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DESCRIPTIVE COMPLEXITY OF FUNCTION SPACES

BY
D. LUTZER!, J. VAN MILL AND R. POL?

ABSTRACT. In this paper we show that Cr(X), the set of continuous, real-
valued functions on X topologized by the pointwise convergence topology, can
have arbitrarily high Borel or projective complexity in R¥X even when X is a
countable regular space with a unique limit point. In addition we show how
to construct countable regular spaces X for which C»(X) lies nowhere in the
projective hierarchy of the complete separable metric space RX.

1. Introduction. Let C,(X) be the set of continuous, real-valued functions
on a space X and topologize C,(X) as a subspace of the full product R*. In
[DGLvM] it is shown that if X is completely regular, then C,(X) cannot be a
Gs-, F,- or Gg,-subset of RX unless X is discrete and that for any countable
metrizable space X, C,(X) will be an F,s-subset of R¥X. In the terminology of
[KM and K], C,(X) cannot have multiplicative class 1 and cannot have additive
class 1 or 2, but may have multiplicative class 2.

In this paper we study the descriptive complexity of C(X) in RX when X is
countable (so that R¥ is a complete separable metric space). Our main results can
be summarized as follows.

THEOREM. (a) Gwen any o < wy, there 1s a countable regular space X such
that C(X) 1s a Borel subset of R having additive class 3, where o < 3 < 3+a+2
(882 and 3).

(b) Given any n > 1 there 1s a countable regular space Y such that C(Y) €
Lo(RY) = L,_1(RY), where L,(RY) is the family of projective sets of class n in
the complete separable metric space RY (§4).

(c) There is a countable regular space Z such that Cr(Z) ¢ U{Ln(R?): 0 < n <
w} (884 and 5).

The spaces X,Y and Z in the above Theorem can be obtained from a single
general construction which associates with each subset S C 2“ a certain countable
regular space ¥g having a unique nonisolated point. The descriptive complexity of
S in 2* determines the complexity of C,(Xs) in R*S. To describe £g precisely, we
begin by letting T,, = 2" be the set of functions from {0,1,...,n — 1} into {0,1},
i.e., the set of ordered n-tuples of 0’s and 1’s. Let T' = | J{Tn|n > 1} and partially
order T by function extension. A branch of T is a maximal linearly ordered subset
of T, i.e., a linearly ordered subset B C T having card(BN7T,) = 1 for each n > 1.
Observe that if B and B are distinct branches of T, then BN B must be a finite set.
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Given z € 2¢, the set B, = {(z(0)), (z(0),z(1)), (z(0),z(1),z(2)), ...} is a branch
of T. Conversely, each branch B of T has the form B = B, for a unique = € 2*.
Let B = {B|B is a branch of T'}.

Let P(T) = {A|A C T} and topologize P(T) using open sets of the form
[Y,N] = {A € P(T)[Y ¢ A C T - N}, where Y and N are arbitrary finite
subsets of T'. The resulting space is compact and metrizable, and is homeomorphic
to the product space 27 under the mapping which identifies each subset A € P(T)
with its characteristic function x4. The mapping z — B, is easily seen to be a
homeomorphism of 2* into P(T') whose image is exactly the set B defined above.

For each subset S C 2¢, the collection {T'— (B, U---UB;, UF)n>1, z; € S
and F' C T is a finite set} is a filter base. Let ps be the filter generated by that
filter base. Let oo be any point not in 77U 2¥ and let ¥g = T U {oo}. Topologize
X s by isolating each point of T and by using the family {P U {oco}|P € ps} as a
neighborhood base at co. The space ¥g is countable, regular and (since pg is a
free filter) is T1. The spaces mentioned in the above Theorem are all of the form
Y for various subsets S of 2%.

However, even though the function spaces Cr(Xg) for S C 2* provide enough
pathology to prove our Theorem, they are all well behaved in some senses. In §5 we
prove that each Cr(Zg) is a Baire Property subset of R¥S and is meagre in R*s
(equivalently, C(%2g) is not a Baire space) and we exhibit a countable regular space
X with a unique nonisolated point such that Cr(X) is a second category subset of
RX (equivalently, C.(X) is a Baire space), is not a Baire Property subset of RX,
and is not a Borel, analytic or co-analytic subset of RX (see Example 5.5).

