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A TOPOLOGICAL GROUP HAVING NO HOMEOMORPHISMS
OTHER THAN TRANSLATIONS
BY
JAN vaN MILL

ABSTRACT. We give an example of a (separable metric) connected and locally
connected topological group, the only autohomeomorphisms of which are group
translations.

1. Introduction. The aim of this paper is to present an example of a connected and
locally connected topological group G having no homeomorphisms other than group
translations. It turns out that G is uniquely homogeneous, i.e. for any pair of points x,
»y € G there is a unique homeomorphism taking x onto y. Our results were moti-
vated, on the one hand, by the result due to Barit and Renaud [2] that a uniquely
homogeneous space cannot be compact, or locally compact and locally connected,
and, on the other hand, by the recent result due to Dobrowolski and Torunczyk [5]
that a topologically complete ANR group is either a Lie group or a Hilbert space
manifold and consequently these groups have many homeomorphisms other than
those derived from their underlying algebraic structure.

Our example answers many natural questions in the negative. To my knowledge, it
is the first example of a uniquely homogeneous space. In addition, it is an example
of a homogeneous topological space the autohomeomorphism group of which is
Abelian. We will derive many other strange properties of G. For example, if x € G
then the space G\{x} is rigid, i.e. has no autohomeomorphisms other than the
identity.

We use a method originally due to Kuratowski [14] which was later rediscovered
or used by many authors, see e.g. [6, 7, 9, 10, 16-20). Some specific ideas needed to
apply Kuratowski’s technique in the present construction are implicit in [16-18].

2. Preliminaries. Space means separable metric topological space. A space is called
topologically complete provided that there is a complete metric on the space that
generates the topology. The following classical results will be important in our
construction.

2.1. LeMMA. (a) (Lavrentieff [15]) Let X be a space and let Y be topologically
complete. If A C X and if f: A —> Y is continuous, then there is a Gy-subset A’ C X
such that f can be extended toamap f: A’ > Y.

Received by the editors February 8, 1982.
1980 Mathematics Subject Classification. Primary 22A05, 54G20.
Key words and phrases. Topological group, homeomorphism, unique homogeneity.

©1983 American Mathematical Society
0002-9947,/83 $1.00 + $.25 per page

491



492 JAN vaN MILL

(b) (Sierpinski [21)) If X is a continuum and if @ is a partition of X in countably
many closed sets, then at most one element of @ is nonempty.

(¢) (Hausdorff [13)) If X is topologically complete and uncountable, then X contains a
Cantor set. A topologically complete space is therefore either countable or has cardinal-
ity continuum.

A cardinal is an initial ordinal and an ordinal is the set of smaller ordinals. ¢
denotes 2%,

The domain and range of a function f will be denoted by dom( f) and range( f),
respectively. Henceforth, all functions will be continuous. Observe that the cardinal-
ity of the collection of all Gg-subsets of a given space is at most c. This implies that if
X and Y are spaces, then the collection

% = {f: dom(f)is a Gg-subset of X and range( f) C Y}

has cardinality at most c.

If Gis a group and if A C G then ( 4) denotes the subgroup of G generated by A.
A group is called Boolean provided that each element of the group has order at most
2. Observe that a Boolean group is Abelian. If G is an Abelian group then we let
“+” denote the operation on G. Let G be a Boolean group and let H C G be a
subgroup. It is easy to verify that for each x € G the following formula holds:

(HU {x})=HU (x + H).

If A and B are lsets, then A A B denotes their symmetric difference, i.e. 4 AB =
(A\B) U (B\ A). As usual, A denotes Lebesgue measure on [0, 1]. Let 9 denote the
family of all Lebesgue measurable subsets of [0,1] and Let 9U be the ideal of
null-sets. The quotient algebra I/ will be denoted by §. If 4 € N then [A4]
denotes the 9-equivalence class of 4. Metrize § by d([A4],[B]) = A(A AB). As is
well known, d is a complete metric on § [12, Exercise 40.1] which, in addition, is
convex [12, Exercise 40.8]. This easily implies that § is path-connected. Since
obviously § X § ~ G, we conclude that for any pair of points x, y € § there is a disc
D C §, i.e. a topological copy of [0, 1] X [0, 1], containing both x and y. This will be
of crucial importance later on. Bessaga and Pelczynski [3, VI, 7.2] have shown that §
is homeomorphic to the separable Hilbert space /,, so using their result the above
property of § becomes a triviality. If we define an operation +: § X § - § by
[A] + [B] =[A4 AB], then § with this operation becomes a Boolean topological
group [12, 167]. We have given a well-known example of a topological group G
satisfying the following properties:

(1) G is topologically complete.

