DESCRIPTIVE COMPLEXITY OF FUNCTION SPACES

BY

D. LUTZER¹, J. VAN MILL AND R. POL²

ABSTRACT. In this paper we show that $C_{\pi}(X)$, the set of continuous, real-valued functions on X topologized by the pointwise convergence topology, can have arbitrarily high Borel or projective complexity in \mathbf{R}^X even when X is a countable regular space with a unique limit point. In addition we show how to construct countable regular spaces X for which $C_{\pi}(X)$ lies nowhere in the projective hierarchy of the complete separable metric space \mathbf{R}^X .

1. Introduction. Let $C_{\pi}(X)$ be the set of continuous, real-valued functions on a space X and topologize $C_{\pi}(X)$ as a subspace of the full product \mathbf{R}^{X} . In $[\mathbf{DGLvM}]$ it is shown that if X is completely regular, then $C_{\pi}(X)$ cannot be a $G_{\delta^{-}}$, $F_{\sigma^{-}}$ or $G_{\delta\sigma}$ -subset of \mathbf{R}^{X} unless X is discrete and that for any countable metrizable space X, $C_{\pi}(X)$ will be an $F_{\sigma\delta}$ -subset of \mathbf{R}^{X} . In the terminology of $[\mathbf{KM} \text{ and } \mathbf{K}]$, $C_{\pi}(X)$ cannot have multiplicative class 1 and cannot have additive class 1 or 2, but may have multiplicative class 2.

In this paper we study the descriptive complexity of $C_{\pi}(X)$ in \mathbf{R}^{X} when X is countable (so that \mathbf{R}^{X} is a complete separable metric space). Our main results can be summarized as follows.

THEOREM. (a) Given any $\alpha < \omega_1$, there is a countable regular space X such that $C_{\pi}(X)$ is a Borel subset of \mathbf{R}^X having additive class β , where $\alpha \leq \beta \leq 3 + \alpha + 2$ (§§2 and 3).

- (b) Given any $n \geq 1$ there is a countable regular space Y such that $C_{\pi}(Y) \in \mathcal{L}_n(\mathbf{R}^Y) \mathcal{L}_{n-1}(\mathbf{R}^Y)$, where $\mathcal{L}_n(\mathbf{R}^Y)$ is the family of projective sets of class n in the complete separable metric space \mathbf{R}^Y (§4).
- (c) There is a countable regular space Z such that $C_{\pi}(Z) \notin \bigcup \{\mathcal{L}_n(\mathbf{R}^Z) : 0 \leq n < \omega \}$ (§§4 and 5).

The spaces X,Y and Z in the above Theorem can be obtained from a single general construction which associates with each subset $S \subset 2^{\omega}$ a certain countable regular space Σ_S having a unique nonisolated point. The descriptive complexity of S in 2^{ω} determines the complexity of $C_{\pi}(\Sigma_S)$ in \mathbf{R}^{Σ_S} . To describe Σ_S precisely, we begin by letting $T_n = 2^n$ be the set of functions from $\{0, 1, \ldots, n-1\}$ into $\{0, 1\}$, i.e., the set of ordered n-tuples of 0's and 1's. Let $T = \bigcup \{T_n | n \geq 1\}$ and partially order T by function extension. A branch of T is a maximal linearly ordered subset of T, i.e., a linearly ordered subset $B \subset T$ having $\operatorname{card}(B \cap T_n) = 1$ for each $n \geq 1$. Observe that if B and \hat{B} are distinct branches of T, then $B \cap \hat{B}$ must be a finite set.

Received by the editors August 3, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 03E15, 04A15, 54H05; Secondary 54C35.

¹Partially supported by NATO grant 1927, NSF grant MCS80-016617 and by Vrije Universiteit, Amsterdam.

²Partially supported by Vrije Universiteit, Amsterdam.

Given $x \in 2^{\omega}$, the set $B_x = \{\langle x(0) \rangle, \langle x(0), x(1) \rangle, \langle x(0), x(1), x(2) \rangle, \ldots \}$ is a branch of T. Conversely, each branch B of T has the form $B = B_x$ for a unique $x \in 2^{\omega}$. Let $B = \{B | B \text{ is a branch of } T\}$.

Let $\mathcal{P}(T) = \{A|A \subset T\}$ and topologize $\mathcal{P}(T)$ using open sets of the form $[Y,N] = \{A \in \mathcal{P}(T)|Y \subset A \subset T-N\}$, where Y and N are arbitrary finite subsets of T. The resulting space is compact and metrizable, and is homeomorphic to the product space 2^T under the mapping which identifies each subset $A \in \mathcal{P}(T)$ with its characteristic function χ_A . The mapping $x \to B_x$ is easily seen to be a homeomorphism of 2^ω into $\mathcal{P}(T)$ whose image is exactly the set \mathcal{B} defined above.

For each subset $S \subset 2^{\omega}$, the collection $\{T - (B_{x_1} \cup \cdots \cup B_{x_n} \cup F) | n \geq 1, x_i \in S \text{ and } F \subset T \text{ is a finite set} \}$ is a filter base. Let p_S be the filter generated by that filter base. Let ∞ be any point not in $T \cup 2^{\omega}$ and let $\Sigma_S = T \cup \{\infty\}$. Topologize Σ_S by isolating each point of T and by using the family $\{P \cup \{\infty\} | P \in p_S\}$ as a neighborhood base at ∞ . The space Σ_S is countable, regular and (since p_S is a free filter) is T_1 . The spaces mentioned in the above Theorem are all of the form Σ_S for various subsets S of 2^{ω} .

