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DOMAIN INVARIANCE
IN INFINITE-DIMENSIONAL LINEAR SPACES

JAN VAN MILL

ABSTRACT. Let X be an infinite-dimensional locally convex linear space. It
is known that X is homeomorphic to a subspace of X which is not open. We
prove that every Banach space B contains a dense linear subspace L with the
following property: If U C L is open and if f: U — L is continuous and
injective, then there exists a dense open V C U such that (a) f(V) is open in
L,and (b) f: V — f(V) is a homeomorphism. As a consequence, L and L x R
are not homeomorphic.

1. Introduction. The Brouwer invariance of domain property for Euclidean
spaces implies that, for open U C R", every injective map ¢g: U — R" is an
open imbedding [2]. It is well known that this property does not hold for infinite-
dimensional linear spaces. Indeed, for any infinite-dimensional normed linear space
Y we have the following examples.

EXAMPLE 1 [1, III, THEOREM 6.3]. There exists a homeomorphism h: Y —
h(Y) onto a nonopen subset of Y.

PROOF. Let hg: S — H be any homemorphism from the unit sphere S onto a
closed hyperplane H. Then for any y € Y\ H, hg may be extended to a homeomor-
phism h of Y onto the nonopen set (H + (—o00,1) - y) U{y} with h(0) =y. O

EXAMPLE 2 (D. W. CURTIS). There exists a bijective map g: Y — Y such
that g|Y'\ K is not a homeomorphism for any compact K C Y.

PROOF. Since the unit sphere S is noncompact, there exists a map A: S — (0, 1]
such that inf A(S) = 0. Define f: Y — Y by the formulas

{ ) =A/lyl) -y, y#0,
f(0)=o.
Clearly, f is a bijective map of Y, but is not a homeomorphism since 0 ¢ int f(B)
for any bounded set B. Note that f|Y'\{0} is a homeomorphism.

Using copies of f on a discrete sequence of open balls in Y, we may construct
a bijective map ¢g: Y — Y such that for any compact K C Y, g|Y\K is not a
homeomorphism. In fact, there exists an open U C Y\ K such that for any compact
J C U, g(U\J) is nonopen. However, there is a dense open V C Y such that g|V
is an open imbedding. O

The constructions in this paper show the existence of infinite-dimensional normed
linear spaces Y with the property that, for every injective map g: U — Y with open
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domain, there is a dense open V C U such that g|V' is an open imbedding. This
property easily implies that ¥ is not homeomorphic to Y x R. In fact, if Y is
homeomorphic to Y X Z then Z is a single point.

Our results generalize Pol [7] and answer Question LS12 in Geoghegan [3]. I
am greatly indebted to Doug Curtis for many helpful comments. He reworked
and significantly simplified my original write-up when presenting the results to a
seminar at LSU.

2. Special linear subspaces. Let X be a separable metric linear space and let
K (X) denote the collection of all homeomorphisms h: K; — K, between disjoint
Cantor sets in X such that K; U K is a linearly independent set.

2.1. THEOREM. FEuvery separable metric linear space X has a linear subspace
Y with the following property:

(x)  for each h € K(X), there exists ¢ € domh such that x € Y but h(z) ¢ Y.

PROOF. It is easy to see that the collection K(X) has size at most ¢. Let < be
a well-ordering of K = K (X) such that for each h € K, the section {g € K: g < h}
has size less than c.

We show by transfinite induction that for all h € K, there exist linear subspaces
Y}, and Z,, in X satisfying the following conditions.

(V) YnNnZy, = {0};

(2) for g < h, Y, C Y, and Z; C Zp;

(3) all Yj, and Z), have algebraic dimension less than or equal to the cardinality
of the section {g € K: g < h}; and

(4) there exists € dom h such that z € Y, and h(z) € Z.

Then Y = J{Y4: h € K} is a linear subspace with the required property (x).

For the first element f € K, we may take Y; = span{z} and Z; = span{f(z)}
for any z € dom f. For h € K, suppose the spaces Y, and Z; have been constructed
for g < h. Let Y* = J{Y,: g < h} and Z" = J{Z,: g < h}. Then Y*Nn Z" = {0},
and span(Y" U Z") has algebraic dimension less than ¢. Consider

H = {z € domh: span({z} UY")Nspan({h(z)} U Zh) # {0}}.

We claim that H has size less than c. For each z € H, there exist scalars A(z) and
u(z) such that

w(z) = A(z) -+ p(z) - h(z) € span(Y" U Z")\{0}.