(2)forall x,y € G thereisadisc D C Gwithx, y € D.

(3) G is Boolean.

3. The construction. We will now present the main result in this paper.

3.1. THEOREM. Let G be a topological group which is topologically complete and
Boolean and which, moreover, has the property that any pair of points x, y € G is
contained in a disc D C G. Then G contains a dense connected subgroup H such that
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each autohomeomorphism of H is a translation. Moreover, if G has the property that for
all open U C G and x € U, there is an open V C U with x € V C U such that any
pair of points of V is contained in a disc D C U, then H is locally connected.

Since the proof of this result is rather lengthy, we break it up in several pieces.

3.2. Construction of H. Let & = { f: dom( f) is a Gz-subset of G and range( f) C G}.
Since, as was observed in §2, | ¥|< ¢, we can enumerate ¥ by {f,: « <c¢, a even}. We
choose the enumeration such that each f € % is listed ¢ times. It is clear that this is
possible. Let {K,: a <¢, a odd} enumerate all Cantor sets in G. By transfinite
induction, for every a < ¢ we will construct subgroups H, C G and subsets V, C G
such that

()if <athenHy CH,, V;-CV,,andH, NV, = &,

() |H,|<|al - Bpand |V, [<|al - R

(3)ifaisodd then H, N K, # O,

(4) if a is even and if | {x € dom(f,): f(x) & (UBQ Hg U {x})}|= ¢, then there
is a point x € dom( f,) N (H,\ Ugz_, Hy) such that f(x) € V,.

Suppose that we have completed the construction for all 8 < a, where a < c.

Case 1. a is odd.

For convenience, put H* = U,_,Hg and V* = Ug_ V,. Observe that |H*|<
|a| - ¥, <c and, similarly, that | V*|<|a| 8, <c. Since |K,|= ¢, we can pick a
point

x € KN(H* + V).

Define H, = ( H* U {x}) and ¥, = V'* An easy check shows that H, and V, are as
required.
Case2. aiseven and if S = {x € dom( f,): f(x) & (H* U {x})} then|S|<c.
Define H, = H*and V, = V.
Case 3. aiseven and | S|= c.
By the same argument as in Case 1, we can find a point

x € S\((H*+ V*) U H*).
Define H, = (H* U {x}) and ¥V, = V* U {f(x)}. Since
H 0V, =(H"U (x+ H) N (VU {f(x0)}) = 2,

we see that H, and V, are as required.

Now put H = U__. H,. We claim that H is as required. For later use we prove a
statement which is slightly more general than the statement we claimed to be true for
H.

3.3. Let A C H be countable and let f: H\ A — H be a map with the property that
each point-inverse is at most countable. Then there is a translation h: G — G with
h|H\A ={.

By Lemma 2.1(a), let S be a Gg-subset of G such that f can be extended to a map
f: S - H. Observe that {a < c: f = f,} has cardinality c.

Case 1. For each a such that f=f,, |{x € S: f(x) & (Upeo Hg U {x})}|=c.
Then by (4), there is a set B C dom( f) N H of cardinality ¢ such that f(B) N H = @
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Take a point x € B\ A. Then x € H\ 4 and since f extends f, we conclude that
f(x) & H, which is a contradiction.
Case 2. Not Case 1. Take a < ¢ such that f = f, and

{x €S:f(x) & < U Hyu {x}>}

B<a

<c.

Let H* = Uﬁ<a Hgand T= {x € §: f(x) & (H* + (x + H*))}. By assumption,
| T|< c. Take h € H* and assume that f,”'(%) is uncountable. Since f,"'(4) is a closed
subspace-of the space S, which is a Gj-subset of G, f,'(h) contains a family
of ¢ pairwise disjoint Cantor sets (Lemma 2.1(c)). From (3) we conclude that
|£7'(h) N H|= ¢, whence |£,”'(h) N (H\ A)|= c. Since f, extends f, this contradicts
our assumptions on f. We conclude that
(*) [f7(H)|<|H|- 8o <[a]- By - Mg <c.
For each h € H* define

E,={x€S:f(x)=x+h}.
Observe that each E,, is closed in S and that the collection {E,: h € H*} is pairwise
disjoint. If h € H* define F, = E,\ f,”'(H*). We claim that at most one of the
collection {F,: h € H*} is nonempty. Suppose, to the contrary, that there exist
distinct points s, £ € H* such that F, #+ & and F, # <. Pick points x € F; and
y € F,. By assumption, there is a disc D C G containing both x and y. Since S is a
G;, the complement G\ S of S is the union of countably many closed subsets of G,
none of which can contain a Cantor set by (3). We conclude that G\ S is countable,