However, even though the function spaces $C_{\pi}(\Sigma_S)$ for $S \subset 2^{\omega}$ provide enough pathology to prove our Theorem, they are all well behaved in some senses. In §5 we prove that each $C_{\pi}(\Sigma_S)$ is a Baire Property subset of \mathbf{R}^{Σ_S} and is meagre in \mathbf{R}^{Σ_S} (equivalently, $C_{\pi}(\Sigma_S)$ is not a Baire space) and we exhibit a countable regular space X with a unique nonisolated point such that $C_{\pi}(X)$ is a second category subset of \mathbf{R}^{X} (equivalently, $C_{\pi}(X)$ is a Baire space), is not a Baire Property subset of \mathbf{R}^{X} , and is not a Borel, analytic or co-analytic subset of \mathbf{R}^{X} (see Example 5.5).

The standard references for descriptive theory in complete separable metric spaces are [K and KM]. Our topological terminology is consistent with [E] and $[Ox_2]$ is a good source for properties of Baire spaces. The authors wish to thank Jean Calbrix and Fons van Engelen for their comments on an earlier version of this paper.

2. A lower bound for the complexity of $C_{\pi}(\Sigma_S)$.

2.1 THEOREM. Let $S \subset 2^{\omega}$ and let $\Sigma = \Sigma_S$. Then $C_{\pi}(\Sigma)$ contains a relatively closed subset which is homeomorphic to S.

PROOF. Recall that in Σ_S , the point ∞ has a neighborhood base consisting of all sets of the form $\{\infty\} \cup (T-(B_{x_1} \cup B_{x_2} \cup \cdots \cup B_{x_n} \cup F))$, where $x_i \in S$ and $F \subset T$ is finite. For each $x \in 2^\omega$ define a function $f_x \colon \Sigma \to \mathbf{R}$ by $f_x(\infty) = 0$, $f_x(t) = 0$ if $t \in T - B_x$ and $f_x(t) = 1$ if $t \in B_x$. Define $\lambda \colon 2^\omega \to \mathbf{R}^\Sigma$ by $\lambda(x) = f_x$. Clearly λ is 1-1 and continuous, so that λ embeds 2^ω as a closed subspace of \mathbf{R}^Σ . Furthermore $\lambda(x) \in C_\pi(\Sigma)$ whenever $x \in S$ because for such an x, the function f_x is constant on the neighborhood $\{\infty\} \cup (T - B_x)$ of ∞ . Conversely, if $f_x \in C_\pi(\Sigma)$ for some $x \in 2^\omega$, then $f_x^{-1}[(-\frac{1}{2},\frac{1}{2})]$ must be a neighborhood of ∞ so that for some $x_1,\ldots,x_n \in S$ and some finite F, the set $f_x^{-1}[(-\frac{1}{2},\frac{1}{2})] = \{\infty\} \cup (T - B_x)$ must contain the basic neighborhood $\{\infty\} \cup (T - (B_{x_1} \cup \cdots \cup B_{x_n} \cup F))$. But then $B_x \subset B_{x_1} \cup \cdots \cup B_{x_n} \cup F$ so that $B_{x_i} \cap B_x$ is infinite for some i and hence $B_x = B_{x_i}$, i.e., $x = x_i \in S$. Therefore $\lambda[S] = C_\pi(\Sigma) \cap \lambda[2^\omega]$ showing that $\lambda[S]$ is a relatively closed subset of $C_\pi(\Sigma)$. \square

2.2 COROLLARY. If S is not a Borel subset of 2^{ω} (resp., if S is not a projective subset of 2^{ω}), then $C_{\pi}(\Sigma_S)$ is not a Borel subset (resp. a projective subset) of \mathbb{R}^{Σ_S} .

PROOF. Write $\Sigma = \Sigma_S$. In the complete separable metric space \mathbf{R}^{Σ} , a relatively closed subset of a Borel (resp., projective) set is again a Borel (resp., projective) set in \mathbf{R}^{Σ} and it is known that homeomorphisms preserve Borel (resp., projective) sets [K, Chapter 3, §35, IV, Corollary 1 and Chapter 3, §38, VII, Theorem 1] contrary to our assumption that S is not Borel (resp., projective) in 2^{ω} . \square

2.3 COROLLARY. There is a countable regular space X such that $C_{\pi}(X)$ is not a Borel subset of \mathbb{R}^{X} .

PROOF. Let S be a non-Borel subset of 2^{ω} and let $X = \Sigma_S$. Now apply 2.2.

- 3. An upper bound for the Borel complexity of $C_{\pi}(\Sigma_S)$. In §2 we proved that $C_{\pi}(\Sigma_S)$ always contains a closed subspace homeomorphic to S so that if S is *not* a Borel set, then neither is $C_{\pi}(\Sigma_S)$. In this section we study the situation where S is a Borel subset of 2^{ω} and we prove
- 3.1 THEOREM. Let S be a Borel subset of 2^{ω} having additive class $\alpha \geq 1$ and let $\Sigma = \Sigma_S$. Then $C_{\pi}(\Sigma)$ is a Borel subset of \mathbf{R}^{Σ} of class β , where $\alpha \leq \beta \leq 3+\alpha+2$.

