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FUNCTION SPACES OF LOW BOREL COMPLEXITY
J. DUKSTRA, T. GRILLIOT, D. LUTZER! AND J. van MILL?

ABSTRACT. In this paper we investigate situations in which the space C,(X) of
continuous, real-valued functions on X is a Borel subset of the product space R¥. We
show that for completely regular, nondiscrete spaces, C,(X) cannot be a G, an F,,
or a Gy, subset of RY, but it can be an F; or Gj,5 subset.

I. Introduction Let C,(X) be the set of continuous real-valued functions on a
topological space X, and topologize C,(X) as a subspace of the full product R”.
Assuming that there are enough continuous functions on X to separate points,
C,(X) is a dense subspace of R¥. In this paper we examine situations in which
C,( X) is a Borel subset of R* and occurs very early in the Borel hierarchy of R*. We
prove that if X is completely regular, C,(X) cannot be a G;, G;, or F, subset of RY
unless X is discrete. Examples show that C,( X) can be a Gy, or F, subset of R¥. In
another paper [LMP] it will be shown that C,(X) can have arbitrarily high Borel or
projective class in R¥ and that C,(X) may be entirely outside of the projective
hierarchy even when X is countable.

In what follows, no separation axioms are assumed unless specifically stated,
except that completely regular spaces are assumed to be 7). However, this lack of
separation is partially an illusion, since all of our main results (Theorems 1, 6, and 7)
deal with situations where C,(X) is dense in R¥, and that is known to be equivalent
to the separation axiom “given distinct points x and y of X, some continuous f:
X — R has f(x)# f(y).” (Such a space is said to be completely Hausdorff.)
Examples 10 and 11 show the crucial role played by this separation axiom in our
paper.

For any set S, both S and cl(S) will be used to denote the closure of S.

II. Certain discrete spaces. Our first result was originally obtained in [LM] using a
complicated proof. We begin by presenting an elementary proof which has the
advantage (over the proof in [LM]) that no separation axioms are assumed.

1. THEOREM. For any space X, if C,(X) contains a dense Gy subset of R then X is
discrete.

PROOF. Suppose X is not discrete. Then there is a function g € RY — C (X).
Define ®: R¥ - R¥ by ®(f) = f + g. Then ® is a homeomorphism of R¥ onto itself
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and ®[C,(X)] € R¥ — C,(X). Thus R¥ — C,(X) also contains a dense G subset of
R¥, which is impossible because R* is a Baire space [dG] and in a Baire space any
pair of dense Gy sets has nonvoid intersection. O

We next examine the situation where C,( X) is a G;, subset of R*. For completely
Hausdorff spaces this also occurs only when X is discrete, but the proof is
surprisingly complicated compared to the proof of Theorem 1.

2. PROPOSITION. The following properties of a completely regular space X are
equivalent:

(a) given any collection {(D,, C,)|a € A} where D, C C,, D, is a zero set, C, is a
cozero set and C, N Cy = & whenever a # P, the set U{ D,|a € A} is a zero set;

(b) the union of any disjoint collection of zero sets is again a zero set;

(c) X is discrete.

PROOF. Obviously (c) = (b) = (a). To prove the converses, we need to know that
(a) implies

(*) Each zero set in X is a cozero set in X.

Assume (a) holds and let C be a cozero set in X. Then there is a continuous f:
X — [0,1] having C = f~![(0, 1]]. Define subsets E, and E; of (0, 1] as follows:

En — [2—(2n71),2—(2n72)], E': — [2—2n,2—(2n—1)].
Then
(0,1] =U{E, U E/|n > 1}.

Let D, = f"'[E,] and C, = f "'[(3/2*"*,3/22"~1)]. Then (a) may be applied to the
collection {(D,,C,)|n > 1} to show that S =U{f ' [E,]ln> 1)} is a zero set.
Analogously, T =U{f '[E,]|n > 1} is also a zero set. But then so is SU T =
/70, 1]), i.e., each cozero subset of X is a zero set. Assertion (*) follows by taking
complements.

To prove (b), given any disjoint family { D,|a € A} of zero sets, we let C, = D,.
By (*), each C, is a cozero set so that we may apply (a) to the collection
{(D,, C,)|a € A} to conclude that U{ D,|a € A} is a zero set, as required.