The standard references for descriptive theory in complete separable metric
spaces are [K and KM]. Our topological terminology is consistent with [E] and
[Ox3] is a good source for properties of Baire spaces. The authors wish to thank
Jean Calbrix and Fons van Engelen for their comments on an earlier version of this

paper.
2. A lower bound for the complexity of C,(Zs).

2.1 THEOREM. Let S C 2% and let ¥ = Xg. Then Cr(X) contains a relatively
closed subset which 1s homeomorphic to S.

PROOF. Recall that in ¥ g, the point oo has a neighborhood base consisting of
all sets of the form {00} U(T — (B, UB;,U---UB,, UF)), wherez; € Sand F C T
is finite. For each z € 2* define a function f,: & — R by f.(c0) =0, f(t) =0 if
t €T — By and f,(t) = 1if t € B,. Define A\: 2¥ — R* by A(z) = f,. Clearly ) is
1-1 and continuous, so that A embeds 2“ as a closed subspace of R*. Furthermore
A(z) € Cr(X) whenever z € S because for such an z, the function f, is constant on
the neighborhood {oco}U (T — B;) of co. Conversely, if f, € Cr(X) for some z € 2%,

then f7![(—3, 3)] must be a neighborhood of oo so that for some zi,...,z, € S
and some finite F, the set f7![(—1,1)] = {00} U (T — B,) must contain the basic

neighborhood {co} U (T — (B, U---UB,, UF)). But then B, C B;,U---UB,, UF
so that Bg; N By is infinite for some ¢ and hence B, = B;,, ie, ¢ = z; € S.
Therefore A[S] = Cr(X) N A[2¥] showing that A[S] is a relatively closed subset of
C-(%). O

2.2 COROLLARY. IfS s not a Borel subset of 2* (resp., if S is not a projective
subset of 2¢), then Cr(Zs) is not a Borel subset (resp. a projective subset) of R¥S.
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PROOF. Write ¥ = ¥g. In the complete separable metric space R¥, a relatively
closed subset of a Borel (resp., projective) set is again a Borel (resp., projective) set
in R® and it is known that homeomorphisms preserve Borel (resp., projective) sets
[K, Chapter 3, §35, IV, Corollary 1 and Chapter 3, §38, VII, Theorem 1] contrary
to our assumption that S is not Borel (resp., projective) in 2¥. [

2.3 COROLLARY. There ts a countable regular space X such that Cr(X) is not
a Borel subset of RX.

PROOF. Let S be a non-Borel subset of 2% and let X = 5. Now apply 2.2. O

3. An upper bound for the Borel complexity of C.(Zs). In §2 we proved
that Cr(Xg) always contains a closed subspace homeomorphic to S so that if S
is not a Borel set, then neither is Cr(Xg). In this section we study the situation
where S is a Borel subset of 2% and we prove

3.1 THEOREM. Let S be a Borel subset of 2* having additive class o > 1 and
let L = Xg. Then Cr(X) is a Borel subset of R* of class 8, where a < B < 34+a+2.

PROOF. Following the notation of §1, we let p = pg be the filter on T' generated
by all sets of the form T' — (B, U--- U B;, UF), where z; € S for 1 < j < n and
F is any finite subset of T

For each m > 1, define ¢,,: RE — P(T) by ¢¥m(f) = {t € T||f(c0) — f(t)| >
1/m}. In Lemma 3.2 we show that 1,, is a Borel mapping of class 1. Next, define
aset D C P(T) by D ={A e P(T)JANP = O for some P € p}. In Lemma
3.6 we prove that D is a Borel subset of P(T) of additive class < 2 + « so that
¥.1[D] is a Borel set of additive class < 3 + a. Because a function f € RZ is
continuous if and only if {t € T||f(c0) — f(t)] < 1/m} belongs to p for each m,
we have Cr(Z) = {¥;;[D]|m > 1} showing that C.(X) is a Borel set of additive
class 6 < (3+ a+2).

From §2, a closed subspace of C(X) is homeomorphic to S, so the additive class
of Cr(X) cannot be smaller than the additive class of S and we obtain o < 8. O

All that remains is to prove some lemmas.