PROOF. Following the notation of §1, we let $p = p_S$ be the filter on T generated by all sets of the form $T - (B_{x_1} \cup \cdots \cup B_{x_n} \cup F)$, where $x_j \in S$ for $1 \leq j \leq n$ and F is any finite subset of T.

For each $m \geq 1$, define $\psi_m \colon \mathbf{R}^{\Sigma} \to \mathcal{P}(T)$ by $\psi_m(f) = \{t \in T | |f(\infty) - f(t)| \geq 1/m\}$. In Lemma 3.2 we show that ψ_m is a Borel mapping of class 1. Next, define a set $\mathcal{D} \subset \mathcal{P}(T)$ by $\mathcal{D} = \{A \in \mathcal{P}(T) | A \cap P = \emptyset \text{ for some } P \in p\}$. In Lemma 3.6 we prove that \mathcal{D} is a Borel subset of $\mathcal{P}(T)$ of additive class $\leq 2 + \alpha$ so that $\psi_m^{-1}[\mathcal{D}]$ is a Borel set of additive class $\leq 3 + \alpha$. Because a function $f \in \mathbf{R}^{\Sigma}$ is continuous if and only if $\{t \in T | |f(\infty) - f(t)| < 1/m\}$ belongs to p for each m, we have $C_{\pi}(\Sigma) = \bigcap \{\psi_m^{-1}[\mathcal{D}] | m \geq 1\}$ showing that $C_{\pi}(\Sigma)$ is a Borel set of additive class $\beta \leq (3 + \alpha + 2)$.

From §2, a closed subspace of $C_{\pi}(\Sigma)$ is homeomorphic to S, so the additive class of $C_{\pi}(\Sigma)$ cannot be smaller than the additive class of S and we obtain $\alpha \leq \beta$. \square All that remains is to prove some lemmas.

3.2 LEMMA. Each ψ_m is a Borel map of class 1.

PROOF. It is enough to show that $\psi_m^{-1}[[Y,N]]$ is an F_{σ} -subset of \mathbf{R}^{Σ} for each basic open set [Y,N] in $\mathcal{P}(T)$. Now

$$\psi_m^{-1}[[Y, N]] = \{ f \in \mathbf{R}^{\Sigma} | Y \subset \{ t \in T | |f(t) - f(\infty)| \ge 1/m \} \}$$
$$\cap \{ f \in \mathbf{R}^{\Sigma} | \{ t \in T | |f(t) - f(\infty)| \ge 1/m \} \subset T - N \}.$$

The first of those two sets is closed and, since N is finite, the second is open. Hence their intersection is an F_{σ} -set, as claimed. \square

3.3 LEMMA. The set $A = \{A \in \mathcal{P}(T) | \text{ for some } B_1, \ldots, B_n \in \mathcal{B} \text{ and some finite } F \subset T, A \subset B_1 \cup \cdots \cup B_n \cup F\} \text{ is a σ-compact subset of } \mathcal{P}(T).$

PROOF. For a fixed finite $F \subset T$ and a fixed n, let $\mathcal{A}(F,n) = \{(A, B_1, \ldots, B_n) | B_i \in \mathcal{B} \text{ and } A \subset B_1 \cup \cdots \cup B_n \cup F\}$. Then $\mathcal{A}(F,n)$ is a closed subset of the compact space $\mathcal{P}(T) \times \mathcal{B}^n$. Let $\pi_n \colon \mathcal{P}(T) \times \mathcal{B}^n \to \mathcal{P}(T)$ denote first coordinate projection. Then $\mathcal{A} = \bigcup \{\pi_n[\mathcal{A}(F,n)] : n \geq 1 \text{ and } F \subset T \text{ is finite} \}$ so that \mathcal{A} is a σ -compact subspace of $\mathcal{P}(T)$ as claimed. \square

- 3.4 NOTATION. Recall that \mathcal{B} is the set of all branches of T, topologized as a subspace of the compact metric space $\mathcal{P}(T)$. Being the continuous image of 2^{ω} under the map $\mu(x) = B_x$, \mathcal{B} is compact. For $n \geq 1$, let $\Phi_n = \{\mathcal{K} \subset \mathcal{B} | \operatorname{card}(\mathcal{K}) = n\}$ and let $\Phi = \bigcup \{\Phi_n | n \geq 0\}$. Topologize Φ with the *Vietoris topology*, i.e., by using all subsets of Φ of the forms $\{\mathcal{K} \in \Phi | \mathcal{K} \subset \mathcal{U}\}$ and $\{\mathcal{K} \in \Phi | \mathcal{K} \cap \mathcal{V} \neq \emptyset\}$ as a subbase where \mathcal{U} and \mathcal{V} are arbitrary open subsets of \mathcal{B} . Then Φ is a σ -compact metrizable space $[\mathbf{KM}, p. 392]$. Recall that each branch of T is of the form B_x for some $x \in 2^{\omega}$ and let $\Phi_S = \{\mathcal{K} \in \Phi | \mathcal{K} \subset \{B_x | x \in S\}\} = \{\mathcal{K} | \mathcal{K} \text{ is a finite subset of } \{B_x | x \in S\}\}$.
- 3.5 LEMMA. With \mathcal{A} as in 3.3, for each $A \in \mathcal{A}$ let $i(A) = \{B \in \mathcal{B} | B \cap A \text{ is infinite}\}$. Then $i: \mathcal{A} \to \Phi$ is a Borel mapping of class 2.

