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The Brouwer invariance of domain property for Euclidean spaces implies that,
for open U CR", every injective map g:U—R" is an open imbedding [2]. It is
well-known that this property does not hold for infinite-dimensional linear
spaces. Indeed, for any infinite-dimensional normed linear space Y we have the
following examples:

ExaMPLE 1 ([1, III theorem 6.3]). There exists a homeomorphism h:Y—h(Y)
onto a non-open subset of Y.

PROOF. Let hy:S—H be any homeomorphism from the unit sphere S onto a
closed hyperplane H. Then for any yeY\ H, h, may be extended to a
homeomorphism 4 of Y onto the non-open set (H-+(—o0,1)p)U{y} with
h(O)=y. O

ExAaMPLE 2 (D.W. CurTIs). There exists a bijective map g:Y—Y such that
£|Y \ K is not a homeomorphism for any compact K.

PROOF. Since the unit sphere S is non-compact, there exists a map A:S—(0,1]
such that infA(S)=0. Define f:Y—Y by the formulas

fO=NEDY 070,

f©®=0.

Clearly, f is a bijective map of Y, but is not a homeomorphism since
Ogintf(B) for any bounded set B. Note that f]Y \ {0} is a homeomorphism.
Using copies of f on a discrete sequence of open balls in Y, we may
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construct a bijective map g:Y—Y such that for any compact KC7Y, g|Y\ K is
not a homeomorphism. In fact, there exists an open UCY \ K such that for
any compact J CU, g(U\J) is non-open. However, there is a dense open
V CY such that g|V is an open imbedding. O

A space X is a Baire space if the intersection of any countable family of dense
open subsets of X is dense. A function f:Y—Y on a linear space has countable
type if there exists a countable set Z in Y such that for each y €Y,

f()espan ({y}U2Z).

If each map f:Y—Y on a topological linear space has countable type, we say
that Y has countable type for maps.

Clearly R" and, more generally, each N,-dimensional topological linear
space (i.e. a topological linear space with a countable Hamel basis) has count-
able type for maps. Consequently, there exist infinite-dimensional topological
linear spaces having countable type for maps. However, not all topological
linear spaces have this property, see Example 3.

LEMMA 1. Let Y be a topological linear space and let A:Y—Y be a linear opera-
tor with countable type. Then A =Ml + B, for some scalar A and linear operator
B with 8,-dimensional range.

PROOF. Let ZCY be a countable set such that A (y)espan({y}U Z) for each
». Let ECY be a complementary linear subspace for span Z, and consider any
linearly independent set {e;,e,} CE. There exist scalars A;, A, and A, and ele-
ments 51,5,,5 €span Z, such that

A(er) =Ayep + 545
A(ey) = Ay-e; +55; and
A(e; te) =A(e; +ey) +s
Using A (e; t+e,)=A4 (e;)+A4 (e;), we obtain
A—=ADer +A—Ny)ey =5, +5, —s

Since ENspanZ={0}, A—A;)e; +(A—A,)-e; =0 and since {e},e;} is linearly
independent, A} =A=A,. This implies that for any linearly independent set F
in E, (A —Al)(e)espan Z for each ecF. It follows that (4 —AI)(E)C span Z.
Since Y=E+ spanZ, and (4—Al)(spanZ)C spanZ, we obtain
A—MN:Y—span Z. O

The following result is well-known.

LEMMA 2. Let B:Y—Y be a bounded linear operator on a Baire topological
linear space. If B has 8-dimensional range, it has finite-dimensional range.

ProOOF. Write B(Y) as | 1°°F,,, where each F, is a finite-dimensional linear
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subspace of B(Y). Observing that each F, is closed in B(Y) and that B is con-
tinuous, it follows that each B~ !(F,) is closed in Y. Since clearly
U °°B_1(F )=Y and since Y is a Baire space, one of the B~ I(F,)’s has non-
empty interior, say B ~'(F, ). Every proper closed linear subspace of any topo-
logical linear space has empty interior. We conclude that B “Y(F,)=Y. O

A topological linear space Y is said to have few operators if every bounded
linear operator 4 :Y—Y has the form 4 =AI+ B, for some scalar A and some
operator B with finite-dimensional range.

In [4] the author constructed an infinite-dimensional pre-Hilbert space with
few operators (a Banach space B of uncountable weight such that each
bounded linear operator 4 :B—B has the form 4 =AI+E, for some scalar A
and some operator E with separable range, was earlier constructed under
¥V =L by SHELAH [7]). Lemmas 1 and 2 yield

THEOREM 1. Let Y be a Baire topological linear space with countable type for
maps. Then Y has few operators;

and
EXAMPLE 3. Hilbert space  does not have countable type for maps.

PROOF. Let E:P—f# be a bounded linear operator which is of the form AI + B,
for some scalar A and some operator B with finite-dimensional range. If A=0
then E =B which implies that E has finite-dimensional range. Suppose that

AF0. If E(x)=0 then x:%-B (x), which belongs to the range of B. Conse-

quently, in this case the kernel of E is finite-dimensional.

By Theorem 1 and the above remarks it suffices to construct a bounded
linear operator 4:#—F# such that neither the range nor the kernel of 4 is
finite-dimensional. This is a triviality of course. Indeed, define 4:#—# by

A(x1,X2,X3,...) = (x1,0,x3,0,...).
Then A is clearly as required. O

Since each ®,-dimensional topological linear space has countable type for
maps and Hilbert space # has not, the question naturally arises whether there
are topological linear spaces having countable type for maps but which are not
Ry-dimensional. In [5] the author proved

THEOREM 2 ([S]). Each separable Banach space B contains a linear subspace Y
such that

(@) Y is dense in X;

(b) Y is a Baire space; and

(¢) Y has countable type for maps.
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PrOOF (sketch). If B is finite-dimensional then Y =B is as required. Therefore
assume that B is infinite-dimensional.

