JAN VAN MILL*

AN EASY PROOF THAT $\beta N - N - \{p\}$ IS NOT NORMAL

Abstract. We give a simple proof that, under CH, $\beta N - N - \{p\}$ is not normal for any $p \in \beta N - N_{\bullet}$

One of the most outstanding open problems in general topology is the question whether $N^* - \{p\}$ (for any space X we write $X^* = \beta X - X$) is not normal for any $p \in N^*$. Under CH the question has been answered in the affirmative: for non P-points by Gillman (see [1]) and for P-points independently by Rajagopalan [8] and Warren [10]. The proof of the non P-point case uses Parovičenko's [7] characterization of N^* and the known proofs of the P-point case do not make use of this characterization. The aim of this note is to give a simple proof that $N^* - \{p\}$ is not normal under CH. Our proof is different since we use Parovičenko's characterization in the P-point case and use the P-point case to solve the non P-point case.

It will be convenient to call a space X a Parovičenko space if

- (a) X is a zero-dimensional compact space without isolated points of weight 2^{ω} ,
- (b) every two disjoint open F_{σ} 's in X have disjoint closures, and
- (c) every nonempty G_{δ} in X has nonempty interior. Notice that (b) implies that every countable subspace is C^* -embedded.

It is known, [7], [3], that CH is equivalent to the statement that every Parovičenko space is homeomorphic to N^* .

The following lemma is known. It follows directly from the proof of Gillman's [5] result that, under CH, $N^*-\{p\}$ is not C^* -embedded in N^* for any p. Since I do not know a reference for it I will give the easy proof.

LEMMA (CH). If $p \in N^*$, then there is a Parovičenko space $X \subset N^*$ containing p such that p is a P-point of X.

Proof. W.l.o.g, p is not a P-point, so take an open $F_{\sigma}U \subset N^*$ with $p \in U^- - U$. Let, by CH, $\{C_{\alpha} : \alpha < \omega_1\}$ enumerate all nonempty clopen subsets of N^* containing p. By (b) and (c) we can find for each $\alpha < \omega_1$ a nonempty clopen $E_{\alpha} \subset N^*$ such that

$$E_{\alpha} \subset \bigcap_{\beta < \alpha} C_{\beta} - (U \cup \bigcup_{\beta < \alpha} E_{\beta})^{-}$$
.

Received April 25, 1983.

AMS (MOS) subject classification (1980). Primary 54G10.

^{*} Wiskunding Seminarium Vrije Universitat Amerdam, Holland.

If
$$Y = (\bigcup_{\alpha < \omega_1} E_{\alpha})^-$$
 and if $y \in Y \cap (U^- - \{p\})$ then for some $\mu < \omega_1$, $y \in (\bigcup_{\alpha < \mu} E_{\alpha})^-$,

which condraticts (b). Hence $Y \cap U^- = \{p\}$. This implies that p is a P-point of Y for if $F \subset Y - \{p\}$ is any F_{σ} , then $F \cap U^- = \emptyset$ and consequently, by (b), $F^- \cap U^- = \emptyset$, i.e. $p \notin F^-$.

For each $\alpha < \omega_1$ take $p_\alpha \in E_\alpha$ and put $X = \{p_\alpha : \alpha < \omega_1\}^- - \{p_\alpha : \alpha < \omega_1\}$. Since p is a P-point of X and since $\{p_\alpha : \alpha < \mu\}^- - \{p_\alpha : \alpha < \mu\} \approx N^*$ for any $\omega \leq \mu < \omega_1$, it easily follows that X satisfies (c). That X satisfies (b) is clear since (b) is closed hereditary in normal spaces. This implies that X is a Parovičenko space, since X clearly satisfies (a).

By the above Lemma we only need to show that $N^* - \{p\}$ is not normal for any P-point $p \in N^*$. Since W. Rudin [9] showed that $N^* - \{p\} \approx N^* - \{q\}$ if $p, q \in N^*$ are P-points (under CH), the proof is completed by the following

EXAMPLE 1. There is a Parovičenko space X having a P-point p such that $X-\{p\}$ is not normal.