PROOF. Fix $A \in \mathcal{A}$ and choose branches B_1, \ldots, B_n and a finite set F with $A \subset B_1 \cup \cdots \cup B_n \cup F$. If B is any branch of T such that $A \cap B$ is infinite, then $B \cap B_k$ is infinite for some $k = 1, 2, \ldots, n$ so that B is one of the branches B_1, \ldots, B_n . Hence i(A) is finite so $i(A) \in \Phi$. (If A is finite, then $i(A) = \emptyset \in \Phi$.)

- (a) Fix an open subset \mathcal{U} of \mathcal{B} and consider $i^{-1}[\{\mathcal{K} \in \Phi | \mathcal{K} \subset \mathcal{U}\}] = \{A \in \mathcal{A} | i(A) \subset \mathcal{U}\}$. Because \mathcal{U} is an open subset of the compact metric space \mathcal{B} , \mathcal{U} is σ -compact. According to 3.3, so is \mathcal{A} , and we conclude that the product space $\mathcal{A} \times \mathcal{U}^n$ is σ -compact for each $n \geq 1$, where \mathcal{U}^n is the product of n copies of \mathcal{U} . Fix $n \geq 1$ and fix a finite set $F \subset T$. Then the set $\mathcal{C}(n,F) = \{(A,B_1,\ldots,B_n) \in \mathcal{A} \times \mathcal{U}^n | A \subset B_1 \cup \cdots \cup B_n \cup F\}$ is closed in $\mathcal{A} \times \mathcal{U}^n$, so $\mathcal{C}(n,F)$ is σ -compact. Let $\pi_n : \mathcal{A} \times \mathcal{U}^n \to \mathcal{A}$ be first coordinate projection. Then $i^{-1}[\{\mathcal{K} \in \Phi | \mathcal{K} \subset \mathcal{U}\}] = \bigcup \{\pi_n[\mathcal{C}(n,F)] | n \geq 1$ and $F \subset T$ is finite} so $i^{-1}[\{\mathcal{K} \in \Phi | \mathcal{K} \subset \mathcal{U}\}]$ is a σ -compact subset of \mathcal{A} (and therefore a $G_{\delta\sigma}$ -subset of \mathcal{A}).
- (b) Next consider $i^{-1}[\{K \in \Phi | K \cap \mathcal{V} \neq \emptyset\}]$, where \mathcal{V} is a compact, open subset of \mathcal{B} . Then $\mathcal{B} \mathcal{V}$ is open and $\{K \in \Phi | K \cap \mathcal{V} \neq \emptyset\} = \Phi \{K \in \Phi | K \subset \mathcal{B} \mathcal{V}\}$. Hence $i^{-1}[\{K \in \Phi | K \cap \mathcal{V} \neq \emptyset\}] = \mathcal{A} i^{-1}[\{K \in \Phi | K \subset \mathcal{B} \mathcal{V}\}]$ which is a G_{δ} -subset in light of (a).
- (c) Finally, consider $i^{-1}[\{K \in \Phi | K \cap \mathcal{U} \neq \varnothing\}]$, where \mathcal{U} is an arbitrary open subset of \mathcal{B} . There is a sequence $\langle \mathcal{V}_n \rangle$ of compact, open subsets of \mathcal{B} having $\mathcal{U} = \bigcup \{\mathcal{V}_n | n \geq 1\}$ so that $i^{-1}[\{K \in \Phi | K \cap \mathcal{U} \neq \varnothing\}] = \bigcup \{i^{-1}[\{K \in \Phi | K \cap \mathcal{V}_n \neq \varnothing\}] | n \geq 1\}$ which is a $G_{\delta\sigma}$ -set in \mathcal{A} because of (b).
- (d) Since sets of the form $\{K \in \Phi | K \subset \mathcal{U}\}\$ and $\{K \in \Phi | K \cap \mathcal{U} \neq \emptyset\}$ form a subbase for the separable metric space Φ , it follows that i is a Borel mapping of class 2. \square
- 3.6 LEMMA. With Φ_S as defined in 3.4, Φ_S is a Borel subset of Φ whose additive class is α (= the additive class of S).

PROOF. For $n \geq 1$, define $\theta_n \colon (2^\omega)^n \to \Phi$ by $\theta_n(x_1, x_2, \ldots, x_n) = \{B_{x_1}, B_{x_2}, \ldots, B_{x_n}\}$. Then θ_n is continuous. Let $G_n = \{(x_1, \ldots, x_n) \in (2^\omega)^n | x_j \neq x_k \text{ whenever } 1 \leq j < k \leq n\}$. Then G_n is open in $(2^\omega)^n$ and given $(x_1, \ldots, x_n) \in G_n$ there is an open neighborhood N of (x_1, \ldots, x_n) in G_n and an open neighborhood Φ' of $\theta_n(x_1, \ldots, x_n)$ in Φ such that θ_n maps N homeomorphically onto $\Phi' \cap \Phi_n$. (We say that θ_n is a local homeomorphism from G_n onto Φ_n .)

Now consider the subspace S of 2^{ω} . Clearly $\theta_n[G_n \cap S^n] = \Phi_n \cap \Phi_S$ so θ_n is a local homeomorphism from $G_n \cap S^n$ onto $\Phi_n \cap \Phi_S$. Because S is of additive class α , so is S^n [K, p. 346]. Hence so is $G_n \cap S^n$ as is each relatively open subset of $G_n \cap S^n$.

بي.