3.2 LEMMA. FEach v, s a Borel map of class 1.

PROOF. It is enough to show that ¢,![[Y, N]] is an F,-subset of R> for each
basic open set [Y, N] in P(T). Now

Y [V, N = {f e R®|Y C {t € T||f(t) - f(o0)| > 1/m}}
N{f e R¥|{t e T||f(t) - f(c0)| > 1/m} C T — N}.
The first of those two sets is closed and, since N is finite, the second is open. Hence

their intersection is an F,-set, as claimed. [

3.3 LEMMA. The set A = {A € P(T)| for some By,...,B, € B and some
finite FCT, ACByU---UB,UF} is a o-compact subset of P(T).

PROOF. For a fixed finite F/ C T and a fixed n, let A(F,n) = {(A, By,..., B,)|B;
€Band AC BiU---UB,UF}. Then A(F,n) is a closed subset of the compact
space P(T) x B™. Let m,: P(T) x B™ — P(T) denote first coordinate projection.
Then A = U{mn[A(F,n)]: n > 1 and F C T is finite} so that £ is a o-compact
subspace of P(T') as claimed. O
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3.4 NOTATION. Recall that B is the set of all branches of T, topologized as
a subspace of the compact metric space P(T). Being the continuous image of 2%
under the map u(z) = B,, B is compact. Forn > 1, let ®,, = {K C Blcard(K) = n}
and let ® = [J{®n|n > 0}. Topologize ® with the Vietoris topology, i.e., by using
all subsets of ® of the forms {K € ®/K C U} and {K € |KNYV # I} as a subbase
where U and V are arbitrary open subsets of B. Then @ is a o-compact metrizable
space [KM, p. 392]. Recall that each branch of T is of the form B, for some z € 2%
and let ®g = {K € ®|K C {B,|z € S}} = {K|K is a finite subset of {B;|z € S}}.

3.5 LEMMA. With A as in 3.3, for each A € A let i(A) = {B € BIBNA is
infinite}. Then i: A — ® 15 a Borel mapping of class 2.

PROOF. Fix A € A and choose branches By,..., B, and a finite set F' with
ACBiU---UB,UF. If Bis any branch of T such that A N B is infinite,
then B N By is infinite for some k = 1,2,...,n so that B is one of the branches
Bi,...,By,. Hence i(A) is finite so ¢(A) € ®. (If A is finite, then ¢(4) = & € ®.)

(a) Fix an open subset U of B and consider i~ 1[{K € ®|K C U}] = {A €
Ali(A) C U}. Because U is an open subset of the compact metric space B, U is o-
compact. According to 3.3, so is A, and we conclude that the product space A x U™
is o-compact for each n > 1, where U™ is the product of n copies of . Fix n > 1
and fix a finite set F C T. Then the set C(n, F) = {(A,B1,...,Bn) € A X U"|A C
ByU---UB,UF?} is closed in AXx U™, so C(n, F) is o-compact. Let m,: AxU™ — A
be first coordinate projection. Then ¢~[{K € ®|K C U}] = U{mn[C(n, F)]|n > 1
and F C T is finite} so i~ ![{K € ®/K C U}] is a o-compact subset of A (and
therefore a Gg,-subset of A).

(b) Next consider 1~ }[{K € ®|K NV # J}], where V is a compact, open subset
of B. Then B — 7V isopen and {K € ®|KNV # J} =@ - {Ke®KCB-YV}
Hence i 1[{K € 8K NV # T} = A— ¢ {K € ®|/K C B — V}] which is a
Gs-subset in light of (a).

(c) Finally, consider :"}[{K € ®|/K NU # @}], where U is an arbitrary open
subset of B. There is a sequence (V,) of compact, open subsets of B having U =
U{Vn|n > 1} so that :71[{K € ®|KNU # D} = U{7 {K € KNV, # D}]|n >
1} which is a Gs,-set in A because of (b).

(d) Since sets of the form {K € ®|K C U} and {K € K NU # I} form a
subbase for the separable metric space ®, it follows that ¢ is a Borel mapping of
class 2. [

3.6 LEMMA. With ®g as defined in 3.4, &g s a Borel subset of ® whose
additive class is o (= the additive class of S).

PROOF. For n > 1, define 0,,: (2¥)* — ® by 0,(z1,z2,...,2n) = {Bz,, Ba,,
..., Bz, }. Then 6, is continuous. Let G, = {(z1,...,2Zn) € (2*)"|z; # T When-
ever 1 <7 <k <n}. Then G, is open in (2*)" and given (z1,...,%n) € G, there
is an open neighborhood N of (z1,...,,) in G, and an open neighborhood ®’ of
0n(z1,...,2,) in ® such that 6, maps N homeomorphically onto ' N®,,. (We say
that 0, is a local homeomorphism from G,, onto ®,,.)

