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A PATHOLOGICAL HOMOGENEOUS SUBSPACE
OF THE REAL LINE

A.JM. van ENGELEN & J. van MILL

1. INTRODUCTION

All spaces under discussion are separable metric.

A zero-dimensional space is called strongly homogeneous provided that
all nonempty clopen subspaces are hemeomorphic. Strongly homogeneous spaces
behave very well; for example, they have the pleasant property that any
homeomorphism between closed and nowhere dense sets can be extended to a
homeomorphism of the whole space, [4]. As a consequence, all strongly homo-
geneous spaces are homogeneous (we encourage the reader to find a direct
elementary proof of this corollary). Observe that a strongly homogeneous
nowhere locally compact space has the property that all nonempty open
subspaces are homeomorphic.

From the above observations it is clear that a strongly homogeneous
space has "many'" autohomeomorphisms. Many familiar subspaces of the real
line are strongly homogeneous, for example, the rationals, the irrationals
and the Cantor set. R.D. Anderson [1] has shown that, in particular, the
autohomeomorphism group of a srongly homogeneous space is algebraically
simple.

The aim of this note is to conmstruct a very pathological exmple of
a strongly homogeneous subspace X of the real line R. The space X is
pathological since it contains a countable dense subset D © X such that
Y =X\ D is rigid, i.e. has only one autohomeomorphism, namely the
identity. In fact, we prove a little bit more, i.e., if h: Y + Y is an
embedding (not necessarily surjective), then h = identity.

A space X is called strongly locally homogeneous if it has an open

base U such that for each U ¢ U and points x,y € U, there exists a homeo-

morphism h: X »+ X with h(x) =y and h | X \ U equal to the identity. The
most obvious examples of strongly locally homogeneous spaces are locally

euclidean spaces and zero-dimensional homogeneous spaces. Clearly, every



connected strongly locally homogenous space is homogeneous.

By a result of Anderson, Curtis and van Mill [2], if X is strongly
locally homogeneous and topologically complete, and if D © X is countable
and dense, then Y = X \ D is strongly locally homogeneous and Y has the
property that for every countable subset E of Y we have that Y~ Y \ E
(i.e., Y is homeomorphic to Y \ E). Our example shows that in this
theoremlthe assumption of topological completeness is essential. In fact,
both conclusions are false in general since our example has the property
that for some countable dense set D the complement of D admits no non-
trivial embeddings. As we will show, our example is even Baire which shows
that the above cited result of Anderson, Curtis and van Mill, in a sense,

is the best possible,
2. PRELIMINARIES

If X is a space then Auth(X) denotes the group of autchomeomorphisms
of X. The domain and range of a function f will be denoted by dom(£f) and
range(f), respectively.

Let Y be a fixed dense in itself, topologically complete space and
let © © Auth(Y) be a countable subgroup. For all x € Y let V(x) =
{h(x) : h € ®}. Define

F = {f: dom(f) and range(f) are Gg-subsets of Y and
f: dom(f) » range(f) is a homeomorphism!},
b
G={feF: |{xc dom(f) : £(x) ¢ V(x)} =2 o3,
respectively.

The following result was proven in detail for the special case

2. . ; :
Y =R" in van Mill [5, section 3]. The reader can easily check that the
only thing used in the proof was that'.lR2 is topologically complete and

dense in itself, We therefore state Theorem 2.1 without proof.

THEOREM 2.1. For each f € F there is a point x

z, - Ue E V(Xf), then

(3) £(x) ¢ X,

(2) <if f,g € F are distinet, then V(xf) n V(xg) =4,

(3) Zf D is a family of countably many nowhere dense subsets of X and if
U c X s open and nonempty, then |U \ UD| = 2%, O

£ € dom(f) such that if
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3. THE EXAMPLE

Let Q € R be the set of rational numbers and put Q' = Q \ {0}. Put
@ = {h ¢ Auth@®) :EIquHseQ'chIR:h(x)=s-x+q}.

Observe that @ is a countable subgroup of Auth(R) and that for all x ¢ R
the set V(x), defined in section 2, is equal to Q'-x + Q. Let Y =R and

let X be as in Theorem 2.1. We claim that X is as required.

LEMMA 3.1.
(1) If KcR is a Cantor set, thew both K n X #  and K n (R \ X) # @,
(2) Zf x e R\ X then V(x) <R \ X.

PROOF. Let K <R be a Cantor set and let L <R be a Cantor set disjoint
from Q" - K + Q. If h: K+ L is any homeomorphism, then h ¢ G and conse-
quently, by 2.1 (1), X n K # . Since also BV e G, again by 2.1 (1),

Kn(R\ X)# @. This proves (1) and the trivial proof of (2) is left to

the reader. [
Fix a point x ¢ R \ X.