(Recall that since $\alpha \geq 1$, each open subset of G_n is of additive class α .) Therefore, the metric space $\Phi_S \cap \Phi_n$ admits an open cover by sets of additive class α so that $\Phi_S \cap \Phi_n$ has additive class α [**K**, p. 358]. Because $\Phi_S = \{\emptyset\} \cup (\bigcup \{\Phi_S \cap \Phi_n | n \geq 1\})$, Φ_S also has additive class α , as claimed. \square

3.7 LEMMA. Let $\mathcal{D} = \{A \in \mathcal{P}(T) | some \ P \in p \ has \ P \cap A = \emptyset\}$. Then \mathcal{D} is of additive class $2 + \alpha$.

PROOF. With i as in 3.5, we claim that $\mathcal{D}=i^{-1}[\Phi_S]$. For let $A\in\mathcal{D}$. Choose $P\in p$ with $P\cap A=\varnothing$. Then P contains some set $T-(B_{x_1}\cup\cdots\cup B_{x_n}\cup F)$, where $x_j\in S$, so $A\subset B_{x_1}\cup\cdots\cup B_{x_n}\cup F$. Hence $A\in\mathcal{A}$ so that i(A) is defined. As noted in the proof of 3.5, since $A\subset B_{x_1}\cup\cdots\cup B_{x_n}\cup F$, $i(A)\subset\{B_{x_1},\ldots,B_{x_n}\}$ showing that $i(A)\in\Phi_S$. Conversely, suppose $A\in i^{-1}[\Phi_S]$. Then either there are points $x_1,\ldots,x_n\in S$ with $i(A)=\{B_{x_1},\ldots,B_{x_n}\}$ or else $i(A)=\varnothing$ in which case A is finite. Consider the first possibility. If the set $A-(B_{x_1}\cup\cdots\cup B_{x_n})$ were infinite, some other branch of T would have an infinite intersection with A which is impossible, so the set $F=A-(B_{x_1}\cup\cdots\cup B_{x_n})$ is finite and we have $A\subset B_{x_1}\cup\cdots\cup B_{x_n}\cup F$, so that A is disjoint from $T-(B_{x_1}\cup\cdots\cup B_{x_n}\cup F)$ which belongs to the filter p so that $A\in\mathcal{D}$. The case where A is finite is easy because then the set $P_0=T-A$ belongs to p so that $A\in\mathcal{D}$.

Because i is a Borel map of class 2 and because by 3.6 the set Φ_S has additive class α (where α is the additive class of S), $i^{-1}[\Phi_S]$ has additive class $2 + \alpha$, as claimed. \square

4. The projective hierarchy. Recall the definition of the projective classes in a complete separable metric space Z [K, Chapter 3, §38]:

$$\mathcal{L}_0(Z) = \{A|A \text{ is a Borel subset of } Z\},$$

$$\mathcal{L}_{n+1}(Z) = \begin{cases} \{f[A] | A \in \mathcal{L}_n(Z) \text{ and } f \colon A \to Z \text{ is continuous} \} & \text{if } n \text{ is even,} \\ \{Z - A | A \in \mathcal{L}_n(Z) \} & \text{if } n \text{ is odd.} \end{cases}$$

Thus, $\mathcal{L}_1(Z)$ is the family of analytic sets in Z, $\mathcal{L}_2(Z)$ is the family of co-analytic sets in Z, etc. The techniques of §§2 and 3 can be used to prove an analogue of 3.1 for projective sets. In our proof we will invoke theorems which are ordinarily stated for mappings into complete metric spaces [**K**, §38, III, Propositions 2 and 5, and VII, Theorem 1], applying those results to mappings into the σ -compact metric space Φ defined in 3.4. Extending the proofs given in [**K**] to cover this situation is easily done.

4.1 THEOREM. Suppose $S \in \mathcal{L}_r(2^{\omega})$ for some $r \geq 1$. Let $\Sigma = \Sigma_S$. Then $C_{\pi}(\Sigma) \in \mathcal{L}_r(\mathbf{R}^{\Sigma})$. Furthermore, if $S \notin \mathcal{L}_{r-1}(2^{\omega})$, then $C_{\pi}(\Sigma) \notin \mathcal{L}_{r-1}(\mathbf{R}^{\Sigma})$.

PROOF. Define $\psi_m \colon \mathbf{R}^{\Sigma} \to \mathcal{P}(T)$ and $\mathcal{D} \subset \mathcal{P}(T)$ as in 3.1. Suppose we know that $\mathcal{D} \in \mathcal{L}_r(\mathcal{P}(T))$. Then by $[\mathbf{K}, \S 38, \mathrm{III}, \mathrm{Proposition} \, 5], \, \psi_m^{-1}[\mathcal{D}] \in \mathcal{L}_r(\mathbf{R}^{\Sigma})$ for each m so that by $[\mathbf{K}, \S 38, \mathrm{III}, \mathrm{Proposition} \, 3]$ we would have $C_{\pi}(\Sigma) = \bigcap_{m=1}^{\infty} \psi_m^{-1}[\mathcal{D}] \in \mathcal{L}_r(\mathbf{R}^{\Sigma})$ as claimed. Thus it will be enough to show that $\mathcal{D} \in \mathcal{L}_r(\mathcal{P}(T))$.

