N} having the following
absorption property:

For every e &#x3E; 0, for every n E N, for every decreasing sequence

i1  ···  in of natural numbers and , f ’or every n-sieve Z1 ~ S1 P
Zn ;2 Sn in X such that for every k  n,

there exist a homeomorphism h: X ~ X and a decreasing sequence

j,  ···  jn of natural numbers such that
1. d(h, 1)  8,

2. ~k  n ~l  ik:h(Akl) = Akl,
3. ~k  n: (h(Zk), h(Sk))  (Ai, Wjk,).
Observe that by 2 many elements of the N-skeleton are kept invariant under
h, but that h is nowhere required to be the identity.
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2.1. LEMMA. Let X be a compact space and let A = {Anm: n, m ~ N} be an
N-skeleton in X. If h: X ~ X is homeomorphism then h(A) = {h(Anm):
n, m ~ N} is also an N-skeleton.

Proof. Use that h is uniformly continuous and that L(X) is invariant under
homeomorphisms of X. ~

We now come to the main result in this section which we prove be a

complexification of a standard back and forth technique, cf. [6], chapter 4.

2.2. THEOREM. Let X be a compact space and let A = {Anm: n, m ~ N} and
é4 = {Bnm: n m ~ N} be N -skeletons in X. Then for every e &#x3E; 0 there is a

homeomorphism h: X ~ X having the following properties:

Proof. The homeomorphism h will have the form limm~~ hm O... 0 hl for
some inductively constructed sequence {hm}~m=1 of homeomorphisms of X.
From the construction it will be clear that each hm can be chosen arbitrarily
close to the identity. So without further mentioning it is understood that
each hm is chosen in accordance with the Inductive convergence criterion 1.1.
If in addition we also make sure that 03A3~m=1 d(hm, 1)  E, then in will follow
that d(h, 1)  e.

We shall prove that there exist

a) for each kEN a strictly increasing function 03BEk: N ~ N having the
following properties:

b) for each k ~ N a strictly increasing function qk: NB{1} ~ N having the
following properties:

c) a sequence {hm}~1 of homeomorphisms of X with hl = 1 such that for

every m e N if we put fm = hm o ··· o h, then
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Suppose for a moment that we proved statements a) through e). Put h =
limm~~ hm o ··· o hl , By the above remarks, h is a homeomorphism of X onto
itself such that d(h, 1)  e. Fix k  1 and k  2. By d), for every m  1 +
(k - 2) we have

The continuity of h and the compactness of X now easily imply that

(notice that k and 1 are fixed). Since 03BE and 1 are strictly increasing, from this
it now directly follows that

i.e. h is as required.
It remains to give a proof of the statements a) through e). We already

know that

Since A 1 = Bl - 0, we also have

and

So now it is clear how to proceed inductively. Suppose that for certain
m ~ N we defined

f) ~k  m the function Çk on the set {1, 2, ..., m - (k - 2)} such that
for every i x m + 1 we have

g) ~k  m the function Ik on the set {2, 3, ..., m - (k - 2)} such that
for every 2  1 x m + 1 we have

h) the homeomorphisms
then d) and e) hold.

such that
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Some remarks seem necessary. Among other things, we wish to construct a
strictly increasing function 03BE1: N ~ N. By the statement "03BE1 on the set
{1, 2, ..., m + 1}" we mean that we already know the values of the
function we are constructing on the set {1, 2, ..., m + 1}. So in fact
we are dealing with a partial function, the domain of which is {1, 2, ... ,
m + 1}, which, for convenience, we shall also denote by ç 1 . At stage m + 1

of the construction we shall enlarge the domain of the partial function ç 1 .
So if we discuss ji later on, the domain of ji should be taken into consider-
ation. The same remark applies to all of the functions 03BEk and ~k.
By f) we have

which implies, by the definition of an N-skeleton, that

Consequently,

is an m-sieve. From h) it follows that this m-sieve and the natural numbers
~1(m + 1), ... , ~m(2) are "admissible" as input for the N-skeleton B. So
by the definition of an N-skeleton there is a (small) homeomorphism et:

X ~ X and a sequence i1  i2  ···  im of natural numbers such that
i) ~k  m ~l  ~k(m - (k - 2)): 03B1(Bkl) = Bkl,
j) Vk c m: (03B1fm(Ak03BEk(m-(k-2))), 03B1fm(Ak03BEk(m-(k-2))))  (Bk’ Bkik).
It is clear that we may assume that for every k  m we have