Lemma 2.1(c). Therefore, |f,'(H*) U (G\S)|< ¢ which implies that we can find an
arcJ C D connecting x and y such that

JN(L(H)U(G\S)UT) =g,

whence

Jc U F,c U E,.
heH® heH®
Put K= {(h € H*: F,NJ # @}. By assumption, | K|> 2, whence, by Sierpinski’s
Lemma (Lemma 2.1(b)), | K|> 8. Also, | K|<|H*|<c¢ (so in case the Continuum
Hypothesis holds, at this stage of the proof we have already derived a contradiction).
We conclude that K cannot be topologically complete, Lemma 2.1(c), and that, in
particular, K is not closed in G. Let k, € K (n = 1,2,...) be a sequence of points of
K converging to a point k & K. For each n, take a point x, €J N F, . By
compactness of J, we may assume that lim,_, , x, = x € J. Then

f(x)= lim f(x,)= lim (x,+k,)=x+k,
n—oo n— oo

since lim,_, ,x, = x, lim,_ k, = k and “+” is continuous. Since x € J, there is

an h € K such that x € F, C E,. Consequently, f,(x) = x + h, which implies that
k = h € K, which is a contradiction.
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We conclude that at most one of the collection {F,: # € H°} is nonempty. If each
F, is empty, then f(H\T) C H* and consequently, | H |< ¢, by (*), which obviously
contradicts (3). Therefore, there is a unique point » € H* such that F, # J.
Suppose that E, # S. Then S\ E, is nonempty and open in S. Since |G\ S|< N,
and since each nonempty open subspace of G has cardinality ¢ (G is path-connected),
this implies that | S\ E,|= ¢, which contradicts (*). Consequently, E, = S which
completes the proof of 3.3.

3.4. H is connected. Moreover, if G has the property that for all open U C G and
x € U, there is an open V C U with x € V C U such that any pair of points of V is
contained in a disc D C U, then H is locally connected.

Suppose, to the contrary, that H is not connected, i.e. H = U U V¥, where U and V
are disjoint nonempty open subsets of H. Since H is dense in G, we can find disjoint
opensets U, VV C GwithU' N G=Uand V"N H=V.Then K = G\(U' U V') is
closed and therefore has to be countable since it misses H ( H intersects every Cantor
set in G). Take x € U’ and y € V’. By assumption, there is a disc D C G containing
both x and y. Then K N D separates D and since no countable set separates D, this
is a contradiction.

To prove that H is locally connected under the given hypotheses, first observe that
G is locally connected. We will show that if W C G is open and connected, then
W N H is connected, which proves, among others, that H is locally connected. Let
W C G be open and connected, and suppose that W N H is not connected, i.e.
W N H= W, U W,, where W, and W, are disjoint nonempty open subsets of H. As
above, find disjoint open subsets Wy, W| C W such that W N H = W, (i =0, 1).
Put L = W\(Wj U W)). As above, L is countable. Since H N W is dense in W, and
since W is connected, L is nonempty. In fact, there is even a point x € L which is a
limit point both from Wj and W]. By assumption, there is a neighborhood V of x
which is contained in W such that any pair of points of V is contained in a disc
D C W. Since V intersects both W and W], we may, therefore, conclude that there
exists a disc D C W such that D intersects both W and W]. Since L is countable,
this is a contradiction.

This completes the proof of the theorem.

3.5. REMARK. From now on, H will denote the subgroup of § that we get from the
proof of Theorem 3.1. Since § ~ /,, or by a direct argument, § satisfies all conditions
required in Theorem 3.1. We therefore conclude that H is a Boolean group which is
connected and locally connected and which has the property that all autohomeomor-
phisms are translations.

3.6. REMARK. In fact, the assumption on G that any pair of points is contained in
a disc D C G can be weakened considerably. The reader can easily check that the
only thing we need for the proof, is the following;:

for all x, y € G there is a family ¥ of ¢ subcontinua of G each
containing x and y such that if K, and K, € K are distinct, then

(Ko N K\ {x, y} = 2.
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4. A result under the Continuum Hypothesis. We have seen that there are
topological groups having no homeomorphisms other than translations. Under the
Continuum Hypothesis (abbreviated CH) we can do better. The groups we con-
structed then have the property that every self-map is either constant or a transla-
tion. We will sketch the proof. Our notation and terminology is the same as in the
proof of Theorem 3.1. Let f: H — H be a self-map, and let S be a Gg-subset of G
such that f can be extended to a map f: S — §. Fix a < ¢ such that f = f,. Just as in
the proof of Theorem 3.1, we find that if T = {x € S: f(x) &€ (H* U (x + H*))}
then | T|< ¢, whence by CH, | T|< 8. For each h € H* define

A,={x€S:f(x)=h} and B,={x € S:f(x)=x+h},
respectively. Observe that if A, g € H* are distinct then
(1) A,NA, =@, B,NB,= @ and
(2) A4,N B, C H".