To prove that $\mathcal{D} \in \mathcal{L}_r(\mathcal{P}(T))$, we define the σ -compact set $\mathcal{A} \subset \mathcal{P}(T)$ as in 3.3, the σ -compact metric space Φ as in 3.4, the Borel measurable mapping $i : \mathcal{A} \to \Phi$ as in (3.5), and the set Φ_S as in 3.4. As in the proof of 3.7, $\mathcal{D} = \mathcal{A} \cap i^{-1}[\Phi_S]$. If we knew that $\Phi_S \in \mathcal{L}_r(\Phi)$, it would follow from $[\mathbf{K}, \S 38, \text{III}, \text{Proposition 5}]$ that $i^{-1}[\Phi_S] \in \mathcal{L}_r(\mathcal{A})$. Since \mathcal{A} is σ -compact and hence in $\mathcal{L}_r(\mathcal{P}(T))$, it would follow

that $\mathcal{D} \in \mathcal{L}_r(\mathcal{P}(T))$ [K, §38, III, Proposition 2]. Therefore it will be enough to show that $\Phi_S \in \mathcal{L}_r(\Phi)$. Define function $\theta_n \colon (2^\omega)^n \to \Phi$ as in 3.6. According to [K, §38, III, Proposition 1], $S^n \in \mathcal{L}_r((2^\omega)^n)$. Because each open subset H of $(2^\omega)^n$ also belongs to $\mathcal{L}_r((2^\omega)^n)$ we see that $H \cap G_n \cap S^n \in \mathcal{L}_r((2^\omega)^n)$ whenever H is open in $(2^\omega)^n$. But θ_n is known to be a local homeomorphism of $G_n \cap S^n$ onto the separable metric space $\Phi_S \cap \Phi_n$ so there is a sequence H_1, H_2, \ldots of subsets of G_n such that for each k, θ_n maps $H_k \cap G_n \cap S^n$ homeomorphically onto a relatively open subset of $\Phi_n \cap \Phi_S$ and such that $\Phi_n \cap \Phi_S = \bigcup \{\theta_n[H_k \cap G_n \cap \dot{S}^n] | k \geq 1\}$. Because $H_k \cap G_n \cap S^n \in \mathcal{L}_r((2^\omega)^n)$ for each k, it follows from [K, §38, VII, Theorem 1] that $\theta_n[H_k \cap G_n \cap S^n] \in \mathcal{L}_r(\Phi)$. But then $\Phi_n \cap \Phi_S$, being a countable union of members of $\mathcal{L}_r(\Phi)$, also belongs to $\mathcal{L}_r(\Phi)$. For the same reason, the set $\Phi_S = \bigcup \{\Phi_S \cap \Phi_n | n \geq 1\}$ also belongs to $\mathcal{L}_r(\Phi)$ as claimed.

Finally suppose $S \notin \mathcal{L}_{r-1}(2^{\omega})$. According to 2.1, there is a (relatively) closed subspace S^* of $C_{\pi}(\Sigma)$ which is homeomorphic to S. Then $S^* = C_{\pi}(\Sigma) \cap D$, where D is some closed subset in \mathbb{R}^{Σ} . If $C_{\pi}(\Sigma) \in \mathcal{L}_{r-1}(\mathbb{R}^{\Sigma})$, then $S^* = C_{\pi}(\Sigma) \cap D$ would also belong to $\mathcal{L}_{r-1}(\mathbb{R}^{\Sigma})$. According to $[K, \S 38, VII, Theorem 1]$, we would then have $S \in \mathcal{L}_{r-1}(2^{\omega})$ because S is homeomorphic to S^* , which is impossible. \square

4.2 COROLLARY. For each $n \geq 1$ there is a countable regular space X_n such that $C_{\pi}(X_n) \in \mathcal{L}_n(\mathbf{R}^{X_n}) - \mathcal{L}_{n-1}(\mathbf{R}^{X_n})$ and there is a countable regular space Y such that $C_{\pi}(Y) \notin \bigcup \{\mathcal{L}_n(\mathbf{R}^Y) | n \geq 1\}$.

PROOF. Fix n. By $[\mathbf{K}, \S38, \text{VI}, \text{Theorem 1}]$ there is a set $S_n \subset 2^{\omega}$ having $S_n \in \mathcal{L}_n(2^{\omega}) - \mathcal{L}_{n-1}(2^{\omega})$. Let $X_n = \Sigma_{S_n}$. To obtain the space Y, choose any $S \subset 2^{\omega}$ with $S \notin \bigcup \{\mathcal{L}_n(2^{\omega}) | n \geq 1\}$ $[\mathbf{K}, \S38, \text{VI}, \text{Remark 1}]$ and let $Y = \Sigma_S$. Because $C_{\pi}(Y)$ contains a closed subset homeomorphic to S, $C_{\pi}(Y) \notin \bigcup \{\mathcal{L}_n(\mathbf{R}^Y) | n \geq 1\}$. \square

