Topology and its Applications 22 (1986) 267-282 267
North-Holland

THE BAIRE CATEGORY THEOREM IN PRODUCTS OF
LINEAR SPACES AND TOPOLOGICAL GROUPS

Jan van MILL
Subfaculteit Wiskunde, Vrije Universiteit, Amsterdam, The Netherlands

Roman POL*

Department of Mathematics, Warsaw University, 00-901 Warsaw, Poland

Received 16 October 1984
Revised 13 May 1985

A space is a Baire space if the intersection of countably many dense open sets is dense. We
show that if X is a non-separable completely metrizable linear space (pathconnected abelian
topological group) then X contains two linear subspaces (subgroups) E and F such that both E
and F are Baire but E x F is not. If X is a completely metrizable linear space of weight X, then
X is the direct sum E@® F of two linear subspaces E and F such that both E and F are Baire
but E x F is not.
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Introduction

All spaces under discussion are metrizable.

The fact that in complete metric spaces the Baire Category Theorem holds, i.e.
that the intersection of countably many dense open sets is dense, is a well-known
and important tool in functional analysis. A space for which the Baire Category
Theorem holds will be called a Baire space from now on (this is standard ter-
minology). The question whether the product of two Baire spaces is a Baire space
was raised in [3, 10, 13]. Using forcing techniques, this question was answered in
the negative by Cohen [4]. Earlier, it was known from the work by Oxtoby [10]
and Krom [7] that the Continuum Hypothesis implies the existence of two Baire
spaces X and Y whose product in not Baire. In Fleissner and Kunen [6] direct
constructions of such spaces were obtained and in addition they constructed an
example of a single Baire space X whose square is not Baire.

* This paper was written while the second author was visiting the Department of Mathematics &
Computer Science of the Free University in Amsterdam.
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It is natural to ask whether the product of two normed Baire spaces is Baire.
Arias de Reyna [1] claims to have answered this question in the negative. However,
it seems that there is a gap in his reasoning—we express our thanks to D.J. Lutzer
and M. Valdivia for this information. The main result of this paper is that every
non-separable topologically complete linear space {pathconnected abelian topologi-
cal group) L contains two linear subspaces (sub-groups) A and B such that both
A and B are Baire but A x B is not. Independently, Valdivia [ 14] has also constructed
two normed Baire spaces whose product is not Baire. We will also show that every
topologically complete linear space L of weight X, is the direct sum E® F of two
linear subspaces E and F such that both E and F are Baire but E X F is not.

The essence of our construction, as well as Valdivia’s and Arias de Reyna’s
method, is the construction of Fleissner and Kunen [6]. However, instead of using
their ideas directly, we apply rather a general variant of their construction described
in [12], which allows us to get rid of ‘coordinates’ in the spaces and which simplifies
the argumentation.

1. Preliminaries

As noted in the introduction, all spaces under discussion are metrizable. For every
space X we let p denote a compatible metric on X. This is done for simplicity and
will very likely cause no confusion. If X is a space and £>0 then B(x,¢)=
{re X: p(x, y)<e}.

If X is a set and « is a cardinal then

[XT""={Ac X:|A| <k}

¢ denotes 2™,

As usual, w, denotes the first uncountable ordinal. A subset C S w, is called closed
if for every strictly increasing sequence a;<a,<--- of elements of C we have
Sup,en @, € C. In addition, a subset S € w, is called stationary if S~ C # ) for every
closed unbounded subset C < w,. A function f: A > w,, where A is a subset of w,,
is called regressive if f(a) < a for every a € A. If S € w, is stationary, and if f: § > w,
is regressive then f '({a}) is stationary for some « € @, (in particular, f'Ha)) is
uncountable). This is called the “Pressing Down Lemma” (abbreviated PDL). In
addition, if S < w, is stationary then S can be split into w,; disjoint stationary sets.
For proofs of these facts see Fleissner [5].

2. Independent Cantor sets

Our basic tool is that in topologically complete linear spaces, or topologically
complete topological groups, very special ‘independent’ Cantor sets exist. In this
section we will construct these Cantor sets. Our results were inspired by the work
of Mycielski [9] and also by Mauldin [8].
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We deal with the linear case first. Let L be a linear space. If A< L then lin(A)
denotes the linear hull of A. If E < L is a linear subspace then Ac L is said to be
linearly independent over E provided that for every x € A we have x £ lin{A\{x}) + E.
If A< L is not linearly independent over E then we say that A is linearly dependent
over E.