LEMMA 3.2.

(1) X is zero—dimenstonal,

(2) <f a,b,c,d ¢ V(x) and ©f a < b and ¢ < d then there is a homeomorphism
h: X + X such that h(la,b] n X) = [c,d] n X.

PROOF. (1) follows immediately since V(x) is dense. For (2), find a point
s € Q' and a point q ¢ Q such that the homeomorphism h: R ~R defined by
h(t) = s+t + q has the property that h([a,b]) = [c,d]. Then he®and
consequently, by the definition of X, we see that h=h I X is as

required. 0

COROLLARY 3.3. X has the property that all of its nonempty open subsets

are homeomorphic; in particular, X 18 strongly homogeneous.

PROOF. Let U © X be nonempty and open. By 3.1 (1), U is not compact. Conse-
quently, we can find a countably infinite collection L of nonempty inter-
vals such that

(1) If L ¢ L then {min L, max L} < V(x),

(2) if L,M ¢ L are distinct, then (L n X) n (M n X) = @, and
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(3) U= ULeL L n X.

By 3.2 (2), if L,M ¢ L are distinct, then (L n X) ~ (M n X). In addition,
for each L € L we have that L n X is a clopen subset of X. Therefore,

again by 3.2 (2), we find that
U= ([x,x+1] n X) x N.

We therefore conclude that all nonempty open subspaces of X are homeo-

morphic., [J

By 2.1 (2), we can find a countable dense set D © X such that

(1) if d,e € D are distinct, then d ¢ V(e) (and e ¢ V(d)).
(2) Dn {xf : £ ¢ G} = @.

We claim that Y = X \ D admits no nontrivial embeddings.
LEMMA 3.4. If h: Y = Y ©s8 an embedding, then h = identity.

PROOF. The technique used in this proof is similar to the one in [5, 3.4
and 3.5].

b
CLAIM. |{y ¢ Y : h(y) ¢ V(¥)}| <2 ©°.

Suppose that this is not true. By the classical Lavrentieff Theorem [3],
there are Ga-subsets S,T <R with ¥ = S and range(h) < T such that h can
be extended to a homeomorphism f: S -+ T. Then £ ¢ G and consequently,

x,. € Y. However, since f extends h, h(xf) = f(xf) * X, by 2.1 (1). This

£
obviously is a contradiction.

For each s € Q' and q € Q put
AZ ={ye¥Y:nh(y) =s-.y+ ql.

Observe that each Azis closed in Y. Let BZ be the closure of A: in X. Since
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qs having

D is countable, by the claim and by 2.1 (3), the union of the B
nonempty interior in X is dense in X.

Take s € Q' and q € Q such that B° has nonempty interior in X. Since
Y is dense in X and since B° n ¥ = AZ, this implies that A: is not nowhere
dense in Y. Since D is dense in X, the set

E = {é{d—q) : d € D}



is also dense in X. Suppose that either s # 1 or q # 0. Then obviously
E © Y and consequently we can find a point d € D such that é(d—q) € A:.

Since
h(id-0) = d ¢ ¥,

this is a contradiction. We conclude that s = 1 and q = 0.

This argument shows that there is only one BZ with nonempty interior,
namely Bé. Since Bé is dense, h = identity. [J
REMARK 3.5. In [6] it was shown that there is a homogenenous subset A ¢ R
such that
(1) A=R\ A, and
(2) A does not admit the structure of a topological group.
It can be shown that there is also a countable dense subset D © A such that
A \ND is rigid. However, A is not strongly homogenenous. So if one is wil-
ling to sacrifice strong homogeneity, it is possible to construct X as
above with the additional curious property that X R \ X. With similar
arguments as in [6] it can be shown that our space X constructed above also

has the property that it is not a topological group.

REMARK 3.6. If one performs the above construction in the plane, one gets

an example of a one dimensional, connected and locally connected space Z

such that

(1) Z is strongly locally homogeneous,

(2) if K < Z is compact, then Z = K \ Z,

(3) there is a countable dense set D € Z such that Z \ D does not admit
a nontrivial embedding.

For details, see [5]. The argument given there that a space such as Z

is strongly locally homogeneous can also be used to show that Z \ {pt} ~ Z

and with a little bit more work that Z \ compact =~ Z (use that Z contains

no Cantor sets (Lemma 3.1 (1)). The details of working this out are left

to the reader.
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