If h € H?, define A}, = A\ H* and B, = B,\ H*. Then the collection
C={A,h€ H*} U {B;:h € H*}

is pairwise disjoint and

G\ U (45, U B})|<|G\S|+|T| +|H*|<§,.
hEH®
Consequently, by using Sierpinski’s Lemma 2.1(b), we can conclude by precisely the
same construction as in the proof of Theorem 3.1 that exactly one of the collection C
is nonempty. If 4} # 0, then fis constant and if B, # & then fis a translation.
We have completed the proof of the following

4.1. THEOREM (CH). There is a connected and locally connected topological group H
such that each self-map f: H — H (not necessarily onto) is either constant or a
translation.

We do not know whether the above theorem is true without the assumption of the
CH. Notice that for the case of homeomorphisms we found a trick which was used
to avoid the CH. We have tried for some time to find a similar trick for self-maps,
but although we believe that there should be one handling this more general case, we
did not succeed.

4.2. Question. Does there exist a homogeneous continuum X such that each self-map
f: X - X is either constant or a homeomorphism?

5. Unique homogeneity. Burgess [4] asked whether uniquely homogeneous con-
tinua exist and Ungar [22], using deep results of Effros [8], showed that if X is
uniquely homogeneous and either compact or locally compact and locally connected,
then X is an Abelian topological group, and the group of topological automorphisms
of X is trivial. Barit and Renaud [2] in their paper, There are no uniquely homoge-
neous spaces, show that if G is a locally compact topological group with Aut(G) =
{id}, then G = {0} or G = Z,, thus answering Burgess’ question in the negative.
Since the examples we get from Theorem 3.1 are Boolean groups, it easily follows
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that they are uniquely homogeneous. This shows that the title of the Barit and
Renaud paper is somewhat misleading. In addition, it also shows that in their result
the local compactness is essential, since our group H has no nontrivial topological
automorphisms. In addition, since H intersects all Cantor sets in §, it easily follows
that H is Baire. We therefore conclude that on the one hand, compact or locally
compact and locally connected uniquely homogeneous spaces do not exist, but on
the other hand, Baire uniquely homogeneous spaces do exist. This suggests the
following question.

5.1. Question. Does there exist a uniquely homogeneous topologicaily complete space
(containing more than one point)?

All examples we have of uniquely homogeneous spaces are topological groups.
The way we constructed these examples shows that we cannot avoid this. This
suggests the following question.

5.2. Question. Does there exist a uniquely homogeneous space that does not admit the
structure of a topological group?

6. Rigid subspaces. We will proceed to show that H has a very curious additional
property.

6.1. THEOREM. If x € H, then H\{x} is rigid.

PRrOOF. Let h: H\{x} - H\{x} be a homemorphism. By 3.3, there is a transla-
tion g: § — § such that g| H\{x} = h. Assume that g(y) =y +aforally € 6. If a
is not the identity, then x + a # x: consequently, x + a € H\{x}. Therefore,

h(x+a)=g(x+a)=x+a+a=x,
which is a contradiction of course. So a must be t' ¢ identity of §, whence A is the
identity homeomorphism of H\ {x}. O

The above result shows that there are rigid spaces that can be made into a
topological group by adding just one point.

The reader is encouraged to check that under CH, the space H\{x} has the
property that any self-map is either constant or the identity. Again, we do not know
whether CH is essential here.

The reader can easily cook up many more improbable properties of H in the same
spirit.

7. Remarks. R. D. Anderson [1] showed that the autohomeomorphism group
Auth(X)of many topological spaces X is algebraically simple. The easiest examples
of spaces X for which Auth(X)is not simple are spaces for which Auth(X)is
Abelian. There are such spaces, since de Groot and Wille [11] showed that each
countable group is isomorphic to the autohomeomorphism group of some 1-dimen-
sional Peano continuum: see also de Groot [10]. While discussing this with Eric van
Douwen, we observed that we did not know of an example of a homogeneous space
the autohomeomorphism group of which is Abelian. Our example H is isomorphic to
Auth(H) and consequently Auth(H) is Abelian.

REMARK (added in February 1983). In a forthcoming paper entitled 4 uniquely

homogeneous space need not be a topological group (to appear in Fund. Math.), I will
answer Question 5.2.
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