- 5. Baire category and Baire Property subsets of \mathbb{R}^X . For any space Z, $\mathcal{BP}(Z)$ is the σ -algebra generated by the open sets and the first category subsets of Z. Members of $\mathcal{BP}(Z)$ are called Baire Property subsets of Z [Ox₂, p. 19]. For a space X with a unique limit point (such as the spaces Σ_S for $S \subset 2^\omega$ constructed in §1) it is easy to characterize which function spaces $C_\pi(X)$ belong to $\mathcal{BP}(\mathbb{R}^X)$.
- 5.1 THEOREM. Suppose X is a countable space with a unique limit point ∞ and let p be the trace on $X \{\infty\}$ of the neighborhod filter of ∞ . Then the following are equivalent:
 - (a) $C_{\pi}(X)$ is a first category subset of \mathbf{R}^{X} ;
 - (b) $C_{\pi}(X) \in \mathcal{BP}(\mathbf{R}^X);$
 - (c) there is an array

$$A(1,1)$$
 $A(1,2)$ $A(1,3)$ \cdots $A(2,1)$ $A(2,2)$ $A(2,3)$ \cdots $A(3,1)$ $A(3,2)$ $A(3,3)$ \cdots \vdots \vdots

satisfying

- (i) each A(m, n) is a finite subset of $X \{\infty\}$;
- (ii) each row $A(m,1), A(m,2), A(m,3), \ldots$ is a pairwise disjoint sequence;
- (iii) for every sequence $k(1), k(2), \ldots$ and every $U \in p$, $U \cap (\bigcup \{A(m, k(m)) | m \ge 1\}) \neq \emptyset$.

PROOF. The equivalence of (a) and (c) follows from [LM, Theorems 6.3 and 5.1] and obviously (a) implies (b). We prove that (b) implies (a). Suppose $C_{\pi}(X) \in \mathcal{BP}(\mathbf{R}^X)$. To simplify notation, we will identify the countably many isolated points of X with elements of ω and we will write $X = \omega \cup \{\infty\}$. Define a function $\nu \colon \mathbf{R}^X \to \mathbf{R}^\omega \times \mathbf{R}$ by the rule that $\nu(f) = (f^*, f(\infty))$, where $f^* \in \mathbf{R}^\omega$ is given by $f^*(n) = f(n) - f(\infty)$. Then ν is a homeomorphism of \mathbf{R}^X onto $\mathbf{R}^\omega \times \mathbf{R}$ and $\nu[C_{\pi}(X)] = C_0 \times \mathbf{R}$, where $C_0 = \{g \in \mathbf{R}^\omega | \text{ for each } \varepsilon > 0 \text{ there is a neighborhood } U \text{ of } \infty \text{ having } g[U \cap \omega] \subset] - \varepsilon, \varepsilon[\}$. Since $C_{\pi}(X) \in \mathcal{BP}(\mathbf{R}^X)$, $C_0 \times \mathbf{R} \in \mathcal{BP}(\mathbf{R}^\omega \times \mathbf{R})$.

It is easily seen that C_0 is a tailset in \mathbf{R}^{ω} , i.e. that if $g \in C_0$ and if the equality h(n) = g(n) holds except for finitely many values of n, then $h \in C_0$. We now need a slight variation of a result due to Oxtoby $[\mathbf{Ox_1}]$; the proof is only trivially different from Oxtoby's argument.

5.2 LEMMA. Let C be a tailset in \mathbf{R}^{ω} and suppose that $C \times \mathbf{R} \in \mathcal{BP}(\mathbf{R}^{\omega} \times \mathbf{R})$. Then either $C \times \mathbf{R}$ is a first category subset of $\mathbf{R}^{\omega} \times \mathbf{R}$ or else $C \times \mathbf{R}$ contains a dense G_{δ} -subset of $\mathbf{R}^{\omega} \times \mathbf{R}$.

Given 5.2, either $C_0 \times \mathbf{R}$ is a first category subset of $\mathbf{R}^{\omega} \times \mathbf{R}$, in which case $C_{\pi}[X]$ is also a first category subset of \mathbf{R}^X , or else $C_0 \times \mathbf{R}$ contains a dense G_{δ} -subset of $\mathbf{R}^{\omega} \times \mathbf{R}$, in which case $C_{\pi}(X)$ contains a dense G_{δ} in \mathbf{R}^X . But the latter situation occurs if and only if X is a discrete space [**DGLvM**, Theorem 1] so that $C_{\pi}(X)$ must be a first category subset of \mathbf{R}^X , as claimed. \square

- 5.3 REMARK. The reason for creating a variant of Oxtoby's theorem as in 5.2 is that one cannot deduce $C_0 \in \mathcal{BP}(\mathbf{R}^{\omega})$ from $C_0 \times \mathbf{R} \in \mathcal{BP}(\mathbf{R}^{\omega} \times \mathbf{R})$.
- 5.4 COROLLARY. For each $S \subset 2^{\omega}$, the function space $C_{\pi}(\Sigma_S)$ is a first category subset of \mathbf{R}^{Σ_S} .

PROOF. We define an array A(m,n) as follows using the tree $T=\bigcup_{1}^{\infty}T_{n}$;

- (i) $A(1, n) = T_n \text{ for } n \ge 1$;
- (ii) $A(2,1) = T_1 \cup T_2$, $A(2,2) = T_3 \cup T_4$, $A(2,3) = T_5 \cup T_6$, ...;
- (iii) in general, $A(m,n) = T_{(n-1)m+1} \cup \cdots \cup T_{nm}$.