Thus either A(z) # 0 or u(z) # 0. To establish the claim on H, we show that
the correspondence of z — w(z) is injective and has linearly independent range
{w(z): = € H}. Consider any finite, faithfully indexed subset {z1,...,2n} of
H. Let I = {i: Az,) = 0} and J = {¢: A(z;) # 0}. Then span{z;, h(z.,)} =
span{z;,w(z;)} for ¢ € I, and span{z;, h(z,)} = span{h(z,), w(z;)} for « € J.
Hence the set {z;:i € I} U {h(z;): % € J} U{w(z,): 1 <7 < n} has the same
span as the set {z,: 1 < ¢ < n} U {h(z;): 1 <1 < n}. The stipulated proper-
ties of h € K imply that the latter set has size 2n and is linearly independent.
It follows that {w(z;): 1 < ¢ < n} has size n and in linearly independent. Since
{z;: 1 <1 < n} C H was arbitrary, this completes the argument for the claim on
H.
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Since H has size less than the size of the Cantor set dom h, there exists z €
dom h\H, i.e.
span({z} UY") nspan({h(z)} U Z") = {0}.

The induction step is completed by setting V), = span({z} U Y*) and Z, =
span({h(z)} U Z"). O

3. Countable type for maps. A function f: Y — Y on linear space has
countable type if there exists a countable set Z in ¥ such that foreachy € Y, f(y) €
span({y} U Z).

If each map f: Y — Y on a topological linear space has countable type, we say
that Y has countable type for maps.

Observe that if Y is Ro-dimensional, i.e. Y has a Hamel basis of cardinality at
most Rg, then Y has countable type for maps. The aim of this section is to show
that there exist normed linear spaces having countable type for maps which are not
No-dimensional.

3.1. DEFINITION. Let X be a linear space, and n a positive integer. A finite
subset {z1,...,zr} of X is said to be n-linearly essential if lec Aiz; # 0 for all A,
such that 1/n < |A,| < n for each 4.

The following lemma is trivial; nonetheless it will be quite useful for establishing
linear independence of a set which is constructed by “approximation” to a sequence
of linearly independent sets.

3.2. LEMMA. (1) A subset K of a linear space is linearly independent if and
only if each finite subset of K s n-linearly essential for each n.

(2) If {z1,...,2k} is an n-linearly essential subset of a metric linear space, there
exists € > 0 such that, if d(z;,y,) < € or each ¢, then the set {y1,...,yx} s also
n-linearly essential. 0O

3.3. DEFINITION. Let X be a linear space, and g: A — X a function defined
on a subset of X. A subset P of A is said to be g-independent if the following
conditions are satisfied:

(i) g|P is injective;

(ii) PN g(P) = J; and

(iii) P U g(P) is linearly independent.

3.4. PROPOSITION. Let X be a metric linear space, and g: A — X a map
defined on a separable, topologically complete subset. If A contains an uncountable
g-independent set, then A contains a g-independent Cantor set.

PROOF. Let d be a metric on X, and choose a complete metric p on A. For
each z € A and € > 0, let B(z,e) = {a € A: p(a,z) < €}. Since each separable
metric space is the union of a countable set and a perfect set (each point a limit
point), the hypothesis implies that A contains a perfect g-independent set P. Using
finite disjoint unions of balls about points of P, we may construct a Cantor set K
in the complete space A by the standard procedure; a little extra care will ensure
that K is g-independent. It suffices to describe the first two steps in the inductive
construction.

Pick any p; € P. Since g(p1) # p1, there exists 0 < &; < 1 such that
B(pi,e1) N g(B(p1,€1)) = &. Let By = B(pi,€e1). Since the set {p1,g(p1)} is
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linearly independent, we may assume by Lemma 3.2(2) that ¢; is sufficiently small
so that, for any F' € B; U g(B;) such that F' contains at most a single point from
each of By and ¢g(Bj), F is 1-linearly essential. Let K; = Bj.

Since P is perfect, there exist distinct points p; o and p; ; in P N B;. Choose
0<ey < % such that, for By g = B(P1,0,€2) and By1 = B(p1,1,€2), we have
BioUB11 € By, BigN B =, and g(Bl,O) N 9(31,1) = (J. Since the set
{P1,0,P1,1,9(P1,0),9(p1,1)} is linearly independent and has size 4, we may also as-
sume that €2 is small enough so that, for any F' C By o U By,1 Ug(B1,0) Ug(Bi1,1)
such that F' contains at most a single point from each of B; o, B1.1, 9(B1,0), and
g(B1,1), F is 2-linearly essential. Set Ko = B1oU By 1.