2.1. Proposition. Let Z be a topologically complete linear space and let Z, < Z, < - - -
be a sequence of closed linear subspaces of Z each of infinite codimension in Z. If G
is a dense G5 in Z then there exists a Cantor set C< G such that C is linearly
independent over |, Z.

Proof. For every n,meN define R,,,={(x,...,x,)€Z": {xy,..., x,} is linearly
dependent over Z,}. Since Z,, is closed it follows that R,,, is closed. We claim that
R, is nowhere dense in Z", for every me N. We prove this by induction on n.
Given £> 0 and a point (x,..., X..,) € Z""", use the induction hypothesis to find
a point (y,, ..., ¥.) € Z"\R,,, such that p(x;, y;)<e for every i=<n. Then choose
Vn+1€ B(Xpr, eNEin({yy, ..., ya}) + Z,

It is possible to choose y, ., since Z,, has infinite codimension which implies that
lin{({y,, ..., ¥.})+ Z,, is nowhere dense in Z. It is clear that the point (y,, ..., Yn+1) £
Rusim

Since G is dense in Z the existence of C now immediately follows from Mycielski
[9, Theorem 1]. O

We now let G be a connected abelian topological group. Our aim is to prove a
version of Proposition 2.1 for G. If A is a closed subgroup of G, then either the
elements of G of infinite rank over A form a dense G;-set in G (Lemma 2.3) or
for some m, each element of G has rank < m over A (Lemma 2.4) and accordingly,
we have to deal with different notions of independence over A, considering the
factor group G/ A either as a module over the integers or as a module over the
integers modulo m, for some natural number m (see the definition after Lemma
2.5). This causes some additional complications in comparison to the linear case,
see Sections 3 and 5.

Throughout, let G be a topologically complete connected abelian topological
group. If A< G then (A) is the subgroup of G generated by A. As usual, Z denotes
the set of integers and Z' =Z\{0}. Let A< G be a subgroup. For every neZ' define

n'A={xe G: nxe A}.

2.2. Lemma. If A is a closed subgroup of G and Intn 'A#@ for some ne€Z then
n'A=G.

Proof. Itis clear that n~'A is a closed subgroup of G. Since Int n~'A # @) it therefore
follows that n™' A is open, whence clopen. The connectivity of G now implies that
n'A=G. O
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Let A< G be a closed subgroup. We call A thin provided that there is an xe G
withZ' - xnA=4.

2.3. Lemma. Let A< G be a closed thin subgroup. The set A*={xc G: Z' - xn A=0}
is a dense G5 in G.

Proof. Obviously, A*= G\|U,.z n™'A. Since each n"'A is closed, A* is a G;. If
Int n 'A#¢ for some neZ then n 'A= G (Lemma 2.2) so then A is not thin. We
conclude that each n™'A is nowhere dense. From this and the completeness of G
it follows that A* is dense. []

24. Lemma. Let A< G be a closed subgroup which is not thin. Then there exists an
neZ such that n 'A=G.

Proof. Aisnotthinso G =,z n 'A.Since each n 'Aisclosed, the Baire Category
Theorem implies that Int n~'A# @ for some neZ'. Observe that n 'A=(—n)""'A
and apply Lemma 2.2. [
Let Ac G be a closed subgroup. Define «(A) € Nu {0} by
k(A)=co iff Ais thin,
k(AY=min{neN: n"'A=G} if A is not thin.
By Lemma 2.4, x(A) is well-defined.

2.5. Lemma. Let A< G be a closed subgroup for which x(A) <. The sets m™' A are
closed and nowhere dense for all 0 < m < «k(A).

Proof. If m~'A has nonempty interior for some 0<m < «(A), apply Lemma 2.2 to
conclude that k(A)<m<«x(A). O

Let A< G be a closed subgroup. We call B< G independent over A provided that
for all ne N, distinct x,,...,x,€ Band m,,..., m,€Z we have
mx,+- - +mx, € A=>m|=0 (mod «x(A)) for all i<n,
where |m;| =0 (mod o) means m; =0.
2.6. Lemma. Let A< G be a proper closed subgroup. If x,, . . ., x, € G are distinct and

£ >0 then there are distinct y,, ..., y,€ G\A such that p(x, y;)<e forall 1<i<n
while moreover {y,, ..., y.} is independent over A.

Proof. We have to distinguish several cases.