Finally, assume (b) and let p € X. Suppose { p} is not open. Let 2 be a maximal
disjoint collection of zero sets, each contained in X — { p}. Let W be any neighbor-
hood of p. Because {' py# W, if WNU2= g, then we could find a zero set
Z ¢ W — { p} contrary to maximality of 2. Hence U 2 is dense in X. But, from (b),
U Zis a zero set so U 2 is both closed and dense in X contrary toU2cC X — { p}.
Hence X must be discrete. O

3. REMARK. In general, assertion (*) in the proof of Lemma 2 is not equivalent to
discreteness of X: consider X = [0, w,], in which each countable ordinal is isolated,
while w; has its usual neighborhoods. However, if each point of X is a limit point of
a countable set, or if each point of X is a Gy in X, then (*) does imply that X is
discrete.
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In order to apply Proposition 2 to the case where C,( X) is a G, subset of R, we
need two rather technical lemmas. In what follows, given f € R¥ and B C X,

E(f,B) = {g <€ R¥g(x) = f(x) foreachx € B}.

4. LEMMA. Let A be any set and let H be a Gy-subset of R*. Suppose By is a fixed
finite subset of A. Let e: By — R be a fixed function and suppose §: A — [0, ) is
given. Let

P={geR"0<g(x)<8(x)forx €A~ By} NE(e,By).
Then either

(a) there is a finite set B C A — B, and a function h € P having P N E(h, B) N H
= J; or

(b) there are functions g, g, € H having g,(x) + g,(x) = 8(x) for each x € A —
B,.

PROOF. Write H = N{U,|n > 1} where U, D U, D --- are open in R*. Suppose
(a) fails. Then for each » € P and each finite BC A — B), PN E(h, BYN H + O.

Fix f; € P and let B = @. There is a function fL € PN HN E(f,, ). Because
f, € H C Uy, there is a finite set B; D B, such that E(f,, B)) C U,.

Suppose n > 1 and we have constructed finite sets B,,...,B, and functions f,, f,
forl<k<n satlsfymg.

(ayB,c B,c --- CB,

(b)if k + 1 < n then

e(x) if x € B,,
fiir=(8(x) - f.(x) ifxe B, — B,
otherwise,

©) fe» fr € Pforl <k <n,
(@) fesy € PN H N E(fisy, BYifk+1<n
(e) E(fk, B)c U,if k < n.

We obtain f, , ;, f, ., and B, , ; as follows. Define

e(x) if x € B,
forr(x) ={8(x) - f,(x) ifxeB,— By,
0 otherwise.

Because f € P, we know that 0 <f(x) < 8§(x) for each x € 4 — B,. Hence

< 6(x)— f (x) < 8(x) for each x € B, — B,, so that f,,, € P. Since (a) fails,
P(\H(\E(fH,B)aé a. Choosef,,HEPﬁHﬂE(an,B) Smcefthl €EH
C Upsrs there is a finite set B, ., DO B, such that E(f,,1, Bys1) C© U, . Therefore
fos1>foiq and B, are defined, as required.

Fix n and x € B, — B,. Then fnﬂ(x) fri1(x) =8(x) — f (x) and f,,+2(x) =
fria(x) = 8(x) = f,1(x). Therefore, f,,,(x) = 8(x) = (8(x) = /,(x)) = [,(x). It
follows that for x € B,,, f,,(x) = f,,(x) for every k > n. Therefore we may define
a function

go( x) =

fzn(X) if x € B,, for some n,
ifxed-U>,B,,=A4—U>B,.



706 J. DIIKSTRA, T. GRILLIOT, D. LUTZER AND J. van MILL

Fix n and x € B,,. Since gy(x) = f,,(x) we see that g, € E(f,,, B,,) € U,,. Since
U >U,D - wehaveg, € NT_,U, = H. Now define

8(x) —go(x) ifxed— By,
e(x) if x € B,,.

ga(x) = {

Fix n and x € B,,,;. If x € B, then g,(x) = e(x) =f2,,+1(x), SO suppose x €
By,.1 = By. Then x € B, 5, so that go(x) = fansa(x) and Frnia(x) = 8(x) =
fans1(x), because x € B,, ., — B,. Thus gyo(x) = 86(x) — f,,,.1(x) for each x €
Byus1 — Bo, and 50 fr,.1(x) = 8(x) — go(x) = g(x). Therefore g, €
E(fyp+1> Bans1) € Uy,.q- Hence g, € NPU, = H. By definition of g, if x € 4 —
By, go(x) + g1(x) = 8(x), as required. O

5. LEMMA. Let A be any set, and let G be a Gy, subset of R* which is an additive
subgroup of R*. Suppose G contains every function w € R* such that {x € A||w(x)|
> &} is finite for each ¢ > 0. Then each bounded function from A to R belongs to G.