We are now in a position to define for each k  m + 1 the function ~k in
the point (m + 1) - (k - 2), namely, we put

Now consider the natural numbers Çl (m + 1)  ···  03BEm(2) and the
m-sieve
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By j), these are admissible as input for the N-skeleton,

(LEMMA 2.1). Consequently, there exist a (small) homeomorphism
03B2: X ~ X and a sequence of natural numbers 03B51  03B52  ···  8m such that
k) ~k  m ~l  çk(m - (k - 2)): 03B203B1fm(Akl) = 03B1fm(Akl),
l) ~k  m: (03B2(Bk~k(m-(k-3))), 03B2(Bk~k(m-(k-3))))  (03B1fm(Ak03B5k), 03B1fm(Ak03B5k)).

It is clear that for every k  m we may assume that

We are now in a position to define for each k  m + 1 the function Çk in
the point (m + 1) - (k - 2), namely, we put

Also, define hm+1 = 03B2-1 ~ 03B1. We claim that our choices are as required.

Claim

Indeed, fix arbitrarily.

Case

If 1 = 2 then fm+1(Ak03BEk(l-1)) = Bk~k(l) = 0,sothenthereisnothingtoprove.
So assume that 1 &#x3E; 2. Then

and
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Case 2. k = m + 1.

Then l = 2.Since Am+103BEm+1(1) = Am+11 = ~ and Bm+1~m+1(2) = 0,thcreisnothing
to prove.

Case 3. k  m and 1 = (m + 1) - (k - 2) = m - k + 3.

Then

and

Claim

Indeed, if k = m + 1 then Bk~k(m-k+3) = 0, so assume that k  m. Now the
claim follows directly from (1).

This completes the inductive construction and therefore also the proof of
the theorem. D

Let si = {Anm: n, m ~ N} be a L-matrix in the compact space X. Define the
kernel, ker (A), of A by

ker

2.3. COROLLARY. Let X be a compact space and let d and A be N-skeletons
in X. Then for each e &#x3E; 0 there is a homeomorphism h: X - X such that

Observe that nowhere in this section we used specific properties of Z-sets,
except that Y (X) is a topological class of compacta, i.e. if h: X ~ X is any
homeomorphism then h(L(X)) = L(X). So we could have stated our
results in a more general form.

3. A-matrices

In this section we shall define the comcept of a 9-matrix in Q and we shall
prove that each 9-matrix is an N-skeleton.

Let A = {Anm:n, m ~ N} be a L-matrix in some compact space X.
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By a T-set for A we shall mean a Z-set B z X having the following
property:

Let J(A) denote the collection of all T-sets for A.
The proof of the following lemma is straightforward and is left to the

reader.

3.1. LEMMA. Let X be a compact space and let A = {Anm: n, m ~ N} be a

A Q-matrix in Q is a L-matrix A = {Anm: n, m ~ N} having the following
properties:

In the remaining part of this section we shall prove that every 9-matrix is
an N-skeleton. This result is our main tool in recognizing N-skeletons.

Proof Observe that 2 is a triviality and 1 follows from the definitions and
lemma 3.1. D

3.3. LEMMA. Let A = iAm: n, m ~ N} be a 2-matrix in Q. Then ~03B5 &#x3E; 0

there exist a homeomorphism h: Q - Q and an element fil E N such that
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Proof. Since {A1p: p ~ N} is a skeleton in Q there exist t  m + p and an

imbedding u : Zi - A1t such that u|Z1 ~ A1m = 1 and d(u, 1)  e/3. Since
A1t ~ (T n At ) is a J-Z-set in A1t we may use Theorem 1.5 to get an

imbedding v: Z1 ~ At such that d(v, u)  8/3, v 1 T n ZI = u 1 T n Zl ( = 1)
and v(Z1/T) ~ A1tBA1tBT. By Theorem 1.4 we may extend v ~ 1 T to a
homeomorphism v of Q such that d(v, 1)  203B5/3 . Since A1t is a skeletoid in
A1t there exists a homeomorphism w of Ar such that w|A1t n T = 1 and

w((A1t ~ v(S1))BT) = A1tBT; we may require w to be so close to 1 as to

assure the existence of a homeomorphism w of Q that extends w u 1 T and
satisfies d(w, 1)  e/3, see Theorems 1.3 and 1.4. We put h = w o v; then by
abuse of notation,

Thus 2 and t  m show that h and m = t have the desired properties. D

This Lemma has some nontrivial consequences.