Now consider the subspace S of 2. Clearly 0,[G, N S™] = ®, N ®g s0 0, is a
local homeomorphism from G, NS™ onto ®,, N®s. Because S is of additive class «,
sois S™ [K, p. 346]. Hence so is G,NS™ as is each relatively open subset of G,NS™.
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(Recall that since o > 1, each open subset of G,, is of additive class a.) Therefore,
the metric space ®s N ®,, admits an open cover by sets of additive class a so that
®5NP, has additive class « [K, p. 358]. Because &5 = {J}U(U{®sNPn|n > 1}),
&g also has additive class «, as claimed. [J

3.7 LEMMA. Let D ={A € P(T)| some P€p has PNA= J}. Then D s of
additive class 2 + .

PROOF. With ¢ as in 3.5, we claim that D = ¢=![®g]. For let A € D. Choose
P € pwith PNA= . Then P contains some set T — (B, U---U B, UF),
where z; € S,80 A C By, U---UB;, UF. Hence A € A so that ¢(A) is defined.
As noted in the proof of 3.5, since A C By, U---UBg, UF, 1(A) C {Bz,,..., Bz, }
showing that i(4) € ®g. Conversely, suppose A € i~1[®g]. Then either there
are points z1,...,z, € S with ¢(A) = {By,,..., Bz, } or else 1(A) = < in which
case A is finite. Consider the first possibility. If the set A — (By, U--- U By,,)
were infinite, some other branch of T would have an infinite intersection with A
which is impossible, so the set F = A — (Bg, U---U By,,) is finite and we have
AC By, U---UB,, UF, so that A is disjoint from T — (B, U---U B, UF) which
belongs to the filter p so that A € D. The case where A is finite is easy because
then the set Py = T — A belongs to p so that A € D.

Because ¢ is a Borel map of class 2 and because by 3.6 the set &g has additive
class o (where « is the additive class of S), 171[®g] has additive class 2 + «, as
claimed. O

4. The projective hierarchy. Recall the definition of the projective classes
in a complete separable metric space Z [K, Chapter 3, §38]:

Lo(Z) = {A|A is a Borel subset of Z},

Loir(Z) = { {f[A]|A € L,(Z) and f: A — Z is continuous} if n is even,

ntl {Z-AlAc L,(2)} ifnisodd
Thus, £1(Z) is the family of analytic sets in Z, L2(Z) is the family of co-analytic
sets in Z, etc. The techniques of §§2 and 3 can be used to prove an analogue of
3.1 for projective sets. In our proof we will invoke theorems which are ordinarily
stated for mappings into complete metric spaces [K, §38, III, Propositions 2 and 5,
and VII, Theorem 1], applying those results to mappings into the o-compact metric
space ® defined in 3.4. Extending the proofs given in [K] to cover this situation is
easily done.

4.1 THEOREM. Suppose S € L,(2%) for some r > 1. Let ¥ = Xg. Then
Cr(X) € L (R¥). Furthermore, if S ¢ Lr—1(2%), then Cx(Z) ¢ L,—1(RF).

PROOF. Define ¢,: R¥ — P(T)and D C P(T) as in 3.1. Suppose we know that
D€ L,(P(T)). Then by [K, §38, III, Proposition 5], ¥..}[D] € L,(RF) for each m so
that by [K, §38, III, Proposition 3] we would have Cr(Z) = Noo_; ¥;,}[D] € L, (RF)
as claimed. Thus it will be enough to show that D € L,.(P(T)).