Continuing with this procedure in the standard manner, we obtain a nested
sequence (K,) of closed sets in A. Let K = (\]° K,. The requirements of the
type B1,o U B1,1 € By and By 0N By,1 = &, together with the requirement that
€n — 0 and the fact that p is a complete metric, show that K is a Cantor set. The
requirements of the type g(B1,0) N g(B1,1) = & show that g|K is injective. Since
g(K) C g(By) and K C B;, KNg(K) = <. And finally, the n-linearly essential
requirement at the nth-stage of construction ensures that each finite subset of
K Ug(K) is n-linearly essential for each n, hence K U g(K) is linearly independent
by Lemma 3.2(1). Thus K is g-independent. O

REMARK. If we assume only that A contains an uncountable linearly inde-
pendent set, the above construction shows that A contains a linearly independent
Cantor set.

3.5. PROPOSITION. A function f: Y — Y on a linear space has countable
type if and only if it satisfies the following conditions:

(i) every f-independent set is countable; and

(ii) for every countable set P C Y, there exists a countable set P C'Y such that
f(span P) C span P.

PROOF. Suppose first that f has countable type; let Z be a countable subset of
Y such that f(y) € span({y} U Z) for each y. Let T = {y € Y: f(y) ¢ span{y}}.
Then for each y € T, span Z Nspan{y, f(y)} # {0}. Consider any f-independent
set A. We have A C T, and for each a € A we may choose s, € (spanZ N
span{a, f(a)})\{0}. Since A is f-independent, the set {s,: a € A} is a linearly
independent subset of span Z, and is therefore countable. It follows that A is
countable, and condition (i) is satisfied. Condition (ii) is clear, since f(span P) C
span(P U Z) for every PC Y.

Conversely, assume conditions (i) and (ii). It is easily seen that in the collection of
all f-independent subsets, partially ordered by inclusion, every chain has an upper
bound. Thus there exists a maximal f-independent set @, which by hypothesis
is countable. If @ = O, then f(y) € span{y} for each y # 0, and f obviously
has countable type. Otherwise, construct a tower (P;) of countable sets by taking
P,=Q,and P41 = P, U P, forn > 1. Take Z = Uclx’ P,.. Then Z is countable,
Q € Z and f(span Z) C span Z. We claim that f(y) € span({y} U Z) for each y.
This is clear for y € span Z so consider y ¢ span Z. The set Q U {y} cannot be
f-independent, and one of the following occurs:

(1) f(y) = f(q) for some ¢ € Q. Then f(y) € span Z.

(2) y = f(q) for some q € Q. Then y € span Z.
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3) {y, f(¥)}UQU f(Q) is ot linearly independent. in this case, either
f(y) €span({y} UQ U f(Q)) C span({y} U Z),

or
y € span(Q U f(Q)) C span Z.

Thus f has countable type. 0O
We now come to the main result in this section.

3.6. THEOREM. Let X be an infinite-dimensional separable, complete metric
linear space, and Y a linear subspace with the property (%) of Theorem 2.1. Then

(1) Y s dense in X;

(2) Y is Baire space; and

(3) Y has countable type for maps.

PROOF. We show first that Y intersects every dense Gs-subset of X. Every
such set A must contain an uncountable linearly independent set, since otherwise
span A is an Rg-dimensional linear subspace, and X = span A U (X\A) would be
first category. Then A contains a linearly independent Cantor set K (see the
remark at the end of proof of Proposition 3.4; see also [6]). Let h: K1 — K2 be
any homeomorphism between disjoint Cantor subsets of K. Then h € K(X), so
YNADYNK, #3.

In particular, Y must have nonempty interior in X, which implies that ¥ = X.
Further, the fact that Y intersects every dense Gg-subset of X means that Y is
second category, which implies that Y is a Baire space.

We now show that every map f: Y — Y has countable type. Since X is complete,
f extends to a map g: A — X for some Gs-subset A of X. Suppose that A
contains an uncountble g-independent set. By Proposition 3.4, A contains a g-
independent Cantor set K. Then g|K is a member of the collection K(X), and by
hypothesis there exists z € K N'Y such that g(z) ¢ Y. But this contradicts the
fact that g(z) = f(z) € Y. Thus every g-independent subset of A is countable,
and in particular, every f-independent set is countable. Therefore, condition (i) of
Proposition 3.5 is satisfied.