Case 1. n=1 and «(A)=00. Apply Lemma 2.3 to find y,€ G with p(x,, y,)<e
and Z' - y;,~n A=0. It is clear that y, is as required.
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Case 2. n=1 and «(A) <. Since A is a proper closed subgroup, A is nowhere
dense, so k(A)>1. By Lemma 2.5 {_,<m<«a)y m 'A is nowhere dense, so there is
point y,€ G with p(x,,y,)<e and y, & Ji<m<caym 'A. Then y, is clearly as
required (use that A is a subgroup).

Now suppose that the Lemma is true for m and let us try to prove the Lemma
for m+1. To this end, take distinct x,,..., x,,.,€ G. Let V,,..., V,,,, be pairwise
disjoint closed neighborhoods of the points x,, ..., x,,.,, each of diameter less than
€. By induction hypothesis there exist y;€ V; (1=<i=<m) such that {y,,..., y,.} is
independent over A. Forall (ny,..., n,.,)€Z™"" with|n,,,,| # 0 (mod «x(A)), define

Conpnpin=1x€ Gi Ry x€my,+ -+ -+ n,y,, + AL

..... m..p 15 closed. Suppose that the union of the C,, y's covers V, ..
Since G is topologically complete and Int V., #¢, we can find a sequence
(ny, oo, M) €Z™, Iy, # 0 (mod k(A)), such that

alm+

Take xe U and ye G, ..., Then yeV, where V=(y—x)+U, and V is a
neighborhood of y. Take u € U arbitrarily. Then

N, y=my+---+n,y,+a,,
R X=my,+:--+n,y,+a,
Npau=mpy+: - -+n,y,ta,,
for certain a,, a,, a,€ A. We conclude that
(Y =x)tu)=ny+- -+ n,y.+((a—a)+ay).

We conclude that (y—x)+tued(, whence Ve G, .., Therefore

Cin,...n,., is open, whence clopen, and hence equals G. Consequently,

----- Mpi1)?

A VEMY +- -+t n,y,TA Vye(,

in particular, 0=n,.,-0eny +---+n,y,+A from which, by induction
hypothesis, follows that |n,|=|n,]="":=|n,| =0 (mod «(A)). Consequently,

Nmy€A, VyeG. (*)

Case 3. k(A)=c0. Since |n,,. | # 0 (mod ), which is equivalent to n,,., %0, (*)
contradicts A being thin.

Case 4. k(A)<co. Without loss of generality, n,,., € N. Choose p, le NU {0} such
that 0<p<«(A) and n,., =1 k(A)+p. Then

py=n,,y—1-k(A)yeA, Vyeg,

since by (*) n,;y€ A and by definition x(A)y € A. Since p<k(A) we conclude
that p=0. From this it follows that n,,,,=! - «(A)=0 (mod x(A)), which is a
contradiction.
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We conclude that there is a point

ye Vo \U {C(nl,...,n,,,ﬂ):(nl, s ) E ZMH, |nm+1| =0 (mod x(A))}.

Now suppose that n,y,+- - -+n,,,.,y€ A for certain n,, ..., n,,,€Z.
By our choice of y we have that |n,,+,| =0 (mod «(A)), consequently,

my,+---+n,y,.€A
Since the y,,...,y, are independent over A it follows that |n|=---=|n,|=

0 (mod «(A)). We conclude that y,,,; =y is as required. [

2.7. Lemma. Let A< G be a proper closed subgroup. For each neN the set R, =
{{x1,...,x,)€ G": {xy, ..., x,} is dependent over A} is of first category in G".
Proof. For every (m,,..., m,)eZ" define

Comompy =101, ..., x,) € G" myx; +- - -+ m,x, € A}.

Let € ={Cipm,...m):(my, ..., m,)€Z"}. Observe that every C € € is closed and that
there is a (countable) subfamily % < € such that

R, =U&%

That each F e % is nowhere dense follows from Lemma 2.6. [
We can now prove a result similar to Proposition 2.1.

2.8. Proposition. Let G be a connected abelian topological group which is topologically
complete. In addition, let A, A,< -+ be a sequence of proper closed subgroups of
G, and let E = G be a dense G;. There is a Cantor set K < E such that K is independent
over A,, for every neN,

Proof. This directly follows from Lemma 2.7. and Mycielski [9, Theorem 1]. O

3. Applications of independent Cantor sets

In this section we apply the results obtained in Section 2 to get certain ‘decomposi-
tions’ of small linear spaces and topological groups. Again, we deal with the linear
case first.