PrROOF. Since each bounded function from 4 to R is the difference of two
nonnegative bounded functions, it will be enough to show that each bounded f:
A — [0, o0) belongs to G. Suppose f: A — [0, o) is bounded and does not belong to
G. Write G = U¥H, where H, C H, C --- and each H, is a G, subset of R”.

Let P, = {g € R*|0 < g(x) < f(x) for all x € A}. We apply Lemma 4 to P, and
H,. If there are functions g,, g, € H, with g, + g, = f, it would follow that
8o + 8, = fis also in G. Hence there is a finite set 4, C A4 and a function h; € P,
such that P, N H, N E(hy, A)) = @.

For induction hypothesis suppose n > 1 and that we have pairwise disjoint finite
sets A4,,...,A, and functions k4, ... ,h, satisfying:

(@) hyy|lp = hy|zprovidedk + 1 < nwhere B=A; U --- U 4,;

(b) h, € P, = (g € R*0 < g(x) < (1/k)f(x) for x €A — (4, U -+~ U
A,_1)} N(NSZ1E(h,, A))) provided k < n;

© H.NP,.NE(h,A,)= @ provided k < n.

To obtain h, , and A4,,, we proceed as follows. Let By= A4, U --- U 4, and
define e: B, — [0, c0) by e(x) = h,(x) when x € 4,. Let

P, = {g eER0<g(x)<(n+ 1) f(x)forxe 4 — BO} N E(e, By).

Apply Lemma 4 to P, and H, . ,. If there are functions g,, g, € H,,; € G having
8o(x) + g1(x) = (n + 1)7}f(x) for each x € 4 — B, define

_ ) = (n+ 1)(go(x) + £1(x)) forx € By,
d(x) = {0 ifx €A — B,

Since {x € A|d(x) # 0} is finite, d € G. Therefore d + (n + 1)(g, + &;) € G. But
for each x € A4, d(x) + (n + 1)(go(x) + g,(x)) = f(x), contradicting f & G. Hence
there is a function 4, ,, € P,,, and a finiteset 4,,,; € A — Bysuch that @ = H,
NP, NE(h,,, A,y Since h, ., € P, C E(e, By), we have hn+l‘Ak = hklAk
whenever k < n. Thus the induction continues.
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The induction generates pairwise disjoint finite sets 4,, 4,,... and functions 4,
such thatif m < n thenh,|, = h,,|, . Therefore the function

h(x) = hi(x) ifx € A, for somek,
7o ifx €A —U{A4k>1)

is well defined. We show that # € G. Fix a number M > 0 with | f(x)| < M for each
x. Fix £ > 0 and n so large that M/n < e. Suppose x € A, for some k > n. Then
h(x) = h,(x). Since h, belongs to {g € R*|0 < g(y) < (1/k)f(y) for y € 4 —
(A, U ---U A4,_,)}), and since 4, N (4, U --- U A, ;)= &, we have 0 < h,(x)
< (1/k)f(x) < (1/k)M < e. Therefore {x € A||h(x)| > e} A4 U ---UA4,
which is finite. It follows that & € G. But then h € H, for some n, so that
he H, NP, N E(h,, A,), which is impossible by induction hypothesis. That con-
tradiction completes the proof. O
We are now prepared to prove our main theorem.

6. THEOREM. For any space X, if C,(X) is a dense Gs, subset of RX, then X is
discrete.

PROOF. Suppose Theorem 6 has been proved for all completely regular spaces, and
suppose that 7 is a topology on X such that C,(X, J) is a dense Gy, subset of R¥.
Then (X, ) is completely Hausdorff (cf. §1). Let #be the topology on X having
the family { f }[U]|f € C,(X, Z) and U is open in R} as a subbase. Then ¥C .7
and (X, %) is completely regular and Hausdorff. Furthermore C (X, J ) and
C,(X, &) are identical subsets of R¥ so that C,(X, &) is a dense G, subset of R¥.
But then (X, &) is a discrete space. Because ¥ C .7, so is (X, ). Therefore it will
be enough to prove Theorem 6 for an arbitrary completely regular space X.

