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DECOMPOSITIONS OF RIGID SPACES
FONS VAN ENGELEN AND JAN VAN MILL

ABSTRACT. We give an example of a rigid subspace of R which can be decomposed
into two homeomorphic homogeneous parts, and of a rigid subspace of R which can
be decomposed into two homeomorphic rigid parts.

1. Introduction. All spaces under discussion are separable metric. In the past few
years, a number of papers have been published presenting examples of decomposi-
tions of spaces into homeomorphic parts. By Menu [3] and van Mill [S], decomposi-
tions of R into homeomorphic homogeneous parts were constructed. The question of
Arhangelskii, whether “nice” (homogeneous) spaces could be partitioned into two
homeomorphic, very “bad” (rigid) subspaces was answered by van Mill and Wattel
in [6], where such partitions were constructed for the circle and many other spaces.
A decomposition of R into two homeomorphic rigid parts has recently been
obtained by van Engelen [1].

As becomes clear from the above, up to now attention has been focused upon
decompositions of well-known homogeneous spaces. The aim of this note is to
consider the reverse situation: we construct a very bad (rigid) space which can be
decomposed into two homeomorphic nice (homogeneous) subspaces. An example of
a rigid space which can be partitioned into two homeomorphic rigid subspaces is
also given.

2. Preliminaries. Let f: X — Y be a function; the domain and range of f will be
denoted by dom( /) and ran( f), respectively. If f is a homeomorphism, we will write
f: X~Y; if X=17, then f is called an autohomeomorphism of X. A topological
space X is rigid if the identity is its only autohomeomorphism, and homogeneous if
for each x, y € X there exists an autohomeomorphism f of X with f(x) = y.

Cardinals are initial ordinals, and an ordinal is the set of its predecessors; the
cardinality of a set 4 is denoted by |4 |; ¥, is the first infinite ordinal.

If A and B are subsets of R, then 4 + B={a+b:a€ A, bE B}. If 4 = {x},
then we will write x + 4 instead of {x} + 4; AB, xB, and B/x are defined
similarly.

In the construction of our examples we will use the technique of “killing
homeomorphisms”, originally due to Kuratowski, and successfully employed by
many authors. A fundamental weapon will be the following theorem:
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2.1. THEOREM (LAVRENTIEFF [2]). Let X and Y be completely metrizable, and let
ACX, BCY; let h: A~ B. Then there are Gg’s A" in X and B’ in Y such that
A C A’y B C B’, and h can be extended to a homeomorphism h’: A’ =~ B’.

We will also need the following result.

2.2. THEOREM (VAN MILL [5]). Let A C R be such that A + Q = A. Then A is
homogeneous.

3. The examples. We will now present an example of a dense and rigid subspace of
R which is the disjoint union of two dense homeomorphic, homogeneous subspaces.
We start with some notation.

(i) Q, = {Z ,7™q;: n; €Z, q, € Q, k € N}; note that | Q,, |= R,
(i) A(x) = Ukez(ﬂ"x + Q,); note that |A(x)|= N,, and that y € A(x) iff
x € A(y).

(ii)) % = { f: dom( f ), ran( f) are G5’sin R, and f: dom( f) ~ ran( f)};

(iv) 8 = {f € F: | {x € dom(f): f(x) & A(x)}|= 2%}; since |§|< 2™, we can
enumerate § as { f,: a < 2%},

Inductively, find x, € dom( £,) for a < 2%, such that the following conditions are
satisfied:

() x, & U{A(xp): B<a} U U{A(fp(xp)): B<a} U U,z ,0Q./(1 = 7*);

) fu(x,) & U{A(xp): B<a).

The construction is a triviality; for details, see [1], [4] or [6]. Now put

= U (x,7Q), X= U n(x,+Q).

a<2®o a<2®o

Finally, let X = X, U X,; we claim that X is as required.

3.1. LEMMA. (3) X, = X,.
(b) X, and X, are homogeneous.
©XNX,=0.

PROOF. (a) is trivial, and (b) follows immediately from Theorem 2.2. For (c),
suppose that x, + g = mxg + mq’ for certain a, B < 2% and g¢,q’ € Q. Then
X, € A(xp), hence a = B because of (1) above. So x, (1 — 7) = mq’ — q, whence
x, € Q,/(1 — m), contradicting (1). U

The following lemma is similar to Lemmas 3.2 and 3.3 in [4]; the easy proof is
omitted.

3.2. LEMMA. (a) {x,: a < 2%0} intersects every Cantor set of R.
(b) If U C X is open, and %) is a countable family of nowhere dense subsets of X, then
|U\ U D|= 2%,

We will now prove the main theorem.

3.3. THEOREM. X is rigid.
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PROOF. Suppose f: X ~ X; we must prove that f is the identity. By Theorem 2.1,
there exist G,’s S and T in R such that f can be extended to a homeomorphism f”:
S~T. If [{x €S: f(x) &A(x)}|= 2%, then f’ €8, say f' =f; then x, € X,
hence f(x,) = f(x,) € X. So f(x,) € {xz + g, 7(xz + q)} for some B < 2% g €
Q. But then f,(x,) € A(xg), contradicting (1) or (2). We conclude that |{x € S:
f'(x) & A(x)}|< 2%°, and thus also that | {x € X: f(x) & A(x)} |< 2%o.