3.1. Theorem. Let Z be a topologically complete metrizable linear space of weight at
most continuum and let Z, = Z,< - - - be a sequence of closed linear subspaces of Z
each of infinite codimension. Then there exists a linear subspace V< Z of second
category in Z such that Z=V® (L, Z).
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Proof. Since Z has weight at most ¢, Z has cardinality at most ¢, whence Z has at
most ¢ separable closed subspaces. The family ¥ ={C < Z: C is a Cantor set which
is linearly independent over |_J{2, Z;} has cardinality at most c. Let {C,: a <c}
enumerate 4. Inductively, choose x, € C, such that

lin{x;: é<a}n G Z;={0}

for every a <c¢. Since the algebraic dimension over | Ji~, Z, of the set E =
lin{x,: £<a}+\JiZ, Z is less than ¢, it is possible to pick a point xe C,\E. It is
easily seen that x, = x as required.

Put W =lin{x,: a <c}. Clearly, Wn |, Z;={0} and W is of second category
in Z by Proposition 2.1. Now let V< Z be any linear subspace containing W such
that VA2, Z;={0} and V+\ 2, Z;=Z Then V is clearly as required. [l

We now want to prove a generalization of Theorem 3.1. for topological groups.
Unfortunately we cannot obtain a result quite as strong as Theorem 3.1., see the
example following Theorem 3.3.

We will now prove a simple but important lemma.

3.2. Lemma. Let G be a topologically complete connected abelian topological group
and let s be a collection proper closed subgroups of G. Then there exists an Aec
such that k(A) = «k(B) for every B € o containing A.

Proof. If k(A) =0 for every A € & then there is nothing to prove. Suppose therefore
that «(A) <co for certain A€ . Let

n=min{k(A): Ae & and «(A) <00}

and choose A € « for which x(A) = n. We claim that A is as required. To this end,
take B e o such that A< B. Then

nxc Ac B

for every x € G. We conclude that x(B) < k(A), whence «(B) = «x(A) by our choice
of k(A). O

3.3. Theorem. Let G be a topologically complete metrizable connected abelian topologi-
cal group of weight at most continuum and let A, < A,< - - - be a sequence of closed
proper subgroups of G. There exists a subgroup E c G of second category in G and
anneN suchthat En|U2, A, < A,. Ifk(A;) =0 for every i € N then we can construct
E such that E n\ 2, A; =(0).

Proof. By Lemma 3.2. we can find an n € N such that «(A;) =« (A,) for every i> n.
We claim that there is a subgroup E = G of second category in G such that
EnlUJ, AicA,.
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As in tne praof of Thearem 3.1. @ follows thar &G contains at most ¢ Canator sets.
Let {K,: o <c¢} enumerate all Cantor sets in G which are independent over A, for
every i€ N. We will construct the required subgroup E such that En K, # @ for
every o <t. By Proposition 2.%3. E 1hen intersecis every dense G; in G, whence E
is of second category in G.

By transfinite induction on a <¢ we will pick x, € K, such that for every a <¢
the set {xz: B <} is independent over A, for every i€ N. We will then show that
E ={{x, :ac <¢}} 15 as required.

Let xo be any point of K, and suppose that x; has been defined for every 8 <a.
Suppose that for every x € K,, there exist n,€Z, m(x)eN and F, € [{xz: B<a}]™*
such that [, # 0 (mod « (A, while moreover

nXxe Am(x) + (Fx>

Since |Z] = |N| =N, and |[{x5: B < a}]~*| <¢, we can find an uncountable set H < K,,,
a fixedd» » €%. aHxed M eYS and aHxeb Drine sUpser T =30 B < o) sudninm

nxe A;+(F), A=n, and m=m(x),

for every x € H. Since |(F)| <N, we can find an uncountable subset H'<c H and a
point p € (F) such that

nxeA,+p
for every xe H'. Now take distinct x, y€ H'. Then
nx— Ay € A,

whence » =0 jmob x) A,). Tms s a contrathehon.
We conclude that we can find a point x € K,, such that for every n€Z and meN
such that {n{# 0 (mod x{A,,)), and every finite F < {xz: 8 <a} we have that
nxg A, +(F).