Obviously each A(m,n) is finite and because the sets T_1,T_2,\ldots are pairwise disjoint, each row $A(m,1),A(m,2),\ldots$ of the array is pairwise disjoint. Suppose $k(1),k(2),\ldots$ is a sequence of positive integers and suppose $U=T-(B_{x_1}\cup\cdots\cup B_{x_n}\cup F)$, where $x_i\in S$ and F is a finite subset of T. If $\varnothing=U\cap(\bigcup\{A(m,k(m))|m\geq 1\})$, then $\bigcup\{A(m,k(m))|m\geq 1\}\subset B_{x_1}\cup B_{x_2}\cup\cdots\cup B_{x_n}\cup F$. Observe that for a fixed level T_j of the tree T, $\operatorname{card}(B_{x_1}\cap T_n)=1$ so that $\operatorname{card}(T_j\cap(B_{x_1}\cup\cdots\cup B_{x_n}\cup F))\leq n+\operatorname{card}(F)$. Choose $m>n+\operatorname{card}(F)$. Then the set A(m,k(m)) contains a level T_j of T where $\operatorname{card}(T_j)\geq 2^m$ so that $T_j\cap(B_{x_1}\cup\cdots\cup B_{x_n}\cup F)$ must have cardinality greater than $n+\operatorname{card}(F)$, contrary to our observation above. \square

In closing let us give one more example of a countable regular space X with a unique isolated point ∞ which has a "bad" function space. Unlike the examples so far, $C_{\pi}(X)$ is a second category subset of \mathbf{R}^{X} .

5.5 EXAMPLE. Let p be a free ultrafilter on ω and topologize the set $X = \omega \cup \{\infty\}$ by isolating all points of ω and by using all sets of the form $\{\infty\} \cup U$, where $U \in p$, as neighborhoods of ∞ . Then $C_{\pi}(X)$ is a second category subset of \mathbf{R}^X and $C_{\pi}(X) \notin \mathcal{L}_1(\mathbf{R}^X) \cup \mathcal{L}_2(\mathbf{R}^X)$.

PROOF. That $C_{\pi}(X)$ is a second category subset of \mathbb{R}^{X} follows from the equivalence of (a) and (c) in 5.1 (cf. [LM, 5.1 and 6.3] for details). Suppose

بير.

 $C_{\pi}(X) \in \mathcal{L}_n(\mathbf{R}^X)$, where $n \in \{1, 2\}$. Define $j : 2^{\omega} \to \mathbf{R}^X$ by the rule that if $f \in 2^{\omega}$ then $j(f) = \hat{f} \in \mathbf{R}^X$ where \hat{f} is given by

$$\hat{f}(x) = \begin{cases} f(x) & \text{if } x \in \omega, \\ 1 & \text{if } x = \infty. \end{cases}$$

Then j is continuous so that by $[\mathbf{K}, \S 38, \mathrm{III}, \mathrm{Proposition}\ 2], j^{-1}[C_\pi(X)] \in \mathcal{L}_n(2^\omega)$. Hence $j^{-1}[C_\pi(X)]$ is a measurable subset of 2^ω (with respect to product measure μ) because all analytic and co-analytic subsets of 2^ω are measurable $[\mathbf{L}, \mathbf{p}.\ 243, \mathrm{Proposition}\ 3.24]$. But $j^{-1}[C_\pi(X)] = \{x \in 2^\omega | \text{ for some } U \in p, x(n) = 1 \text{ for each } n \in U\}$ so that $j^{-1}[C_\pi(X)]$ is seen to be a tailset in 2^ω . Hence Kolmogorov's "0-1 law" guarantees that $\mu[j^{-1}[C_\pi(X)]] = 0$ or $\mu[j^{-1}[C_\pi(X)]] = 1$ $[\mathbf{Ox_2}, \mathbf{p}.\ 84]$. However, consider the function $J: 2^\omega \to 2^\omega$ given by $J(f) = f \oplus \overline{1}$, where $\overline{1} \in 2^\omega$ is constantly equal to 1 and \oplus denotes coordinatewise addition modulo 2, i.e., the usual group operation of 2^ω . Since μ is translation invariant, J is a measure preserving transformation on 2^ω . Because p is an ultrafilter, $J[j^{-1}[C_\pi(X)]] = 2^\omega - j^{-1}[C_\pi(X)]$ so that both $\mu[j^{-1}[C_\pi(X)]] = 0$ and $\mu[j^{-1}[C_\pi(X)]] = 1$ are impossible. Therefore $C_\pi(X) \notin \mathcal{L}_0(\mathbf{R}^X) \cup \mathcal{L}_1(\mathbf{R}^X) \cup \mathcal{L}_2(\mathbf{R}^X)$, as claimed. \square

REFERENCES

[DGLvM] J. Dijkstra, T. Grilliot, D. Lutzer and J. van Mill, Function spaces of low Borel complexity, Proc. Amer. Math. Soc. (to appear).

[E] R. Engelking, General topology, Polish Scientific Publishers, Warsaw, 1977.

[K] K. Kuratowski, Topology, vol. 1, Academic Press, New York, 1966.

[KM] K. Kuratowski and A. Mostowski, Set theory with an introduction to descriptive theory, North-Holland, Amsterdam, 1976.

[L] A. Levi, Basic set theory, Springer-Verlag, Berlin, 1979.

[LM] D. Lutzer and R. McCoy, Category in function spaces. I, Pacific J. Math. 90 (1980), 145–168.

[Ox1] J. Oxtoby, Cartesian products of Baire spaces, Fund. Math. 49 (1961), 157-166.

[Ox2] _____, Measure and category, Graduate Texts in Math., vol. 2, Springer-Verlag, New York,

DEPARTMENT OF MATHEMATICS, MIAMI UNIVERSITY, OXFORD, OHIO 45056

VRIJE UNIVERSITEIT, AMSTERDAM, THE NETHERLANDS

MATHEMATICS INSTITUTE, UNIVERSITY OF WARSAW, WARSAW, POLAND