3.4. LEMMA. Let A = {Anm: n, m ~ N} be a Q-matrix in Q. Then dE &#x3E; 0
~m E N 3ô &#x3E; 0 ~1-sieve Z1 ~ SI with

b’T E 5(d) Vhomeomorphism h: T ~ T ~p E N such that

there exist a homeomorphism H: Q - Q and an m ~ N such that
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Proof. Let 03B5 &#x3E; 0. If m = 1 put 03B4 = 03B5. If m &#x3E; 1 let 0  03B4 = 03B42 
03B43  ...  Jm+l 1 = E be so small that
(*) ~2  i  m VZ, Z’ ~L (A1i) Vhomeomorphism f: Z ~ Z’ with

d( f, 1)  ôi there exists a homeomorphism I.- A1i ~ A1i extending f
with d(f, 1)  1 2 03B4i+1.

That these (5’s exist follows directly from Theorem 1.4. We claim that ô is as
required. Let Zl ;2 SI be a 1-sieve and choose an element T ~ J (A), a
homeomorphism h : T - T and a natural number p satisfying (1) through
(4). By induction we shall prove that for every i  m there exists a homeo-
morphism hi: Ai u T - Ai u T such that

Put hl = h (if m = 1 we are done already). Suppose that for i - 1  m the

homeomorphism hi-1 has been constructed. If AI £; T ~ A1i-1 then define
hi = hi-1. If A1i ~ T ~ A1i-1 then A1i n (T u A1i-1) ~ L(A1i) (Lemma 3.1)
from which follows that

By (2) and (10) we have hi-1(E) = E and since d(hi-1, 1)  bi, by (*) we
can extend hi-liE to a homeomorphism a: A1i ~ AI with d(a, 1)  1 2 03B4i+1.
Since et(d/) and -çiil are both skeletoids for AI, by Theorem 1.3 there is a
homeomorphism 03B2: A1i ~ AI such that

Define
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Then hi is a homeomorphism such that

It is clear that for this we only need to verify that hi(d/) = d¡l. By (14) this
follows from hi(A1i n E) = A1i n E, which is a consequence of (10), (2)
and (11).

Let F = hm ; Then d(F, 1)  E and by Theorem 1.4 we may extend F to
a homeomorphism F: Q ~ Q with d(F, 1)  e (the straight-line homotopy
in Q between 1T~A1 and Fis "e-small", so the existence of F follows directly
from Theorem 1.4m).

Let 21 = F(Z1) and 91 = F(S1), respectively. Then

and

Observe that (18) follows directly from (1) and (16)m. Since Fextends Fand
by (17)m F extends h, (19) follows from (4). Now put i = T ~ A1m. We shall
prove that for q = max (p, m) we have

This is a triviality since by (18) and (19), 21 n i = Zl n (T u A1m) =
(21 n T) ~ A1m ~ A1q. Moreover,

By Lemma 3.3, there are a homeomorphism a: Q ~ Q and an element
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m ~ N such that

It is easy to see that H = a o F is as required.

Let us now consider the following statement, where is a 2-matrix.

that
1. ~k  n : (At, Akik)  (Zk, Sk), Vre J(A) bhomeomorphism h : T - T

4. ~k  n: (h(Zk ~ T), h(Sk n T))  (Ak03BEk, Ak03BEk), there exist a homeomor-
phism H: Q ~ Q and elements 03BE1, ... , 03BEn E N with

The number ô shall also be denoted by J(d, il... in , c) -

3.5. LEMMA. ~Q-matrix A Ve &#x3E; 0 ~n E N Vdecreasing sequence il  ··· 

Proof. For n = 1, simply apply Lemma 3.4. Suppose therefore that

S(A, k1  ···  ki, e) is true for every Q-matrix A, for every e &#x3E; 0, for
every i  n - 1 (n  2) and for every decreasing sequence k1  ···  ki
of natural numbers.