According to Proposition 2, it will be enough to show that U{ D,: a € A} is a zero
set provided D, is a zero set contained in a cozero set C,, where {C,|a € 4} is a
disjoint family. Choose a continuous function f,: X — [0, 1] having {1 = D,
and cl ,(£,Y[(0,1]]) € C,. Define h(x) = L{f,(x)|a € A}. Since the sets C, are
pairwise disjoint, 4 is well defined and A[ X] C [0, 1]. Since R (1)) = U{D,|a € 4},
it will be enough to prove that 4 is continuous.

Define a function ®: R* — R* by the rule that if u € R* then ®(u) = Z{u(a)f,:
a € A). (Because {C,|a € A} is a disjoint collection, ®(u) € RX) Clearly @ is
one-to-one. In order to show that ® is continuous, fix a finite set F C X and a basic
neighborhood N(®(u), F, ¢) = { g € R¥||®(u)(x) — g(x)| < ¢ for each x in F} of
®(u)inR¥. Let A, = {a € A|C, N F # @}. Then A, is finite and the set

M(u, Ay, &) = {v € R |u(a) —v(a)| <eforeacha € Ao}

is a basic neighborhood of u in R*. Fix v € M(u, A, €) and consider |®(u)(x) —
®(v)(x)|, where x € F. If x & U{C,|a € 4}, then f,(x) = 0 for each & € 4, so that
®(u)(x) = 0= ®(v)(x).If x € Cgfor some B € 4, then B € A, so that

| (u)(x) = @(0)(x)| = [u(B) fo(x) = v(B) fa(x)| <|u(B) —v(B)| <&
because fz[ X] C [0, 1]. Hence, ®[M(u, Ay, €)] € N(¢(u), F, €), as required.
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Since C,( X) is a G, subset of R, it follows that the set H = ®~'[C,(X)]is a G,
subset of R*. Obviously, H is an additive subgroup of R”. Suppose u € R* has the
property that for each &€ > 0 the set {a € A4||u(a)| > ¢} is finite. Consider the
function g = ®(u) € R*. To show that g € C,(X), fix x € X. If x € U{C,|a € 4},
there is a unique a with x € C,. Since g|. = u(@)f,|., and C, is a neighborhood of
x, g is continuous at x. Hence, suppose x & U{C,|a € A}. Then g(x) = 0. Fixe > 0
and consider the set S = g ![(~¢, ¢)]. By assumption, B = {a € A||u,| > €} is
finite, say B = {ay,...,a,}. Let

W=X-U{clf7[(0,1]]1 <i<n}.

Then W is open and, since cl fajl[(O,l]] cC, xeW Let zeW. If z €&
U{C,|a € A}, then g(z)=0, so z € S. If z € U{C,|a € 4}, there is a unique
B € A having z € G and then g(z) = u(fB)fz(z). There are two cases. If B € B,
thenz € G — cl[fﬂ‘l[(O, 1]]] so that fz(z) = 0. Then g(z) = 0 and so z € S. Finally,
if B & B then |u(B)| < e so that [u(B)fs(2)| < |u(B)| < e, because fz[ X] C [0, 1], so
that z € S. Therefore W is a neighborhood of x which is contained in S = g~ ![(~e, &)].
Hence g is continuous. Because g is continuous, u € ®~![C,(X)] = H. Now apply
Lemma 5 to H, concluding that the constant function 1 belongs to H. But then
®(1) € C,(X), i.e., the function £{ f,|a € A} is continuous, as required to prove
Theorem 6. O

If X happens to be countable, then R is metrizable, so that each F, set is a Gy,
set, showing that C,(X) is not an F, unless X is discrete. Different techniques show
that the same conclusion holds even if X is not countable.

7. THEOREM. For any space X, if C,(X) is a dense F, subspace of R* then X is
discrete.

PROOF. As in the proof of Theorem 6, it will be enough to prove this result for an
arbitrary completely regular space X.

Assume that X has a nonisolated point p and that C,(X)= U2 F, where
F,= @ and every F, is closed inR¥. We shall construct inductively a monotone

sequence f, < f; < f, < -+ in [0,1]" and subsets Uy > U, D U, D U,D> U, D -~
of X with the properties:

(a) U, is an open neighborhood of p in X,

®df(p)=1,

©f(U ~ {p}=(1-27),

(d) fi| x_( ;) is continuous,

(©) fi1l x- v, = filx-y,and

(f) every f € R” that coincides with f,on (X — U) U { p} is not an element of F,.