Define x, = x. )1 35 chear thal x, s as repoired.
Now let E ={{x,: @ <c}). We claim that En{J,< A,. Take xe Enl 2, A;
arbitrarity. There exist @, < - - < &y <& and #, ..., %, &2 sk that

X=X, + ot X, .

There is an my> n with xe A,,. Since {x,,,..., X,,,} is independent over A, we
conclude that |ny|="- - - =|n,|=0 (mod «x(A,,)). Since k(A,,) =« (A,) this implies
that xe A,.

Observe thar ¥ x{Ay =10 Jor every e then tne same proos shows inay B
?0:1 A = {0} O

Observe that n the 2pove theorem in general ¥ 35 Mnpossivie so tonsiracs B with
the addmona) Propery 1hat s connetied. SHmpy voserve Thz The vhly vonnttied
subgroup of R is R itself.
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We will now construct an example showing that Theorem 3.3. cannot be improved.

Let I denote the unit interval [0, 1] and, as usual, let A denote Lebesgue measure
on I If X is a space then a function f: I > X is called measurable if f~'(U) is a
Borel subset of I for every open ['< X. Two measurable functions f, g: I » X are
said to be equivalent if

Alxel: f(x)#=g(x)}=0.

Let My denote the topological space of equivalence classes of measurable functions
from I into X with the topology of convergence in measure. Bessaga and Pelczynski
[2, p. 194] have shown that My is homeomorphic to I,, the separable Hilbert space,
if and only if X is a topologically complete separable space containing more than
one point. They also show that if G is a topological group then pointwise multiplica-
tion defines a compatible topological group structure on My, i.e. if f, g € M then
f-geMg and f'e Mg are defined by

{(f' g)(x)=f(x) - g(x),
(SO =,fxN "

Let G =2, with the discrete topology (of course) and put H = Ms. As remarked
above, H = I,, whence H is a connected topological group.' Put A={2f: fe H}.
Then A is a subgroup of H and we first claim that A is closed. Let g, € A, neN,
be a sequence converging to a point g € H. Then lim,, . 2g, = 2g. Since g, = 2f,, for
certain f, € H, we have 2g, =4f, =0 for every neN. We conclude that 2g =0. We
therefore find that g(I)<{0,2}. Define g':I> G by g'(x)=0 iff g(x)=0 and
g'(x)=1iff g(x)=2. Itis trivial that g’ is measurable. Since clearly 2g’ = g, it follows
that g e A. Whence A is closed. We next claim that A is a proper subgroup of H.
This is a triviality of course since the function f € H with constant value 1 obviously
does not belong to A.

We now let E be any subgroup of H such that E # {0}. We claim that E n A # {0}.
Indeed, take x € E\{0} arbitrarily. Then 2x € E n A. If 2x # 0 then we are done. If
2x =0 then, as above, we find that x € A. So then x € E n A, and in this case we are
also done. From this we conclude that the subgroup E in Theorem 3.3. in general
cannot be chosen such that E n|_Ji2; A; ={0}. The question naturally arises whether
we can always choose E in such a way that E+( 7, A, =G (and EnU~, A, A,
for some n e N of course). We do not know the answer to this question.

4. A Lemma

The aim of this section is to prove Lemma 4.3., which is needed in Section 5 to
prove all results which were announced in the introduction.

! (For this conclusion we do not need the Bessaga-Pelczyniski result of course, it is routine to verify
directly that M4 is path-connected.)
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Throughout, let X be a space and assume that X = an‘ X.,, where
(1) X, is closed, separable, and nowhere dense in X for every a < w,,
(2) X, Xz if a<B<w,
Q) X, =User X5 if a< @, is a limit ordinal.

For every a < w, define P, = X,\|Uz<. Xz Given a subset T < w, put

X(Z):Uan Pn-

4.1. Lemma. For every pair X,, X, of disjoint subsets of w, we have that the set
X(Z)x X(Z)) is of first category in the product X x X.

Proaf. See {12, the proof of Lemma 1], O

4.2. Lemma. Let 3 < w, be stationary and let x; € P, for ¢ € 2. Then there is a point
x € X such that each neighborhood of x contains uncountably many x,’s.

Proaf. See (11, the praal of (- G} w Theorem ({, <( alsa (5, p. (81-1Q2. O
We will now formulate and prove the main result in this section.

4.3. Lemma. Let 2 < w, be stationary and let E; < P, be a set of second category in
X, for £ 3. Then the set E =\_J;.s E, is of second category in X.