Let A {Anm: n, m ~ N} be a 2-matrix, e &#x3E; 0, i1  ···  in, Z1 ~
SI ;2... ;2 Zn P Sn’ T ~ J (A), h: T - T and 03BE1, ..., 03BEn c-N be as in the
definition of S(A, i1  ···  in, E) (we shall specify ô later of course). For
every 2  k  il let f!Jk = (A) n A1+nm : n, m ~ N}. Then 4k is a Q-matrix
in the Hilbert cube Al, Lemma 3.2. In addition, put {An+1m : n, m ~ N}.
Then E is a Q-matrix, Lemma 3.2. Let 03B3 = 03B4(E, i2  ···  in, e). Applying
our induction hypothesis, by downward induction it is easy to find for every
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2  k  i1 a J(k) &#x3E; 0 such that

It will be convenient to write ô (il + 1) = y. We have to find a 03B4 &#x3E; 0

witnessing S(A, il  ···  in, e). We put

and we shall show that ô is as required.
For every k  i1 we shall construct a homeomorphism hk : A) - Ak such

that

then hk extends hl,

and

there are natural numbers ~2 , ... , ’1n E N such that for every 2  1  n
we have (hk(Zl n A1k), hk(SI n A1k))  (Al~l, A1~l). (8)k

Since A 1 = 0 we let hl be the empty function. Then obviously (4)1 through
(8) are satisfied. Suppose therefore that for some k  i1 (k  1 ) the homeo-
morphism hk-1 has been defined properly.

Put E = A1k-1 1 u ( T n A1k) and define qJ: E -+ E by qJ = h ~ hk-1; by
(4)k- 1 ~ is a well-defined homeomorphism.

Claim 1. d( qJ, 1)  03B4(k) and if l  k - 1 then ç extends hl.

This follows directly from (3), (5)k _ 1 and (6)k-1.

Claim
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This follows from (7)k - 1 and (3) in the definition of S(A, i1  ···  in, E).

Claim 3. There exist 03B32, ..., 03B3n ~ N such that for every 2  x  n we have

This follows from (8)k-1 and (4) in the definition of S(A, il  ···  in, E).

First observe that Bk(1) = .911 and Bk(1) n E = .911-1 1 u (d1 ~ T).
Consequently, the claim follows from (7)k-1 1 and (3) in the definition of

Then Ak - Ak n (T ~ A1k-1) = (Ak n T) ~ A1k-1 = E. Define h k = 9-
The easy proof that hk and the numbers 03B32, ... , Yn E N found in Claim 3
are as required, is left to the reader.

Case 2..

Claim 5.

By Lemma 3.1, E e J(A) so the claim follows from our definitions.

Claim 6. Z2 n Al ;2 S2 ~ A1k ~ ··· ~ Sn n Al is an (n - 1) sieve in the
Hilbert cube Al such that

Notice that b) implies that Z2 n Ak ~ L(A1k) since dl is a skeletoid in A1k.
In addition, a) follows directly from (1) in the definition of

S(A il  ···  in, e). Since Z2 c-- Sl we also have by (1) in the definition
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By Claims 1, 2, 3, 5 and 6 and by S(Bk, i2  ···  in , 03B4(k + 1)) there exist
a homeomorphism f : A1k ~ Ak and element ~2, ..., 1 ll,, E N such that

and

Let F = f(Z2 n A1k) ~ E. Since both dl and f(A1k) are skeletoids for Ak
there exists by Theorem 1.3 a homeomorphism a: A1k ~ Ak such that

Put hk = et of We claim that hk and the elements ~2 , ... , ~n are as required.
That (4)k, (5)k (6)k and (8)k hold is a triviality (use that E = (T n A1k) ~
Ak _ 1 and (9)-(13)). Take 2  x  n ad y  ix arbitrarily. By (10), f(A1k n
Axy) = A1k n A00FF and f(A1k n Axy) = A’ n Axy. Since

we conclude that

Now take 1  i1 arbitrarily. If l  k then hk(A1l n A1k) = hk(A1l) = A1l =
A1l n Ak since hk extends hl . If k  l then hk(A1l n A1k) = hk(A1k) = Ak -
A1l ~ A1k. Again, assume that 1  k. Then hk(A1l n A1k) = hk(A1l) =
hl(A1l) = A1l = A1l n Al by (6)k . If k  l then hk(A1l n A1k) = hk(A1l) (*) =
A1k = A1l n Al in case (*) holds. This is shown in the following:

Claim
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Indeed, by (14) and (13) we have

(by Claims 4 and 6(b))