Let $Z_1 = \{\langle \varkappa, \mu \rangle \in (\omega_1 + 1) \times (\omega_1 + 1) : \mu \leqslant \varkappa \}$ and let $Y = (\omega \times Z)^*$. We claim that Y is a Parovičenko space. $\omega \times Z$ is strongly zero-dimensional, hence so is $\beta(\omega \times Z)$, [6, 16.11]. Also, $\omega \times Z$ is a Lindelöf space with weight ω_1 , hence $\omega \times Z$ has $\omega_1^{\omega} = 2^{\omega}$ clopen subsets, hence $\beta(\omega \times Z)$ has weight 2^{ω} . It is clear that Y has no isolated points. Y satisfies (b), since $\omega \times Z$ is σ -compact and locally compact, [6, 14.27]. Finally, Y satisfies (c), since $\omega \times Z$ is real compact and locally compact, [4, 3.1].

Let $\pi: \omega \times Z \to Z$ be the projection and $\beta \pi$ its Stone extension.

CLAIM.
$$\beta \pi^{-1}(\langle \omega_1, \omega_1 \rangle) = (\omega \times \{\langle \omega_1, \omega_1 \rangle\})^-$$
. Clearly $(\omega \times \{\langle \omega_1, \omega_1 \rangle\})^- \subset \beta \pi^{-1}(\langle \omega_1, \omega_1 \rangle)$. Take

$$x \in \beta \pi^{-1}(\langle \omega_1, \omega_1 \rangle) - (\omega \times \{\langle \omega_1, \omega_1 \rangle\})^{-}.$$

Let C be a clopen neighborhood of x in $\beta(\omega \times Z)$ which misses $\omega \times \{\langle \omega_1, \omega_1 \rangle\}$. Then $x \in (C \cap (\omega \times Z))^-$ and consequently

$$\beta\pi(x) \in \beta\pi((C \cap (\omega \times Z))^{-}) \subset (\pi(C \cap (\omega \times Z)))^{-}.$$

 $\pi(C \cap (\omega \times Z))$ is σ -compact because $C \cap (\omega \times Z)$ is σ -compact, and $\langle \omega_1, \omega_1 \rangle \notin \pi(C \cap (\omega \times Z))$, and $\langle \omega_1, \omega_1 \rangle \notin (\pi(C \cap (\omega \times Z)))^-$, which is a contradiction since $\beta \pi(x) = \langle \omega_1, \omega_1 \rangle$.

We conclude that $Y - (\omega \times \{\langle \omega_1, \omega_1 \rangle\})^*$ admits a perfect map onto $Z - \{\langle \omega_1, \omega_1 \rangle\}$, and hence is not normal.

Let $X = Y/(\omega \times \{\langle \omega_1, \omega_1 \rangle\})^*$ be the quotient space obtained from Y by collapsing $(\omega \times \{\langle \omega_1, \omega_1 \rangle\})^*$ to a point. We claim that X and $p = \{(\omega \times \{\langle \omega_1, \omega_1 \rangle\})^*\}$ are as required. First, since $\langle \omega_1, \omega_1 \rangle$ is a P-point of Z, it easily follows that $(\omega \times \{\langle \omega_1, \omega_1 \rangle\})^-$ is a P-set of $\beta(\omega \times Z)$ (a subset A of a space S is called a P-set whenever the intersection of countably many neighborhoods of A is again a neigh-

borhood of A), hence $(\omega \times \{\langle \omega_1, \omega_1 \rangle\})^*$ is a P-set of $(\omega \times Z)^*$ and consequently, p is a P-point of X. Second, X is a Parovičenko space. This follows from the fact that Y is a Parovičenko space and that $(\omega \times \{\langle \omega_1, \omega_1 \rangle\})^*$ is a nowhere dense closed P-set of Y.