Prod). 61 7, 2 €Y 'De 2 Sepnepce 5 Onsed sinsers 573 suip ina B ) e T
We have to show that at least one F; has nonempty interior in X. Fix ¢ 2. Since
E, is of second category in X, there exist a point a; € E; and i, n, €N such that

B(ag /i )n X, c F,,.

There exist a stationary set A € X and a pair i, n of natural numbers such that for
each €< A we have that ;=1 and #n, =7 By Lemma 4.2, there exists a puint at X
such rat the st

I'={¢eA:pla, a)<1/2i}

is uncountabte. We ctaim that B{q, 1/2i) < F,. Indeed, if x € B(a, 1/2i) choose § < w,
with x € X, and take ye I" with § <.

Then p(x, a,f<1/1, so xeX;nBla, [/17YS X, N Bla,, [/1J< F, (since yE€
r. o

5. The construction

After the preparatory work in the previous sections we are now in a position to
formulate and prove our main results. Again, we deal with the linear case first.
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5.1. Theorem. Let L be a topologically complete metrizable linear space of weight N,.
Then X is the direct sum E @ F of two linear subspaces E and F such that both E and
F are second category subsets of L whose product E X F is first category (in itself). In
particular, both E and F are Baire spaces but E X F is not.

Proof. We will construct a sequence

{0l=X,c X,c--cX,c- €L, a<w,

of closed linear subspaces of L satisfying (1), (2) and (3) of Section 4 and, in
addition, having the following property:

(1) X, is of infinite codimension in X, ., a<w,.

Let {x,: @ <w;} be dense in L, and assume that X, has been defined for every
B < a, a < w,, having the additional property that if 8 is not a limit then

{x: 6<B} s X,

If @ is a limit put X, =(UB<Q X3). If @ is not a limit, observe that X, being
separable, has infinite codimension in L (use that L is not separable). So there exists
a countably infinite linearly independent set A< L such that Lin An X, = {0}. Put

X =lin(X, v AuU{xg: B<a}).

It is clear that X, ,, is as required.

Since L is metrizable, | J,-,, X, is closed in L and since x, € X, ., for every
a < w,, it follows that | J, -, X, =L.

Throughout the rest of this proof we adopt the notation of Section 4.

Claim 1. If @, <+ <ay<w, and x;€ P,, then
Xot+- - +x,€P,.

Observe that x;+- - - +x,€ X, . Suppose that x,+- - - +x, € X, for certain £ < a,.
Then, for 8 = max(«a,, £), we have that

Xo=(Xot - +tx,)— (%t +x,)€ X

Since x,€ P,, and P, n X =0, this is a contradiction.

We are now in a position to construct the required linear subspaces E and F. Fix
an ordinal & < @, and let @, < @, =< - - be a sequence of ordinals such that « is the
least ordinal greater than every «,. Using Theorem 3.1. with Z=X, and Z,=X,,,
one can find a linear subspace V, of X, of second category in X, such that

2 X.=V.,e(U X,),

E<a
so in particular,

(3) V.\{0} <= P,.
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Split w, into two disjoint stationary sets 3,, 3, and let

Vi=Lin(U V,), i=0,1.

acl;
We claime frat & = V) and &= V) are &5 rajuinred.
Claim 2. VA{O}< L(Z,) =U4es, Py i=0,1.

Take x € V\{0} arbitrarily. Find ordinals a; € 3, 0<j =< n, and points x; € V., \{0} =
P, (by (3)), such that a,, <+ + < ag and x = x,+ - - -+ x,. By Claim 1 it follows that
x=P, = L(%)).

By Claim 2 and Lemma 4.1. it now follows that Vyx V, is of first category in the
product Lx L. However, since each V, is a linear subspace of second category in
X., and hence dense in X, it easily follows that both V, and V, are dense in L,
whence VyX V) is dense in L x L. Since Vyx V¥, is of first category in Lx L we
conclude that V,x V, is of first category in itself.

Since Yo H P 2N Sor every o €3, anb Since Y, s 05 secopd caleenryn 33,
it follows Tna1 Y. » P, 15 03 second categpry m X, 3or pyvery o £3. By emma 3D
we conctude that bath ¥, and V, are of secand category 1 L.