By (11), f(Z2 n A1k) ~ A2~2 ~ A1k ~ di. From this we conclude that

Thus the claim follows from (14) and (13).
Now let f = hll u h and i = All u T. By (4)il , f T - Fis a homeomor-

phism. Moreover, f has clearly the following properties:

there are natural numbers ~2 , ... , 11n E N such that for every 2  1  n
we have (f(Zl ~ T), f(Sl n T))  (Al~l, Al~l). (17)

(For (17) observe that if (A, B)  (E, F) and (C, D)  (E, F) then (A n C,
B n D)  (E, F)). Now consider the Q-matrix E = {An+1m: n, m ~ N}.
Clearly tE J(E). By S(E, i2  ···  in , e) there exist a homeomorphism
1: Q ~ Q and elements 03BE2 , ... , 03BEn ~ N such that

Now put T * = T ~ f(Z2).

Claim 8. 3p E N such that T * n Aq ~ L(A1q) for every q  p.

This follows from (19) and Lemma 3.1 (notice that T u AÇ2 ~ L(Q), hence
is nowhere dense, and ~~1A1m is dense in Q).
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Claim 9. 3m E N such that

Indeed, let m

In addition,

Also,

which proves the claim.

By Lemma 3.4 there exist a homeomorphism a: Q ~ Q and an element
03BE1 E N such that
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Now put H = ri 01 We claim that H is as required. Clearly, d(H, 1)  e

and since oc 1 T* = 1 we have H|T = h by (18) and (15). That condition (6)
of the definition holds and that

follows from (16), (19) and (20) since Axy ~ f(Zk) ~ A1i1 ~ f(Z2) ~ T* and
03B1|T* = 1.

Finally, that (H(Z1), H(S1))  (At, A103BE1) follows directly from (21). D

We now come to the main result in this section.

3.6. THEOREM. Let A = {Anm: n, m ~ N} be a il-matrix in Q. Then A is an
N-skeleton.

Proof Take T = 0 in S(A, i1  ···  in, 03B5) and apply Lemma 3.5. D

4. Some N-skeletons

In this section we shall prove that Q-matrices exist. Compared to all the
work we did so far this turns out to be surprisingly simple.

Let us fix some notation. For every n EN, let An be as in Theorem 1.2, i.e.

Let 6 = 03A0~1Qi, where 6, = Q for every i. Clearly,  ~ Q. For every
n, m ~ N define Anm ~ Q as follows:

4.1. THEOREM. A = {Anm: n, m ~ N} is a Q-matrix in Q.

Proof. To see that

is a skeleton, use Theorem 1.2 and Chapman [8].
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That

is easy since choose indices n,  ...  nm ~ N, il, ..., im ~ NB{1} and
define natural numbers p1  p2  ··· pm by

Then

is a product of Hilbert cubes and hence is a Hilbert cube itself. That

is a skeleton in nk=1 1 A"’ follows easily from Chapman [8] and the formula
(*). 
We shall prove that

So take n,  ...  nm E N and il, ... , im E N arbitrarily and suppose
that

By the above formulas we can write
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where all but finitely many Ek’s (resp. Fk’s) are equal to Q and the remaining
finitely many Ek’s) are elements of {An}n&#x3E;1. Since TIf Fk is a proper subset
of TIf Ek we have

Fk ~ Ek for every k and there exists a k ~ N such that Fk is a proper subset

Then clearly Fk ~ L(Ek) from which easily follows that 03A0~1Fk ~ L(03A0~1Ek).
D

4.2. COROLLARY. Let A be an N-skeleton in Q. Then ker (A) is homeomor-
phic to (J (J).

Proof Let 03A3 = ur An’ where An is defined as above. The Q-matrix A
constructed in Theorem 4.1 is an N-skeleton by Theorem 3.6 and ker (A)
obviously equals LOO . It is known that L is homeomorphic to

For details see [6]. Consequently,

So the desired result now follows from Corollary 2.3. 0

We shall now give a different example of an N-skeleton in Q. This example
will be of importance in the announced "applications" to function spaces.

It will be convenient to fix some notation. For x E Q write /Ix Il = supi lxi 1.
Denote points of Q by x = (x(i)), where x(i) E Q for all i. In addition, write
Bm = {x ~ Q: ~x(i)~  1 - 1/m if i  m and ~x(i)~  2-n otherwise}.

It is clear that A (Bfl : n, m ~ N} is a L-matrix in Q.