Fory €Q,,k €Zput X, , = {x € X: f(x) = n*x + y}. Then X, , is closed in

X. Assume that for a certain k € Z, y € Q,, we have that X, , has nonempty interior
(in X). By Lemma 3.2(a), x,, € Int X, , for some a < 2%0; then f(x,) = 7¥x, + y.
Also, f(x,) € X.
Case 1. f(x,) = mxgz + mq for some B < 2%, g € Q. Then TXg + mq = 7kx, + y, or,
equivalently, xg = 7*7'x, + y/7 — g € 7*"'x, + Q, C A(x,). Hence a = B and
therefore x (1 — #*~ ') € Q. From (1) it follows that k = 1, and hence y = mq. So
for all x € X, , we have that f(x) = mx + mq. Again by Lemma 3.2(a), 7x; €
Int X, , for some & < 280, Hence f(7xs) = m?x5 + mq, and also f(7x,) € X.

Case (i). f(mx;) = x, + ¢’ for some'y < 2%, ¢’ € Q. Then x, = 72x, + 7q — ¢’
€ m2x5 + Q, C A(xs), 50y = 8 and x4(1 — #2) € Q_, contradicting (1).

Case (i1). f(nxs) = mx, + mq’ for some y < 2% g" € Q. As above, y = § and
x5(1 —m) € Q,, again contradicting (1).

Case 2. f(x,) = xg+ q for some B<2%, g€ Q. As in Case 1, B =a, and
x (1 —7¥) € Q,; hencek =0andy = ¢, so forall x € X, ., we have that f(x) = x
+ ¢. 1f 8 < 2% is such that mx; € Int X, ,, then f(7x,) = 7x5 + q € X.

Case (i). f(mxs) = x, + ¢’ for some y < 2%, ¢’ € Q. Then y = & and xs(1 — 7)
€ Q,, a contradiction.

Case (ii). f(nx5) = mx, + wq’ for some y < 2%, g’ € Q. Theny = § and ng’ = g,
whence g = 0.

From the above it follows that Int X, , = @ if k 0 or ¢ # 0. So by Lemma
3.2(b), for everyopen U C X, | U\ U {Xklv: kelyeQ,,(k, y)#(0,0)}|= 2%,
whereas |U\ U {X, ,: kE€Z, y € Q"}i< 2% Hence Xypo 1s dense in X and
therefore equal to X; so f must be the identity. [

The construction of our second example is very similar to that of the first one;
hence we will only give a sketch of the proof of the following theorem:

3.4. THEOREM. There exists a rigid subspace Y of R such that Y = Y, U Y,, where
Y\, Y, are dense, rigid, disjoint and homeomorphic subspaces of Y.

PROOF. Put A(x) = x + Z, and replace (1) in the construction of the first example
by: (1) x, & U{d(xp): B<a} U U{A(fp(xp)): B<a). Define ¥, = {x,: a<
2%} and ¥, = Y, + 1. Then Y = Y, U Y, is as required. O

4. Remark. Considering the examples in this note, and in previous papers, one
might wonder whether there exist spaces which cannot be decomposed into two
homeomorphic rigid or homogeneous parts; or, even better, a space which cannot be
decomposed into two homeomorphic parts at all. The easiest, and most insipid
example is the one point space. A somewhat less uninteresting example is a
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convergent sequence (with its limit), but of course one would like to have a space
without isolated points. Such a space can be obtained by replacing the nth point of
the sequence by the n-dimensional cube (use a dimension argument). However, all
these examples behave the way they do because there is an odd number of bad
points (viz one). It would be nice to have an example of a homogeneous space
(infinite) which cannot be partitioned into two homeomorphic parts.

RETERENCES

1. F. van Engelen, A decomposition of R into two homeomorphic rigid parts, Topolgy Appl. (to appear).

2. M. Lavrentieff, Contribution a la théorie des ensembles homéomorphes, Fund. Math. 6 (1924),
149-160.

3. J. Menu, 4 partition of R in two homogeneous and homeomorphic parts (to appear).

4. J. van Mill, Strong local homogeneity does not imply countable dense homogeneity, Proc. Amer. Math.
Soc. 84 (1982), 143-148.

5. ______, Homogeneous subsets of the real line, Compositio Math. 46 (1982), 3-13.

6. J. van Mill and E. Wattel, Partitioning spaces in homeomorphic rigid parts, Colloq. Math. (to appear).

MATHEMATISCH INSTITUUT, UNIVERSITEIT VAN AMSTERDAM, ROETERSSTRAAT 15, 1018 WB AMSTER-
DAM, THE NETHERLANDS

SUBFACULTEIT WISKUNDE, VRUE UNIVERSITEIT, DE BOELELAAN 1081, 1081 HV AMSTERDAM, THE
NETHERLANDS