To prove that D € L,(P(T)), we define the o-compact set A C P(T) as in 3.3,
the o-compact metric space ® as in 3.4, the Borel measurable mapping i: 4 — ®
as in (3.5), and the set ®g as in 3.4. As in the proof of 3.7, D = ANi~1[®g]. If
we knew that ®g € L,(®), it would follow from [K, §38, III, Proposition 5] that
i~} [®s] € L,(A). Since A is o-compact and hence in £,(P(T)), it would follow



126 D. LUTZER, J. van MILL AND R. POL

that D € L.(P(T)) [K, §38, III, Proposition 2]. Therefore it will be enough to
show that &g € L,(®). Define function 6,: (2*)* — ® as in 3.6. According to
(K, §38, III, Proposition 1], S™ € £,((2¥)™). Because each open subset H of (2«)"
also belongs to L£,((2¥)™) we see that H N G, N S™ € L,((2*)™) whenever H is
open in (2¢)™. But ,, is known to be a local homeomorphism of G,, N S™ onto the
separable metric space ®s N P,, so there is a sequence Hy, Hy, ... of subsets of G,
such that for each k, 6,, maps HxNG,NS™ homeomorphically onto a relatively open
subset of ®, N ®g and such that &, N®s = |J{0,[Hkx N G, N S™]|k > 1}. Because
H,NG,NS™ € L,((2¥)") for each k, it follows from [K, §38, VII, Theorem 1] that
0,[HNG,NS™ € L,(®). But then $,,NPg, being a countable union of members of
L, (®), also belongs to L,(®). For the same reason, the set &5 = | J{®PsN®P,|n > 1}
also belongs to £,(®) as claimed.

Finally suppose S ¢ L,_1(2¥). According to 2.1, there is a (relatively) closed
subspace S* of Cr(X) which is homeomorphic to S. Then S* = Cr(X) N D, where
D is some closed subset in R¥. If C(Z) € £,.;(R¥), then S* = Cr(X)N D would
also belong to £,_1(R¥). According to [K, §38, VII, Theorem 1], we would then
have S € L,_1(2%) because S is homeomorphic to S*, which is impossible. [

4.2 COROLLARY. For each m > 1 there 1s a countable regular space X, such
that Cr(Xy,) € Ln(RX") — L,—1(RX") and there is a countable regular space Y
such that Cr(Y) ¢ U{Ln(RY)|n > 1}.

PROOF. Fix n. By [K, §38, VI, Theorem 1] there is a set S, C 2“ having
Sn € Ln(29)—Lp-1(2¥). Let X,, = Lg,. To obtain the space Y, choose any S C 2¢
with S ¢ U{Ln(2¥)|n > 1} [K, §38, VI, Remark 1] and let Y = £g. Because C(Y)
contains a closed subset homeomorphic to S, Cr(Y) ¢ U{L.(RY)n > 1}. O

5. Baire category and Baire Property subsets of RX. For any space Z,
BP(Z) is the o-algebra generated by the open sets and the first category subsets
of Z. Members of BP(Z) are called Baire Property subsets of Z [Oxz, p. 19]. For
a space X with a unique limit point (such as the spaces £g for S C 2“ constructed
in §1) it is easy to characterize which function spaces C(X) belong to BP(RX).

5.1 THEOREM. Suppose X is a countable space with a unique limit point oo
and let p be the trace on X —{oo} of the neighborhod filter of co. Then the following
are equivalent:

(a) Cx(X) 15 a first category subset of RX;

(b) Cx(X) € BP(R¥);

(c) there is an array

satisfying

(i) each A(m,n) s a finite subset of X — {oo};

(ii) each row A(m,1), A(m,2),A(m,3,),... 1s a parrwise disjoint sequence;

(iii) for every sequence k(1),k(2),... and every U € p, UN (U{A(m, k(m))|m >
1}) # ©.
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PROOF. The equivalence of (a) and (c) follows from [LM, Theorems 6.3 and
5.1] and obviously (a) implies (b). We prove that (b) implies (a). Suppose Cr(X) €
BP(RX). To simplify notation, we will identify the countably many isolated points
of X with elements of w and we will write X = w U {oo}. Define a function
v: R¥ — R¥ x R by the rule that v(f) = (f*, f(c0)), where f* € R¥ is given
by f*(n) = f(n) — f(c0). Then v is a homeomorphism of RX onto R“ x R and
v[Cr(X)] = Co xR, where Cy = {g € R¥| for each £ > 0 there is a neighborhood U
of oo having g[UNw| C ] —¢,¢[}. Since Cr(X) € BP(RX), Co xR € BP(R¥ xR).

It is easily seen that Cj is a tailset vn R¥, i.e. that if g € Cy and if the equality
h(n) = g(n) holds except for finitely many values of n, then h € Cy. We now need a
slight variation of a result due to Oxtoby [Ox;]; the proof is only trivially different
from Oxtoby’s argument.