4.3. LEMMA. Vn E N: {Bnm}m &#x3E; 1 is a skeleton

Proof The standard proof that {An}~1 is a skeleton, where each An is as in
Theorem 1.2, can easily be adapted to show that {Bnm}m&#x3E;1 is a skeleton. For
details, see [6], Proposition 3.1 on page 156. 0

4.4. LEMMA. ~n1  ···  nm ~ N ~i1,..., im E NB{1}: ~mk=1 Bnkik ~ Q. 0
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4.5. LEMMA. Vp, q E N: Bpq E J(B).

Proof. Take ni  ...  nm E N and p, q, il , ... , in E N and write B =
~mk=1 Bnkik. With A(03B5) = {x ~ Q: ~ x ~  03B5} there are sequences (8;) and (Ji) of
positive numbers such that B = 03A0iA(03B5i), B ~ Bpq = 03A0iA(03B4i). Observe that
03B4  8 implies that A(03B4) ~ L(A(03B5)). Therefore, if B ~ Bpq ~ L(B) then
03B4i  8i for each i, i.e., B ~ B n B:. Q

4.6. LEMMA. Vni  ...  nm e N ~i1, ... , im e NB{1} ~p e N : {~mk=1 Bnkik n
Bnmi +p}i &#x3E; 1 is a skeleton in nm Bnkik .

Proof : Write B = ~mk=1 Bnkik . By lemma 4.5, B n Bnm +p ~ L(B) for each i.

A straightforward adaptation of the standard proof that {An}~1 is a skeleton,
where each An is as in Theorem 1.2, now also shows that {~mk=1 Bnkik n
Bnm +pi}i&#x3E;1 is a skeleton in nm Bnk ~

4.7. COROLLARY. B = {Bnm: n, m ~ N} is an N-skeleton in Q .

proof. Apply Lemmas 4.3-4.6 and Theorem 3.6. D

We shall now try to find a description of ker (B) in terms of function spaces.
To this end we shall first introduce a test space T. The underlying set of T
is (N x N) ~ {~}.
The points of N x N are isolated and a basic neighborhood of oo has the

form

Clearly, T is a countable metric space. Define

4.8. LEMMA.
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Proof For (1), simply observe that the function cp: C*p(T) ~ C*p,0(T)  R

defined by

is a homeomorphism.
Define

and

respectively. Define a function

it is easy to see that ‘Y is a homeomorphism. So in order to prove the first
part of (2), it suffices to show that Z = ker (B). This follows from the
following observation:

5. The space aw

In this section we shall derive some topological properties of the space U,,,
which are probably known already since they follow easily and rather
mechanically from known results.
As noticed in the proof of Corollary 4.2, 03C303C9 is homeomorphic to 03A3~ =

HL Li’ where each Yi is a copy of the space
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5.1. LEMMA. Let X be a 03C3-compact space. Then X admits a closed imbedding
in the space L.

Proof. Let yX be a compactification of X. Without loss of generality,
03B3X ~ Q and yX ~L(Q) (apply for example Theorem 1.7; easier proofs are
known of course). By Theorems 1.2 and 1.3 it follows that 03A3 is an absorber
in Q. By Lemma 3.3 there exists a homeomorphism a: Q - Q such that
03B1(03B3X) n 03A3 = 03B1(X). Consequently, 03B1(X) is a closed copy of X in L. FI

5.2. COROLLARY. Let X be an absolute F03C303B4. Then X admits a closed imbedding
in 03A3~ ~ 03C303C9.

Proofs Assume that X ~ Q and let Fi ~ Q be 03C3-compact for every i E N

such that X = ~~i=1 Fi. By Lemma 5.1 there exists for every i E N a closed
imbedding f : Fi - 1. Now define.f’: X ~ LOO by

It is well-known, and easy to prove, that f is a closed imbedding. D

By a linear space we mean a topological vector space over the reals. Let E
be a linear space and put

EE = {x E E"0: xi = 0 for all but finitely many i}.

In [23], Torunczyk proved that for every locally convex (metric) linear space
E we have

Consequently, if we take E = (Jú) we obtain

This consequence of Torunczyk’s result can also be derived by the apparatus
developed in this paper since it is easy to represent 03A303C303C9 as the kernel of some
Q-matrix, see §4.
For information on absolute (neighborhood) retracts (abbreviated:

A(N)R’s), see Borsuk [7].