It remains to verify condition (ii). For any countable set P C Y, spanP is
o-compact, and f(span P) is o-compact. If some compactum in Y contains an
uncountable linearly independent set, then Y contains a linearly independent Can-
tor set, but this contradicts property (x). (If K C Y is a linearly independent
Cantor set, let h: K; — K, be any homeomorphism between Cantor subsets of
K; by assumption there exists ¢ € K; such that h(z) € Y, which is a contradic-
tion.) Thus each compactum in Y lies in an Rg-dimensional linear subspace, and
f(span P) C span P for some countable set P. This completes the proof that Y
has countable type for maps, Proposition 3.5. O

4. Domain invariance. Let Y be a space. Suppose that, for every injective
map ¢: U — Y with domain an open subset of Y, there exists a nonempty open
V C U such that g|V is an open imbedding in Y. Then we say that Y has restricted
domain tnvariance.

We may suppose that V is dense in U, since the condition can be applied to
every restriction g|W to an open W C U.
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For Y a normed linear space, it suffices to verify the condition for every injective
map f: Y — Y, since there is an open imbedding of Y into every nonempty open
subset.

The aim of this section to prove that every normed linear space with the Baire
property and with countable type for maps has restricted domain invariance.

4.1. PROPOSITION. LetY be a normed linear space, F a finite-dimensional
linear subspace, and V C Y\F an open subset. Let A\: V — (0,00) and o' V — F
be maps such that the map f: V — 'Y defined by f(V) = A(v) - v+ a(v) is injective.
Then f is an open imbedding.

PROOF. Since the restriction f|W to any open W C V is a map with the same
properties, it suffices to show that f(V') is open.

Consider an arbitrary point p € V. We may assume that A(p) = 1 and a(p) =0,
thus f(p) = p. Let E = span({p} U F). Note that f(ENV) C E. Choose 6 > 0
and a compact neighborhood B of 0 in F such that D=[1—-6,14+6]-p+BCV.
Then D is a compact neighborhood of p in E. Since f is injective and E is finite
dimensional, f|D: D — E is an imbedding and f(D) is a neighborhood of f(p) = p
in E [2]. Thus p is a stable point of f(D), and any map f: D — E which is
sufficiently close to f|D must cover p.

For each v € V, let E,, = span({v}UF'), and define the homeomorphism h,: E —
E, by

ho(t-p+s)=t-v+s
for t € (—o0o0,00) and s € F. Let D,, = hy(D) = [1 — 6,14 6] v+ B. Then for all v
near p, D, CV and f(D,) C E,. Define a map f,,: D — E by fv =h;lofoh,|D.
Then f, — f|D as v — p. Hence for all v sufficiently close to p, p € fv(D), which
means that v € f(D,). Thus f(V) is a neighborhood of p = f(p)-. O
We now come to the main result in this section.

4.2. THEOREM. LetY be a normed linear space with the Baire property and
with countable type for maps. Then'Y has restricted domain invariance.

PROOF. We may assume Y is infinite dimensional [2]. By the remarks at the
beginning of this section, we need only consider an injective map f: Y — Y. Let
Z C Y be a countable set such that f(y) € span({y} U Z) for each y. There is
a tower of compacta (A,) such that span A4,, is finite dimensional for each n, and
UL A, =span Z. For each n, set

Y,={y€Y: forsome ) € [-n,n], f(y) — A -y € An}.

By compactness of [—n,n] and A,, each Y, is closed in Y. Since U‘l’o Y,=Y,andY
is a Baire space, some Y;, has nonempty interior. Since span A,, is finite dimensional,
there exists a nonempty open set W C Y,,\ span A,,. Then for each w € W, thereisa
unique A(w) € [—n, n] such that f(w)—A(w)-w € A, (otherwise, WNspan A,, # ).
Furthermore, the compactness of [-n,n] and A,, and the continuity of f, show that
the assignment w — A(w) is continuous. Let A: W — [—n,n] denote this map, and
let a: W — A, denote the map defined by a(w) = f(w) — A(w) -w. If \(W) = {0},
we have f(W) C A,. But this is impossible, since f is injective, the open set W
contains cells of all dimensions, and A, is finite dimensional. Thus, there exists a
nonempty open V. C W with either A(V) C [—n,0) or A(V) C (0,n]. In the latter
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case an, application of Proposition 4.1, with F' = span A,, shows that f|V is an
open imbedding. And in the former case, the map (—1)- f|V is an open imbedding,
hence so is f|V. This completes the proof of restricted domain invariance for Y. 0O

4.3. COROLLARY. FEuvery separable Banach space contains a dense linear sub-
space Y such that:

(1) Y is a Baire space; and

(2) Y has restricted domain invariance.