Assume now that we have proved the existence of these sequences. Obviously, the
pointwise limit of ( f;){2, exists. Call this limit f and note that f|,_, = f,| ,_,, for
every i and that f(N2,U,) = {1}. This means, according to the induction hypothésis,
that f & U F,. We shall see, however, that f is continuous. If x & N% U, then for
some i, x ¢ U, and f| x-0 =1l x_g- Since f,| s, is continuous, f is continuous at
x. If x €NE U, then U, is a neighborhood of x such that £,(U) c {1 — 27, 1}.
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Consequently, f,(U,) C [1 — 27",1] for every j > i and hence f(U) C [1 —27',1].
This yields the continuity of f at x. Hence we have f € C,(X), which contradicts
f&UZGF,.

It remains to perform the induction. As basis step we put f,(p) = 1, fo(x) = 0 if
x # p, and U, = X. Assume now that f, and U, have been determined. Let ¢ be a
continuous function from X into [0,27'] such that ¢(X — U;) € {0} and ¢(p) = 27"
Define f, . ;: X —» [0,1] by f,,(p) =1 and

fii1(x) = fi(x) + min{27""o(x)} ifx # p.

Note that ¥V = ¢ 1((27'"1,27']) is a neighborhood of p with £, ,(V — {p}) = {1 —
27711, Since p is not isolated, this means that f, , , is not continuous and hence not
an element of F,, ,. Because R¥ carries the product topology, there exists a finite set
A C X such that every f € R¥ that coincides with f,.; on 4 is not in F, ;. Put
U,, = —A)U{p}. One easily verifies that the pair (f,,,,U,,,) satisfies the

induction hypothesis. O

III. Examples. We begin by showing that the lowest Borel class to which C,(X)
can belong for a nondiscrete completely regular space X is F, 5 N Gyg5-

8. PROPOSITION. If X is any countable metric space, then C,(X) is an F,5 subset of
R¥ (and hence a Gy, subset, 100).

PROOF. Let p be a metric on X, and for x € X and ¢ > 0 let B(x,¢) =
{y € X|p(x, y) < €}. Then the &-6 definition of continuity shows that C_(X) is the
set

N N U {seRBIBGym) < [80) — 1/mg(x) + 1)),

1 m=1

n

Since each set {g e R¥|g[B(x,1/m)]C [g(x)—1/n, g(x)+1/n]} is a closed
subset of R¥, C,( X) is an F,; subset in RY, as claimed. O

Our next example shows that Proposition 8 does not characterize metrizability in
countable spaces:

9. ExaMpLE. There is a countable, regular, nonmetrizable space X for which
C,(X)is an F,, subset of R*.

PrOOF. Let X, = {(1/n,1/nk)|1 < n < o0} U {(0,0)} for k> 1, and let X =
U{ X,|1 < k < o). Each X, is topologized in such a way that X, becomes a
convergent sequence with limit (0,0). A subset S C X is closed in X if and only if
S N X, is closed in X, for each k. Then X is nonmetrizable (it is not first-countable
at (0,0)) and a function f: X — R is continuous if and only if f| x. X« >R is
continuous for each k > 1. For k > 1 let C, = { g € R¥|g]| x, is continuous on X, }.
The proof of Proposition 8 can be modified to show that each C, is an F, 5 subset of
R*. Hence sois C,(X) = N¢_,C,. O

Our final examples show the importance of the complete Hausdorff property in
Theorems 1,6 and 7.
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10. ExaMPLE. There is a nondiscrete regular T;-space X such that C (X) is a
closed (and hence an F,) subset of R*.

PROOF. Let X be any regular Tj-space such that every continuous, real-valued
function on X is constant [E, p. 161]. Then C,( X) is a closed subset of R*. O

11. ExaMPLE. There is a countable nondiscrete Hausdorff space such that C_ (X)
is a G, subset (and hence a Gy, subset) of R¥.

PROOF. Let X be a countable, connected, Hausdorff space [W, p. 196]. Then every
continuous, real-valued function on X is constant, so that C,(X) is a closed subset
of the metrizable space R¥. Hence C,(X) is a Gy set in RX. O
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