It remaains to check that L= V@ ¥). Since by Claim 2 we have thet ¥y ¥, = (¢4,
it suffices to show that L= V,;+ V,. We will check by induction that X, € V,+ V,.
Clearly X, < V,+ V). Assume that X, c V,,+ V, for every ¢ < o, @ < w,. Without loss
of generality we may assume that o € X, By (2),

X, =V,.®(U X,),

E<a

so X, V,+V,+V.But VgV, ie V,+V,=V, O

5.2. Corollary. Let L be a topologically complete metrizable non-separable linear space.
Then L contains two linear subspaces E and F such that both E and F are Baire but
E X Fis not.

Proof. Observe that L contains a closed linear subspace of weight X, and apply
Theorem 5.1. [

We will now prove the announced results for topological groups.

5.3. Theorem. Let G be a topologically complete metrizable abelian topological group
of weight N, and assume that G has a dense pathcomponens. Then G contains fwo
subgroups E and F such that both E and F are second category subsets of G whose
product is of first category (in itself). In particular, both E and F are Baire spaces but
E x Fis not. The subgroups E and F have the additional property that E n Fis separable
(hence small).
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Proof. Our strategy is similar to the one in the proof of Theorem 5.1. Let K< G
be a dense pathcomponent. We will construct a sequence

{0}=Xc X=X, = =G, a<w,

of closed and connected subgroups of G satisfying (1), (2) and (3) of Section 4
and, in addition, having the following property:

(1) X, is a proper subgroup of X, a<w,.

Let {x,: @ <w,} be dense in G, and assume that X; has been defined for every
B < a, @ < w,, having the additional property that if 8 is not a limit then

{x;: E<B}= X,

If « is a limit put X, =|_Jg~, Xs. Now suppose that « is not a limit, say a =8 +1.
Put A= X, u{xg, x,} and observe that A is closed and separable, whence nowhere
dense in G (since G is connected, every separable subspace of G is nowhere dense).
Let D be a countable dense subset of A and for every d € D choose a sequence in
K\ A converging to d. The union of these sequences yields a countable set H < K\ A
such that Ac H. For every x, ye H let I(x, y) < G be a path connecting x and y.
Then H' =\ {I(x, y): x, y€ H} is a separable connected set such that Ac H'. Now
let B={H'). Then B is connected since H'is connected. Similarly, B is separable.
It is easily seen that X, = B satisfies our requirements. As in the proof of Theorem
5.1. it follows that Ua<w1 X, = G. Again, we adopt the notation of Section 4.

For every a < w, let a;<a,=<-:-- be a sequence of ordinals such that « is the
least ordinal greater than every a; By Theorem 3.3. we can find a subgroup V, < X,
and an integer n(a) € N such that

(a) V, is of second category in X,

(b) V,nUZ, Xe © Xa,,((,y
We conclude that for every a < w, there is an f(«a) < a such that

(©) VarnUpg<a X5 S Xi(a)

By PDL there is a stationary set S< w, and a 8 <, such that for all @, a’e S we

have f(a)=f(a')=8<a.

Claim 1. If a,,<---<ay<w;, a;€ S for every i, and if x;e V,, n,€Z, then nyx,+
Crt X, € Xg Ul P,

We prove the Claim by induction on m. If m =0 then there is nothing to prove
since then nyxy,e V, < Xz P, . Suppose therefore that m > 0.

ay =

By induction hypothesis we have
mx+- -t nx, e XguUR, P,

Case 1. noxoe Xz Choose 1<i<m such that mx;+ - +n,x,€ XguP,. If
nx,+- - -+n,,x, € X, then there is nothing to prove. Suppose therefore that y =
mx;+- - -+ n.x,, € P,. Observe that noxo, y € X,,,, 50 noxo+ye X,,. If noxo+ye X,
for certain 8 < n < ; then y € X, since X, is a subgroup and nyx, € X,, contradiction.
We conclude that nox,+ye P,.
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Case 2. nyoxy€ P,,. Again, choose 1 <i<tm such that y=nx;+-- -+ n,x, € Xgu
P,.If nyxo+y & P, then nyx,+y € X, for certain a; < 7 < a,. Since X, is a subgroup
and y € X, this would imply that nyx, € X, which is a contradiction since P,,n X, =
0.

Split S into two disjoint stationary sets X, X, and let

V.=(lJ V,), i=0,1.

acl;
We claim that E =V, and F =V, are as required.
Claim 2. V,< Xz u G(Z,), whence Von V, < X, (recall that G(2;) =U,c5x, P).

