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HOMEOMORPHISM GROUPS AND HOMOGENEOUS SPACES
JAN van MILL

ABSTRACT. We show that the 2-sphere S? can be decomposed into two sets
A and B such that (1) both A and B are connected, locally connected, dense
and Baire, (2) both A and B are (much more than) topologically homogeneous,
(3) A is not homeomorphic to B, and (4) the autohomeomorphism groups of
A and B are (algebraically) isomorphic.

1. Introduction. All spaces under discussion are separable metric. If X is a
space then H(X) denotes the group of homeomorphisms of X onto itself. In the
literature much work has been done concerning the following question:

if H(X) and H(Y) are algebraically isomorphic, when are X and YV
topologically homeomorphic?

Wechsler [10] showed that if X and Y are both nondiscrete and strongly n-homoge-
neous for all n,! and if the algebraic isomorphism 3: H(X) — H(Y) is also a
topological homeomorphism when both H(X) and H(Y') are given the point-open
topology, then X and Y are homeomorphic. The following result was subsequently
obtained by Whittaker [11]: if X and Y are compact manifolds (with or without
boundary) and if 3: H(X) — H(Y') is an isomorphism, then there is a homeomor-
phism f: X — Y such that for all h € H(X) we have B(h) = foho f~'. Among
others, this shows that X and Y are homeomorphic. Rubin [9] has recently shown
that in Whittaker’s result the hypothesis “compact manifold” can be replaced by
“locally compact and strongly locally homogeneous” (in fact Rubin shows much
more). For related results see also [3 and 4, 5, 6].

These results suggest the following vague conjecture: if X and Y are “sufficiently
homogeneous” then X is homeomorphic to Y if and only if H(X) is isomorphic to
H(Y). Rubin’s result implies that if X is locally compact and strongly locally
homogeneous then X is sufficiently homogeneous. The aim of this note is to con-
struct spaces with very strong homogeneity properties which are not “sufficiently
homogeneous”.

We will show that there is a 1-dimensional, connected, locally connected and
dense subspace A C S? with, among others, the following properties:

(1) A is strongly locally homogeneous,

(2) if K C A is compact, then A and A\K are homeomorphic, and

(3) if K,L C A are compact, and if f: K — L is a homeomorphism, then f can
be extended to a homeomorphism f: A — A.

(4) A is Baire.

Observe that (3) implies that A is strongly n-homogeneous for all n € N. We
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also show that B = S?\A has the same homogeneity properties, that B is not
homeqmorphic to A, and that H(B) and H(A) are (algebraically) isomorphic. Our
result shows that in Wechler’s Theorem it is essential that the algebraic isomorphism
is also a topological homeomorphism when the homeomorphism groups involved are
given a suitable topology. In addition, we can also conclude that in Rubin’s result
the hypothesis “locally compact” cannot be replaced by “Baire”. After having been
informed about our result, Rubin asked whether “locally compact” can be replaced
by “topologically complete”. As far as I know, this is still open.

2. Preliminaries. A space X is called strongly locally homogeneous if it has an
open base U such that for each U € U and points z,y € U, there exists a homeo-
morphism h € H(X) with h(z) = y and h|X\U equal to the identity. The most ob-
vious examples of strongly locally homogeneous spaces are locally euclidean spaces.
Clearly, every connected strongly locally homogeneous space is homogeneous.

Let n € N. A space is called strongly n-homogeneous if for all distinct z1,..., 2,
€ X and all distinct y1,...,y, € X there is a homeomorphism h € H(X) with
h(z;) = y; for all ¢ < n.

A space X is called a Bernstein set if each compact subspace of X is at most
countable. @) denotes the space of rational numbers.

A cardinal is an initial ordinal, and an ordinal is the set of smaller ordinals. ¢
denotes 2%,

3. Construction of A and B. As usual, the 2-sphere S? is the space
{(z1,22,23) €R3: 22 + 22 422 = 1}.
If € S? and € > 0, let
B(z,e) = {y € S d(z,y) < &}
(here d refers to the euclidean metric on R?). Let D be an arbitrary countable
dense subset of S2. Define
B ={B(z,q): € D,q € Q and ¢q > 0}.
Observe that B is countable.

For any B € B and for all finite £, # C B having the same cardinality, say
& ={E,...,E,} and F = {Fy,...,F,}, such that |J£ UJ 7 C int B, if possible
choose a homeomorphism h: S? — S? such that

(1) h(E,) = F; for all ¢ <n, and

(2) h|(S?\B) = identity.

