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1. Introduction 

It will be convenient to call a space X a ParoviZenko space if 

(cy) X is a zero-dimensional compact space without isolated points, 

(p) every two disjoint open F,-sets have disjoint closures, and 

(y) every nonempty GG-set in X has non-empty interior. 

Compact spaces satisfying (p) are usually called F-spaces, while spaces satisfying 

(y) are called almost-P spaces. Examples of F-spaces are the extremally discon- 

nected spaces. Examples of almost-P spaces are ncl-sets (and their com- 

pactifications). Examples of compact F-almost-P (Parovitenko) spaces are all 

spaces of the form X* = /3X -X, where X is a locally compact realcompact (respec- 

tively, zero-dimensional) space [6,7]. 

It is well-known that under CH, the continuum hypothesis, all ParovZenko 

spaces of weight c are homeomorphic [9]. The converse of this result is true, i.e., 

if all Parovicenko spaces of weight c are homeomorphic, then CH is true [4]. The 

standard example of a ParoviEenko space of weight c is N*, where N is the discrete 

space of natural numbers; however, more examples can be produced using spaces 

of the form (K x RJ)*, where K is a compact zero-dimensional space of weight at 

most c (e.g. K equal to the Cantor set or N*). 

The absolute (see [lo] or [16] for surveys) of a regular space X is the unique 

(up to homeomorphism) extremally disconnected space g(X), which can be mapped 
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by a perfect irreducible map onto X. Spaces X and Y are called co-absolute when 

8(X) and g(Y) are homeomorphic. R.G. Woods first considered “ParoviEenko- 

like” characterizations of the co-absolute of N*, [14,15]. These were recently 

improved by Broverman and Weiss, [2], who presented 

1.1. Theorem. CH implies every Parovic’enko space of r-weight at most c is co- 
absolute with N*. 

Broverman and Weiss also show that their result is not a theorem in ZFC by 

proving 

1.2. Theorem. Assume K1 <c and that every Parovi?enko space of weight c is 
co-absolute with N*. Then c<2”. 

The purpose of this paper is to present a partial converse to 1.1 which is 

simultaneously an improvement of 1.2. Specifically we establish, through two 

examples, the following 

1.3. Theorem. Assume that every Parovitenko space of weight c is co-absolute 
with N*. Then c ~2~~. 

2. The first example 

Throughout this paper, c = 2Ko and w(X) denotes the weight of a space X. The 

intersection of at most Kr open sets of a space will be called a G&-set. Observe 

that a compact zero-dimensional space X possesses precisely w(X) many clopen 

sets; moreover, since each closed (= compact) subset has a neighborhood base of 

clopen sets, X has at most w (X)H1 closed GK1-sets. 

2.1. Lemma. Suppose that X is compact. Then there is a ParoviCenko space 0~ 
and a continuous surjection cpx : Rx +X satisfying 

(1) w (ax) == w (X)K1, and 
(2) if G is a non-empty GUI-set, then q;‘(G) has non-empty interior in ~Jx. 

Proof. Since each compact space is a continuous image of compact zero- 

dimensional space of the same weight, we assume, without loss of generality, X is 

zero-dimensional. For convenience, put K = w (X)“l. From the above observation, 

we may choose A E X having cardinality at most K and intersection each non-empty 

closed GKt-set of X. Topologizing Y = (X x {O}uA x (1)) as in the Alexandrov 

double (see [5, p. 1731) transforms Y into a compact zero-dimensional space of 

weight at most K with A x (1) open and discrete. Let p: Y +X be the natural 

projection. If G is a non-empty G&-set of X, then G contains a non-empty closed 

GK1-set H. By construction, H n A # 0 which implies p-‘(H), and hence p-‘(G), 
has non-empty interior in Y. 
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Define fl,=(YxN*), let n: YxfV + Y be the natural projection, and define 

pox =P o(Pn rJ2x), w h ere pr is the Stone extension of n to /3( Y x N). Since Y x N 

is a a-compact zero-dimensional space, it is strongly zero-dimensional and has at 

most w(Y)~“=K~~= K clopen sets. Consequently, p (Y X N) is a zero-dimensional 

space of weight at most K. By [6] and [7] we may therefore conclude 0, and cpx 

are as advertised. Cl 

We employ the previous lemma in the construction of the following. 

2.2. Example. There is a Parovic’enko space S of weight at most 2”’ such that 

each non-empty G&-set of S has non-empty interior. 

Proof. By recursion, for each ordinal A <w 2 we will construct a ParoviEenko 

space S,, and for each v <A a continuous surjection fAy: S, + S, subject to the 

restrictions 

(1) w(S,)~25. 