PROOF. Combine Theorems 2.1, 3.6, and 4.2. 0O

4.4. COROLLARY TO COROLLARY. Every separable Banach space contains a
dense linear subspace Y such that for all closed linear subspaces E and F of Y of
finite codimension the following statements are equivalent:

(1) E and F are homeomorphic;

(2) E and F are linearly homeomorphic; and

(3) codim E = codim F.

PROOF. Let Y be as in Corollary 4.3 and let E and F be closed linear subspaces
of Y of finite codimension.

That (3) implies (2) follows from [1, III, Proposition 1.5]. Clearly, (2) implies (1).
suppose that £ and F' are homeomorphic and that n = codim E — codim F > 0. By
(1, ITI, Proposition 1.5], E x R™ and F are linearly homeomorphic. Consequently,
E and E x R™ are homeomorphic. Since Y has countable type for maps, every
closed linear subspace of Y has the same property. From Theorem 4.2 we there-
fore conclude that E has restricted domain invariance, which contradicts E being
homeomorphic to E x R®. 0O

5. Further applications and remarks. By Corollary 4.3, there exists an
infinite-dimensional pre-Hilbert space L with restricted domain invariance. Conse-
quently, L # L x E for any nondegenerate space E. This result generalizes Pol [7]
and answers Question LS12 in Geoghegan [3].

In fact, there exists an infinite-dimensional pre-Hilbert space L such that L x F %
L x G for any linear spaces F' and G with different dimensions (finite or c0). Let Y
be an infinite-dimensional pre-Hilbert space which is a Baire space and which has
countable type for maps. It is easily seen that every closed linear subspace in Y
inherits these properties, and therefore has restricted domain invariance. Take L
to be an infinite-dimensional closed linear subspace of Y with infinite codimension.
Suppose L x F =~ L x G for certain linear spaces F and G with 0 < dimF <
dim G < oo. Consider a closed linear subspace M in Y containing L, such that the
codimension of L in M equals dim F. Since M is closed in Y, M has restricted
domain invariance. We have M ~ L X F, and G ~ F x E for some nondegenerate
space E. Then the supposition that L x F =~ L x G implies M ~ M x E, a
contradiction.

A linear space Y is said to have few operators if every bounded linear operator
A:Y — Y has the form A = A + B for some scalar A and some operator B with
finite-dimensional range. In [5], I shall prove that every Baire linear space with
countable type for maps has few operators.

The method used in the proofs of Theorems 2.1 and 3.6 was inspired by Sierpinski
(8]. It improves the method used in [4] and can be used to construct a topological
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group G such that every continuous function f: G — G is either constant or a
translation. This answers a question in [4].

REFERENCES

1. C. Bessaga and A. Pelczytiski, Selected topics in infinite-dimensional topology, PWN, Warsaw,
1975.

2. L. E. J. Brouwer, Invarianz des n-dimensionalen Gebiets, Math. Ann. 71 (1912), 305-313; 72
(1912), 55-56.

3. R. Geoghegan (ed.), Open problems in infinite-dimensional topology, Topology Proc. 4 (1979),
287-338.

4. J. van Mill, 4 topological group having no homeomorphisms other than translations, Trans. Amer.
Math. Soc. 280 (1983), 491-498.

, Infinite- dimensional normed linear spaces and domain invariance, Mathematics and Com-
puter Science II, CWI Monographs 4, North-Holland, 1986, pp. 105-110.

6. J. van Mill and R. Pol, The Baire Category Theorem in products of linear spaces and topological
groups, Topology Appl. 22 (1986), 267-282.

7. R. Pol, An infinite-dimensional pre-Hilbert space not homeomorphic to its own square, Proc.
Amer. Math. Soc. 90 (1984), 450-454.

8. W. Sierpiniski, Sur un probleme concernant les types de dimensions, Fund. Math. 19 (1932),
65-71.

SUBFACULTEIT WISKUNDE EN INFORMATICA, VRIJE UNIVERSITEIT, DE BOELELAAN
1081, 1081 HV AMSTERDAM, THE NETHERLANDS

MATHEMATISCH INSTITUUT, UNIVERSITEIT VAN AMSTERDAM, ROETERSSTRAAT 15,
1018 WB AMSTERDAM, THE NETHERLANDS