5.2 LEMMA. Let C be a tailset in R¥ and suppose that C xR € BP(R¥ x R).
Then either C X R s a first category subset of R¥ x R or else C x R contains a
dense Gs-subset of R¥ x R.

Given 5.2, either Cp x R is a first category subset of R X R, in which case Cr[X]
is also a first category subset of RX, or else Cy x R contains a dense Gs-subset of
R“ x R, in which case C(X) contains a dense G5 in RX. But the latter situation
occurs if and only if X is a discrete space [DGLvM, Theorem 1] so that C,(X)
must be a first category subset of RX, as claimed. O

5.3 REMARK. The reason for creating a variant of Oxtoby’s theorem as in 5.2
is that one cannot deduce Cop € BP(R¥) from Cy x R € BP(R¥ x R).

5.4 COROLLARY. For each S C 2%, the function space C(Xs) 1s a first cate-
gory subset of R¥s.

PROOF. We define an array A(m,n) as follows using the tree T = [JI° Th;

(i) A(1,n) =T, for n > 1;

(11) A(2, 1) =T, UTy, A(2, 2) =T3UTy, A(2,3) =T5 UTs,...;

(iii) in general, A(m,n) = T(n—1ym+1 U+ UTym.

Obviously each A(m,n) is finite and because the sets Ty, T5,... are pairwise dis-
joint, each row A(m,1),A(m,2),... of the array is pairwise disjoint. Suppose
k(1),k(2),...is a sequence of positive integers and suppose U = T— (B, U- - -UB,, U
F), where z; € S and F is a finite subset of . If @ = UN(YJ{A(m, k(m))|m > 1}),
then (J{A(m, k(m))|m > 1} C By, UB;, U---UB,, UF. Observe that for a fixed
level T; of the tree T', card(B,, NT,) = 1 so that card(7;N(B;, U---UB,, UF)) <
n+card(F). Choose m > n+card(F). Then the set A(m,k(m)) contains a level T}
of T where card(T}) > 2™ so that T; N (Bg, U---U B, UF) must have cardinality
greater than n + card(F), contrary to our observation above. [

In closing let us give one more example of a countable regular space X with a
unique isolated point oo which has a “bad” function space. Unlike the examples so
far, Cr(X) is a second category subset of RX.

5.5 EXAMPLE. Let p be a free ultrafilter on w and topologize the set X = wU{oo}
by isolating all points of w and by using all sets of the form {co} U U, where
U € p, as neighborhoods of co. Then Cr(X) is a second category subset of RX and
Cr(X) ¢ L1(R¥) U Ly(RX).

PROOF. That C,(X) is a second category subset of RX follows from the
equivalence of (a) and (c) in 5.1 (cf. [LM, 5.1 and 6.3] for details). Suppose
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Cr(X) € Ln(RX), where n € {1,2}. Define j: 2¥ — RX by the rule that if
f € 2% then j(f) = f € RX where f is given by

oy [ f(x) fzew,

f(x)—{l if ¢ = co.
Then j is continuous so that by [K, §38, III, Proposition 2], j~![Cx(X)] € Ln(2¥).
Hence j~![Cr(X)] is a measurable subset of 2* (with respect to product measure
u) because all analytic and co-analytic subsets of 2 are measurable (L, p. 243,
Proposition 3.24]. But j~![Cx(X)] = {z € 2| for some U € p,z(n) = 1 for each
n € U} so that j71[Cr(X)] is seen to be a tailset in 2*. Hence Kolmogorov’s
“0-1 law” guarantees that u[j~[Cx(X)]] = 0 or u[j~1[Cr(X)]] = 1 [Ox3, p. 84].
However, consider the function J: 2¥ — 2¢ given by J(f) = f & 1, where T € 2
is constantly equal to 1 and @& denotes coordinatewise addition modulo 2, i.e.,
the usual group operation of 2*. Since y is translation invariant, J is a measure
preserving transformation on 2¢. Because p is an ultrafilter, J[;7![Cr(X)]] =
29 — j71[Cr(X)] so that both u[j~![Cx(X)]] = 0 and p[j~![Cr(X)]] = 1 are
impossible. Therefore Cr(X) ¢ Lo(RX) U L1(R¥X) U L2(RX), as claimed. O
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