5.3. THEOREM. Let X be a space. The following statements are equivalent:
1. X x 03C303C9 ~ (Jm,
2. X is an absolute Fô and an AR.
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Proofs 1 ~ 2 is a triviality since (Jw is an AR by Dugundji’s Theorem [7, 7.1],
and a. is clearly an absolute F03C303B4. For 2 ~ 1, let X be an AR and an absolute

F03C303B4. By Corollary 5.2, X admits a closed imbedding in (Jw. By Torunczyk [20]
we may conclude that X x 03A303C303C9 ~ 03A303C303C9. Since, as was observed above,
la. ;:t u. the desired conclusion follows. D

Let X be a space Y is called an X-manifold if Y admits an open covering by
sets homeomorphic to open subsets of X. The above theorem generalizes
without much difficulty to the following result: For any space X the follow-
ing statements are equivalent: 1) X x (J w is a (J w -manifold, and 2) X is an
absolute F03C303B4 and an ANR. Let us also mention that by results of Henderson,
03C303C9-manifolds are characterized by homotopy type, i.e. if X and Y are

(Jw -manifolds then X is homeomorphic to Y if and only if X and Y have the
same homotopy type. For details see [6], chapter 9.

6. Function spaces 

If X is a space then, as noted in the introduction, C*(X) denotes the set of
continuous bounded real-valued functions on X endowed with the topology
of uniform convergence. It is known that if X and Y are uncountable

compact (metric) spaces then C*(C) and C*(Y) are linearly homeomorphic
([ 18], 21.5.10). If X and Y are countably infinite compact (metric) spaces
then C*(X) and C*(Y) need not be linearly homeomorphic, ([18],
21.5.13(A)). In fact, there are uncountably many types among the spaces
C*(X), where X is countable and compact (metric) [5].
The Anderson-Kadec Theorem that all separable infinite-dimensional

Fréchet spaces are homeomorphic (in the topological sense), see [6],
chapter 6, for background information, shows that all function spaces of the
form C* (X), where X is any infinite compact space, are homeomorphic. In
fact, a more general result can be formulated by applying results from [22].

There is another topology on function spaces that is of interest in abstract
functional analysis, namely the topology of point-wise convergence. To
avoid confusion, for any space X the set of continuous real-valued bounded
functions on X endowed with the topology of point-wise convergence shall
be denoted by C*p(X). By [3], if X and Y are compact Hausdorff and C*p (X)
is linearly homeomorphic to C*p(Y) then X and Y have the same dimension
(for X and Y compact metric this was first proved in [16]). From this we see
that for example the function spaces Cp ([0, 1]) and C)([0, 1]2) are not
linearly homeomorphic. There even exist countable infinite compact metric
spaces X and Y for which Cp (X) and Cp (Y) are not linearly homeomorphic.
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This can be seen by combining [18], 21.5.13(A), and the result due to
Pavlowskii (see [4] for details) that for compact Hausdorff spaces X and Y
each linear homeomorphism f: Cp (X) ~ C*p (Y) is also a linear homeo-
morphism from C*(X) onto C*(Y). These results indicate that a classi-
fication result for the spaces C*p(X) in the linear world promises to be
extremely complicated.

Trying to get a topological classification result for the spaces C) (X ) seems
to be more promising since no "obstacles" such as in [3] and [16] for
topological homeomorphism are known. On the other hand, recent results
in [11] show that C*p(X) for non-trivial X is always a rather complex
subspace of RX which indicates that topological homeomorphisms may be
hard to get.

In this section we shall consider spaces C*p(X) for spaces X of the simplest
possible non-trivial form, namely countable infinite (metric) spaces. It is
easy to show that if X is discrete then C*p(X) ~ E, where E is the space
defined in the proof of Corollary 4.2. We conjecture the following:

6.1. CONJECTURE. If X is countable infinite and not discrete then Cp*(X) is
homeomorphic to 03C303C9.

The aim of this section is to verify this conjecture under the extra assumption
that X is not locally compact. Our main result is:

6.2. THEOREM. If X is countable infinite (metric) andfails to be locally compact
then C*p(X) ~ (J(J).

6.3. COROLLARY. Let D denote the space of rational numbers. Then

C*p(Q) ~ a. -

That X is required to be metric in Theorem 6.2 is essential. In [14] it was
shown that C*p(X) need not be a Borel subset of RX, even for countable
non-metric X. Let T be the test space introduced in §4.