(Observe that this is always possible if n = 1.)

Let G C H(S?) be the set of homeomorphisms obtained in this way. Observe
that G is countable. Let s: S? — S? be the antipodal mapping and let ® C H(S?)
be the subgroup generated by GU {s}. A set Y C 52 is called ®-stable if h(Y) =Y
for all h € ®. If x € S? then V (z) = {h(z): h € ®}.

3.1. THEOREM. There is a set A C S? such that both A and B = S?\A are
®-stable and Bernstein.

PROOF. Let {K,:a < c} enumerate all Cantor sets in S2. By transfinite
induction, for each o < ¢ we will construct points z,,ys € K, such that

(%) U Vs n Vi) =0
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Suppose that x5 and ys are defined for all 3 < a. Observe that |Js_, V(zp)| <
laf - Ro < ¢ and similarly that [, V(ys)| < ¢. Since |Kq| = ¢ and since
|®] < Ry, it is easy to pick 2, and y, satisfying (). For details see van Mill [7, §3].

Put A = J,..V(zs) and B = S?\A. Since A is ®-stable and since ® is a
subgroup of H(S?), it easily follows that B is ®-stable. Finally, both A and B are
Bernstein sets since if e.g. K C A is uncountable and compact, then K contains a
Cantor set which by construction intersects B. This is impossible. O

We claim that A and B are the subsets of S? with the properties mentioned
in the introduction. In the remaining part of this note we will prove this. First
observe that both A and B are dense in S? (use that both A and B are Bernstein,
or see the proof of Theorem 3.1). We will use this often without explicit reference
in the remaining part of this note.

3.2. LEMMA. IfU C S? is nonempty, open and connected, then both U N A
and U N B are connected.

PROOF. Suppose that e.g. UN A is not connected. There are disjoint, nonempty
open sets Vo, V1 C U such that ANU C Vo UV;. Then K = U\ (Vo UV;) separates
U and consequently has to be uncountable. Since K is o-compact, it therefore has
to contain a Cantor set. But this Cantor set intersects A since B is Bernstein, a
contradiction. 0O

3.3. COROLLARY. Both A and B are connected and locally connected.
3.4. LEMMA. Both A and B are Baire.

PROOF. This is clear since both A and B intersect every Cantor set in S2, and
hence every dense Gs. 0O

4. H(A) and H(B) are isomorphic. In this section we will show that H(A) is
isomorphic to H(B) and also that A is not homeomorphic to B. We use a technique

due to Curtis and van Mill [1], which also turned out to be useful in van Mill and
Wattel [8].

4.1. LEMMA. If h € H(A), then h can be extended to a homeomorphism
h: §% — §2.

PROOF. As in Curtis and van Mill [1], put

{h(z)} = () W(U(z,27) N 4),

where U(z,27") = {y € S%: d(z,y) < 27 "}. Notice that if n € N, then U(z,2~")N
A is connected, Lemma 3.2, whence Z = (>, h(U(z,2-")N A) is a decreasing
intersection of subcontinua of S2, and therefore must be a subcontinuum itself.
Since Z is obviously contained in B, and since compact subsets of B are at most
countable, Z contains precisely one point. We conclude that % is well defined. It is
easy to see that h is continuous.

Since by the same technique we can also extend h~1, we conclude that & is a
homeomorphism (the reader can also easily check directly that & is one-to-one). 0O

In the same way one can prove the following lemma.
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4.2. LEMMA. If h € H(B), then h can be extended to a homeomorphism
h: S? — §2.

If h € H(A), then the extension h € H(S?) of h is unique, since A is dense in
52. We can therefore define a function 3: H(A) — H(B) by 8(h) = h|B.

4.3. LEMMA. [ s an wsomorphism.

PROOF. If f,g € H(A) then f o7 is an extension of f o g, and therefore has to
be equal to f o g. Similarly, if f € H(A), then 77 is an extension of =1, whence
it follows that 7_1 = f~1. From this it follows that 3 is a homomorphism. Define
v: H(B) — H(A) by ~v(h) = h|A, where h is the extension of h given by Lemma
4.2. By the same argumentation as above, v is a homomorphism. It is easy to
verify that § o v =identity and that ~ o 8 =identity. We conclude that 3 is an
isomorphism. 0O

Observe that the only thing we used for the proof of Lemma 4.3 is that both A
and B are Bernstein.

We will now show that A is not homeomorphic to B.