The above example suggests the question whether it can be proved in ZFC that for any Parovičenko space X and for any $p \in X$ it is true that $X - \{p\}$ is not normal. Unfortunately, this is not possible, as the following example shows.

EXAMPLE 2. There is a compact zero-dimensional space X without isolated points of weight $\omega_2 \cdot 2^{\omega}$ which satisfies (b) and (c), having a P-point p such that $X - \{p\}$ is both normal and C^* -embedded in X.

Let $P = \{\alpha \leqslant \omega_2 : \operatorname{cf}(\alpha) \geqslant \omega_1\}$. Put $Y = \beta P$ and $X = Y - \{y \in Y : y \text{ is isolated}\}$. Van Douwen [2] showed that $Y - \{\omega_2\}$ is almost compact, i.e. if A and B are disjoint closed subsets of $Y - \{\omega_2\}$ then one of them is compact, and that Y has weight $\omega_2 \cdot 2^{\omega}$. That implies that $X - \{\omega_2\}$ is almost compact, and hence is normal and C^* -embedded in X. Since X has clearly weight $\omega_2 \cdot 2^{\omega}$ it remains to be shown that X satisfies (b) and (c). That X satisfies (b) is trivial since Y satisfies (b) ([2]). Let G be any nonempty closed G_{δ} of X. If $G \cap P \neq \emptyset$, then int $G \neq \emptyset$, since $P \cap X$ consists of P-points of X. Hence $G \subset \{\xi \in P : \xi \leqslant \alpha\}^-$ for certain $\alpha < \omega_2$. By transfinite induction it is easy to show that $X \cap \{\xi \in P : \xi \leqslant \alpha\}^-$ has the property that each nonempty G_{δ} has nonempty interior. Since all these sets are clopen in X it follows that G has nonempty interior.

Since the space of the above example is a Parovičenko space if CH fails our claim follows. It is interesting that such a space exists since it shows that the properties (a), (b) and (c) of N^* are not enough to prove that $N^* - \{p\}$ is not normal for any $p \in N^*$ in ZFC alone.

Since, as remarked earlier, under CH, $N^*-\{p\}$ is neither normal nor C^* -embedded in N^* , we have also obtained the following result.

THEOREM. Each of the following statements is equivalent to CH:

- (a) if X is any Parovičenko space and $p \in X$ then $X \{p\}$ is not normal;
- (b) if X is any Parovičenko space and $p \in X$ then $X \{p\}$ is not C^* -embedded in X.

REFERENCES

- [1] W. W. COMFORT and S. NEGREPONTIS, Homeomorphs of three subspaces of $\beta N-N$ Math. Z. 107 (1968), 53—58.
- [2] E. K. VAN DOUWEN, A basically disconnected normal space Φ with $|\beta\Phi-\Phi|=1$, Canad. J. Math.
- [3] E. K. VAN DOUWEN and J. VAN MILL, Parovićenko's characterization of βω-ω implies CH, Proc. Amer. Math. Soc. 72 (1978), 539—541.
- [4] N. J. FINE and L. GILLMAN, Extension of continuous functions in βN, Bull. Amer. Math. Soc. 66 (1960), 376—381.
- [5] L. GILLMAN, The space βN and the continuum hypothesis, General Topology and its relations to Modern Analysis and Algebra 2 (Proc. Second Praque Topological Sympos., 1966) (1967), 144—146.

- [6] L. GILLMAN and M. JERISON, Rings of continuous functions, Van Nostrand 1960. [7] I. I. PAROVIČENKO, On a universal bicompact of weight, Dokl. Akad. Nauk SSSR 150
- (1963), 36-39 (Soviet Math. Dokl. 4 (1963), 592-595).
- [8] M. RAJAGOPALAN, $\beta N N \{p\}$ is not normal, J. Indian Math. Soc. 36 (1972), 173—176. [9] W. RUDIN, Homogenity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), 409-419.
- [10] N. M. WARREN, Properties of Stone-Čech compactifications of discrete spaces, Proc. Amer.
- Math. Soc. 33 (1972), 599-606.