6.4. LEMMA. Let X be a (metric) space. The following statements are
equivalent:
1. X is not locally compact,
2. X contains a closed homeomorph of T.

Proof. Observe that 2 =&#x3E; 1 is a triviality. For 1 =&#x3E; 2, let x E X be a point at
which X fails to be locally compact.
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We can find a family {Un: n ~ N} of open subsets of X such that
1. ~n ~ N: x E Un ,
2. ~n ~ N: diam Un  2-n .
Fix n E N arbitrarily. Since Un is not compact, it contains an infinite closed
discrete subset, say Dn . Without loss of generality, x ~ Dn . It is clear that we
can moreover choose the Dn’s to be disjoint. Put

Obviously, S is closed in X and homeomorphic to T. ~

6.5. LEMMA. Let X be a countable space. Then C*p (X) is an F03C303B4 -subset of Rx.

Proofs Let

and

B = {f ~ RX: f is bounded}.

Clearly, B = ~~1[-n, n]X is an Fu-subset of RX. In [11] it was shown that
Cp(X) is an Fub -subset of R’. Since clearly C*p (X) = Cp (X) n B, it follows
that C*p(X) is also an FUb -subset of RX. ~

6.6. Proof of Theorem 6.2. We may assume that T ~ X and that T is closed,
Lemma 6.4. Define 2: C*p(X) ~ C*p(T) by (f) = fiT. Then Q is clearly a
continuous linear operator. By [13], there exists a retraction r: X ~ T.
Define 03BE: C*p(T) ~ C*p(X) by 03BE(f) = four. Then 03BE is clearly well-defined
and continuous. Obviously,

As in the proof of the Bartle and Graves Theorem, define a function h :

C* (X) ~ ker Q x C*p (T) by

A straightforward check shows that h is a homeomorphism.
Since ker g is a linear subspace of the locally convex space C) (X) we
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conclude that ker Q is locally convex. From Dugundji’s Theorem, [7],
7.1, we infer that ker Q is an AR. Since ker Q is closed in C*p(X) and Cp* (X)
is an absolute F03C303B4 by Lemma 6.5, ker Q is an absolute F03C303B4 as well. Now
observe that by Lemma 4.9 we have

from which, by the above and Theorem 5.3, follows that

7. Remarks

There are beautiful topological characterizations of Hilbert space and
Hilbert cube manifolds due to Torunczyk [21], [22]. In the proofs of these
results the topological completeness of the spaces involved is used in an
essential way. Due to this, finding topological characterizations of certain
incomplete interesting spaces, such as 03C303C9, seems complicated. Mogilski [15]
has recently found a characterization of all l f -manifolds. Of course, Il is not
complete. However, being 03C3-compact, it is the union of countably many sets
of "smaller complexity" and this was used essentially in Mogilski’s proof.
Since 03C303C9 is not a G03B403C3, it is not a countable union of "nice" sets which makes
convergence procedures delicate. We were able to pass by these complica-
tions by approximating 03C303C9 from the outside. In this way we did not charac-
terize (J (J) topologically but we characterized the way canonical copies of 03C303C9
are placed in Q. This is interesting in its own right but will probably not be
of help in solving the problem of finding good usable topological charac-
terizations of (J (J). Recently, Bestvina and Mogilski in their paper "Charac-
terizing certain incomplete infinite-dimensional Absolute Retracts" found an
interesting topological characterization of 03C303C9 (and many other spaces). This
characterization, however, is in terms of a difficult to verify mapping
replacement condition. It seems not clear how to get our results from theirs
in a direct way. 1 can only verify their condition in the function spaces C*p(X)
by going through similar constructions as in this paper. Results from Steel
[19] can be used to show that Q~, the product of countably many copies
of the space of rational numbers, is (topologically) the unique zero-
dimensional FU(j which is nowhere a G03B403C3. Recently, van Engelen [12] inde-
pendently found a more elementary proof of this particularly consequence
of Steel’s result. A step in van Engelen’s proof more or less motivated us to
consider L-matrices and to formulate the concept of an N-skeleton.
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Remarks added in December 1986

J. Pelant has shown that the spaces C*p(T) and Cp*(Q) are not linearly
homeomorphic. J. Baars, J. de Groot and J. van Mill have shown that if X
is any countable, metric space which is not locally compact then the function
space Cp(X) is homeomorphic to (J w.
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