4.4. LEMMA. A and B are not homeomorphic.

PROOF. To the contrary, assume that h: A — B is a homeomorphsm. By using
the same technique as in the proof of Lemma 4.1, we find that h can be extended to
a homeomorphism h: $2 — S2. Observe that h(A) = B and h(B) = A. Therefore,
h has no fixed points. By the Brouwer-Poincaré Theorem, see Dugundji [2, p. 343],
h must therefore send some point z € S? onto its antipode s(z). Suppose that
without loss of generality = € A. Since h(z) € B and h(z) = s(z) € A (recall that
s € ® and that A is ®-stable, Theorem 3.1), this is a contradiction. O

5. Homogeneity properties of A and B. In this section we will show that
both A and B have the homogeneity properties which were announced in the in-
troduction. We use a technique in van Mill [7, §4].

5.1. LEMMA. Let E € B and choose p,q € int E such that p € A. There s
a homeomorphism h € H(S?) such that h(A) = AU {q}, h(p) = q and h|S?\E =
identity.

PROOF. For each n € N we will construct an element E,, € B and an element
hy, € ® such that
)diamE, <2 " and E, CintE,_; C E,

) q € int By,
)p€Ehito---oh,(int E,) and diamhi o --- o h-1(int E,) < 27",
(4) hyn|S?\E,_1 = identity.

Choose E; € B such that g € int E; C E; C int E while moreover diam E; < %
There is an element V; € B such that p € intV; C V; C int E such that also
diamV; < % By construction, there is an element h; € ® such that hy (V1) = E;
while h; restricts to the identity on S2\E. This deﬁpes E{ and h;. Suppose
now that we have constructed h; and E; for all { < n." Choose Fy € B such that
hpo---ohy(p) € int Fy C Fy C int E,,, while moreover diam b} o---oh, ! (int Fy) <
2-(n+1) " In addition, let F; € B be such that q € intFy, C Iy § int F,, and
diam Fy; < 2~("+1)_ By construction, there is an element g € ® with g(Fo) = Fy
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and g|(S?\E,) = identity. Define h,,1; = g and E,,; = F;. This completes the
induction.
Observe that if d(z,p) > 27" then h, o--- o hy(z) ¢ E, and consequently, by
(1) and (4),
hgo---ohi(z) =hyo---ohy(z) forall k>n.

This implies that if we define h: S? — S? by h = lim,_,o, hy,0---0hy, then h is
well defined. Observe that h(p) = g and that h restricts to the identity on S?\E.
The easy check that h is a homeomorphism is left to the reader. Choose z € A
arbitrarily. If = p then h(x) = q. If z # p, then h(z) € A, since A is ®-stable. We
conclude that h(A) C AU{q}. Choose y € A arbitrarily. If y = g then h(p) = y. If
Yy # g, then find an index n € N such that y ¢ E,,. Let z = h;*o---0h, (y). It
is clear that = € A and that h(z) = y. We conclude that AU {q} C h(A).

This proves that h is as required. 0O

5.2. COROLLARY. A us strongly locally homogeneous.

Take p € A and ¢ € B. By Lemma 5.1 there is a homeomorphism h: S? — §?
such that h(p) = g and h(A) = AU{q}. Consequently, h(A\{p}) = A. We conclude
that A is homeomorphic to A\{p}. Since every compact subset of A is countable,
and hence can be covered by a finite pairwise disjoint subcollection of B of arbitrarily
small mesh, the reader can easily verify that the following generalization of Lemma
5.1 holds: let E € B and choose compacta K,L C int E such that K C A; if
f: K — L is a homeomorphism, then there is a homeomorphism h € H(S?) such
that h(A) = AU L while moreover h(z) = f(z) for every € K (the proof of this
fact needs homeomorphisms of a different type than the ones used in the proof of
Lemma 5.1, but we made sure that the required homeomorphisms are available,
see the definition of @ in §3). Consequently, each compact subspace of A can be
pushed out of A and homeomorphisms between compact subsets of A extend. This
more or less completes the proof of the following

5.3. THEOREM. If K C A s compact, then A is homeomorphic to A\K. If
K,L C A are compact, and +f f: K — L 1s a homeomorphism, then f can be
extended to a homeomorphism f: A — A.

It is clear that the required homogeneity properties of B follow by precisely the
same argumentation.

6. Remarks. M. Rubin has observed that every isomorphism of H(A) is inner.
E. K. van Douwen has constructed an infinite-dimensional version C of A such that
H(C) has an isomorphism that is not inner. This space is a subspace of the product
(S1)*° and is homeomorphic to its complement.
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