Let g:4A—B be a function defined on a subset of B. A subset P of 4 is said
to be g-independent if the following conditions are satisfied:

(1) g|P is injective;
(2) PNg(P)=;and
(3) PUg(P) is linearly independent.

Via a standard procedure it is possible to prove that if 4 is a Gs-subset of B
which contains an uncountable g-independent subset then 4 contains a g-
independent Cantor set.

Now let I denote the collection of all homeomorphisms 4:K;—K, between
Cantor sets in B such that K, is A-independent. It is possible to construct a
linear subspace Y of B with the following property

(*) for each h €J( there exists x edom 4 such that xeY but A(x)eY.

Then Y is as required.

By (*) it easily follows that Y intersects every linearly independent Cantor
set in B. Since B is infinite-dimensional, every dense G;s-subset of B contains a
linearly independent Cantor set and consequently intersects Y. This implies
that Y is a Baire space.

If Y were not dense then the closure of ¥ would be a proper closed linear
subspace of B which therefore would have to be nowhere dense which is
impossible since Y intersects every dense Gs-subset of B. This proves (a) and
(b).

For (c), let f:Y—Y be a map. Since B is complete, f extends to a map
g:A—B, for some G;s-subset A of B. Suppose that 4 contains an uncountable
g-independent set. Then 4 contains a g-independent Cantor set K. Then g|K
is a member of the collection ¥, and by (*) there exists xeKNY such that
g(x)eY. But this contradicts the fact that g(x)=f(x)eY. Thus every g-
independent subset of 4 is countable, and in particular, every f-independent
set is countable.

By (*) Y cannot contain any linearly independent Cantor set. This easily
implies that for every countable set P there exists a countable set P such that
f(span P)CspanP. Now let Q CY be a maximal f-independent set. If Q=&
then f(y)espan {y} for each y0, and f obviously has countable type. Other-
wise, construct a tower (P;) of countable sets by taking P;=¢Q and
P, y=P,UP, for each n=1. Take Z= T°P,,. It can be shown that

f()espan ({y}UZ) for every yeY. O

COROLLARY 1 ([4]). There exists an infinite-dimensional pre-Hilbert space with
few operators.

PROOF. By Theorem 2 there is a dense linear subspace Y C# such that Y is a



Domain invariance 109

Baire space and has countable type for maps. Then Y, being dense in £, is
clearly infinite-dimensional. Also, Y has few operators by Theorem 1. [

Let Y be a topological linear space. Suppose that, for every injective map
g:U—Y with domain an open subset of Y, there exists a nonempty open
V C U such that g|V is an open imbedding. Then we say that Y has restricted
domain invariance.

We may suppose that ¥ is dense in U, since the condition can be applied to
every restriction g|W to an open nonempty W CU. In addition, for Y a
normed linear space, it suffices to verify the condition for every injective map
f:Y—Y, since there is an open imbedding of Y into every nonempty open sub-
set.

The reader naturally wonders what the relation is between the title of our
paper and the results derived or mentioned so far. This is cleared by the fol-
lowing

THEOREM 3 ([5]). Let Y be a normed linear space with the Baire property and
with countable type for maps. Then Y has restricted domain invariance.

PROOF (sketch). We may assume Y is infinite-dimensional. By the above
remark, we need only to consider an injective map f:Y—Y. Let Z be a count-
able subset of Y such that f(y)espan ({y})UZ) for each y. There exists a
tower (4,) of compacta such that span A, is finite-dimensional for each n, and

U ;°4,=.span Z. For each n, set
Y, = {y eY|for some Ae[—n,n],f(y) —Ayed,}.

It is easily seen that each Y, is closed and that (J°Y,=Y. Since Y is a Baire
space, some Y, has nonempty interior and since Y is infinite-dimensional,
there exists a nonempty open set W CY, \ span 4,. For each we W there is a
unique A(w)e[—n,n] such that f(w)—A(w)weA,; furthermore, the assign-
ment w—A(w) is continuous. It is possible to show that there exists a
nonempty open V' C W with either A(V)C[—n,0) or A(V) C(0,n].

For convenience, assume that A(V)C(0,n] and take peV arbitrarily. We
may assume that f(p)=p. Let E= span ({p}UA,). By using, among other
things, the Brouwer invariance of domain property for E, it can be shown that
f (V) is a neighborhood of f(p)=p. O

Observe that by Examples 1 and 2, Theorem 3 is ‘best possible’.

COROLLARY 2 ([5]). There exists an infinite-dimensional pre-Hilbert space X
such that X is not homeomorphic to X XR.

PROOF. By Theorems 2 and 3 there is a dense linear subspace X C# having
restricted domain invariance. X is clearly infinite-dimensional. We claim that X
is as required. To the contrary, assume that ¢:X—X XR is a homeomorphism.
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Define ¢:X—X by

Yx) =¢7'(x,0).

Then ¥ is clearly an imbedding of X onto a subset of X with empty interior.
But this contradicts restricted domain invariance. O

The above result generalizes PoL [6] and answers Question LS12 in GEOGHE-
GAN [3].

COROLLARY 3. Every separable Banach space contains a dense linear subspace Y
such that:

(a) Y is a Baire space;

(b) Y has restricted domain invariance; and

(¢) Y has few operators. [l

I am indebted to D.W. CuUrTIs for many helpful comments.
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