Take x € V; arbitrarily. There exist a,, <+ - - < ap<wi, ;€ &, forevery j,and x;€ V,,
n; € Z such that x =n¢x,+- - -+ n,Xx,. By Claim 1 it now follows that

xeXgulJ P, = Xgu G(2).
ji=0
By Claim 2 and Lemma 4 we may conclude that (V)\ X)X (V\X}) is of first
category in the product G x G. Since

VoxX Vi€ (Vo\ Xp) x (VIAXR) U (X x G)u (G x X3),

it also follows that VX V, is of first category in the product G x G (observe that
X, is nowhere dense in G). Since each V, is a subgroup of second category of the
connected group X,, it follows that V, is dense in X,,, and from this it easily follows
that both V, and V, are dense in G. Consequently, V,;x V, is a dense first category
subset of G x G, whence V,x V, is of first category in itself.

Since V. P, 2 V,\{0} for every a € 3, and since V, is of second category in X,,,
it follows that V; n P, of second category in X, for every o € 2. From Lemma 4.3.
we therefore conclude that V;\ X, is of second category in G, for every i€ {0, 1}.
Since Xj is closed and nowhere dense in G it follows that V; is of second category
in G, i=0,1. O

5.4. Corollary. Let G be a topologically complete metrizable non-separable abelian
topological group and assume that G has a dense pathcomponent. Then G contains
two subgroups E and F such that both E and F are Baire but E X F is not.

Proof. We will show that G contains a closed subgroup H of weight N, having a
dense pathcomponent. Then we can apply Theorem 5.3. to obtain the desired result.

Let K = G be a dense pathcomponent. Since G is a topological group we may
assume that 0 € K. By transfinite induction, we will construct for every a <w, a
separable closed subgroup H, < G and a countable set D, < K such that

(1) if B <a then Hg is a proper subgroup of H,,

(2) D, is dense in H,,

(3) if B<a, xe Dy and y€ D, then x and y can be joined by path in H,.
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Then H =\J,~., H, is clearly as required (observe that by (1) H has weight N,).

Put H,={0} and D,={0}. Assume that Hy and D, have been defined for every
B<a, a<w. If a is a limit, put H,=\Js<,Hs and D, =\Jg,Dp Suppose
therefore that @ =B +1. Let D =J,<zD; and for every d € D choose a sequence
from K\ Hj converging to d. Let H be the union of these sequences and for every
x,yeHuD let I(x,y)G be a path connecting x and y. Put B=
\U{I(x, y): x, ye Hu D}. Observe that B is separable and that B< K. Put H, =(B)
and let D, < (B) be any countable dense set. Since B is pathconnected it also follows
that {B) is pathconnected (observe that (B) is a continuous image of a topological
sum of countably many finite powers of B). We conclude that {B)< K from which
it follows that D, = K, as required. [

5.5. Remark. Observe that in the proofs of Theorem 5.3. and Corollary 5.4. we
‘only’ used that G contains a dense set D such that for all x, ye D there is a
separable connected subset of G that contains both x and y. We do not know
whether every topologically complete connected abelian topological group has this

property.

6. Remarks

It can be shown that Theorem 5.1. is also true for linear spaces of weight ¥.,.
Under the Generalized Continuum Hypothesis we can show that every non-separable
Banach space admits a bounded linear operator onto a Banach space of weight X,
or N,. Since this operator is open, applying Theorem 5.1. and its generalization, it
follows that every non-separable Banach space B is the sum of two linear subspaces
E and F such that both E and F are Baire but E X F is not. This result suggests
the following question.

6.1. Question. Let B be a non-separable Banach space. Is B the direct sum E@ F
of two linear subspaces E and F such that both E and F are Baire but E x F is not?

The following question seems particularly hard and interesting.

6.2. Question. Is there a normed linear space X such that X is Baire but X X X is
not?

In the light of Theorem 5.1. our results for topological groups are not satisfying.
In Section 3 by means of an example we demonstrated that our construction for
topological groups is inadequate for getting a direct sum decomposition such as in
Theorem 5.1. For this reason we pose the following

6.3. Question. Let G be a pathconnected topologically complete topological group
of weight X,. Is G the sum E+ F of two subgroups E and F such that both E
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and F are Baire but E x F is not? When is it possible to write G as the direct sum
E@® F of two subgroups E and F such that both E and F are Baire but E X F is not?

If the answer to Question 6.3. is in the affirmative then the same question should
be posed for topological groups of arbitrary uncountable weight.
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