(2) If G is a non-empty GK1-set, then f,;’ (G) has non-empty interior in S,. 

(3) If v<~~<h,thenf,,of*,=fh”. 
Let So = fU* and suppose K <w2 is an ordinal for which everything has been 

constructed for all A <K. We put 

X = li$&, fh”, K) and g, = lim(f,,, K) for each v <K. 

Observe that w(X) c K1 * 2N1 = 2H1 and that X is compact and zero-dimensional. 

Define S, = 0, (from Lemma 2.1). In addition, for each v <K define fxy = g, 0 cpx. 

It is clear that our recursion hypothesis is satisfied. 

Now define S r lim (S,, fAvr w2) and for each v < w2 define fv = lim (fhy, w2). First 

observe that if C E S is clopen, then there is A < 02 and a clopen K E S, such that 

f;‘(K) = C. This readily implies that S has all the required properties. For let F, 

F’ be disjoint open F,-sets. Applying the observation above (and compact zero- 

dimensional), we may find h, h’<w2 and open F,-sets E and E’ of S, and Shf 

respectively, such that f;‘(F) = E and fh! (F’) = E’. Without loss of generality, 

A’S A. Then, f;;hlf (F’) and F are two disjoint open F--sets of the ParoviEenko 

space S,, and hence, they have disjoint closures in S,. Now (3) implies E and E’ 

have disjoint closures in S. So we conclude S is an F-space. Similarly, using (2) 

(and the fact the inverse system is “increasing” of length w2 > ml), the reader can 

easily check that each non-empty GKi-set of S has non-empty interior. 0 

3. The second example 

Given a space X, the iVotiak number, n(X), is defined (see [l] for studies of 

n (N*)) by 

n(X) = inf{cardinals K : X can be covered by K nowhere dense sets}. 
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Analogously to the weak Lindelof degree of a space X, we define the weak Nov’ak 

number, wn(X), by 

wn (X) = inf(l9 I: 9 c P’(X), U9 is dense in X, and 

each D E 9 is nowhere dense in X}. 

Observe that whenever X has no isolated points, the density of X is not smaller 

than wn (X). 

3.1. Example. There is a Parovic’enko space T of weight c such that wn (T) s KI. 

Proof. Let W be the one-point compactification of the discrete space of cardinality 

Kr, and co be the non-isolated point of W. Let M = w1 W have the Tychonov product 

topology and define T = (b4 x M)*. We claim T is as required. Indeed, T is clearly 

a Parovicenko space of weight at most w (M)Ko = Kp = c (see the argument in 

the last paragraph of 2.1). Since each almost-P space without isolated points contains 

a family of c pairwise-disjoint open sets, it follows that w(T) = c. 

For each ordinal (Y E o i, let 7ra : M --* W be the projection onto the ath coordinate. 

So if w, E W - {a} for each IZ E N, then 

is a clopen set of FV xM disjoint from N x 7r,’ ({co}). Put 

D, = bd x n,’ ({co}) - (N x M), 

where closure is taken in p(fV xM). It is easily seen that each D, is a nowhere 

dense closed subspace of T. That wn (T) s K1 will follow once we show I_J{D= : a E 

wl} is dense T. 

Suppose that C is a non-compact clopen subset of N x M. It will be sufficient to 

find an (Y E o1 such that in /3@J x M), 

cnDD,-(NxM)#P). 

To this end we first let 

N={n~lVCn{n}xM#0} 

and 

C,=Cn{(n}xM ifn?N. 

For n EN, C, is clopen in {n}xM, so we can find a finite subset F,, swl such that 

v E w 1 -F,, implies 

(In) x rr;’ (+4)) n C, # 0. 

Take cy E w 1- IJ{F, : n E N} arbitrarily. Further, choose 

wfl E (In} x n,’ (M) n C,. 
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Then in /3(N xM) each limit point of {w,: n EN} is easily determined to be an 

element of C nD,. 0 

4. The proof of Theorem 1.3 and remarks 

First we observe that the weak NoGak number is a co-absolute invariant 

property. 

4.1. Lemma. For any space X, wn (Z?(X)) = wn (X). 

Proof. This is easy, for given a closed continuous surjection f: Y +Z that is also 

irreducible [i.e., f(F) is a proper closed subset of 2 whenever F is a proper closed 

subset of I’], D ~2 is dense (respectively, nowhere dense) iff f-‘(D) is dense 

(nowhere dense) in 2. q 

We will now give the proof of our main result, Theorem 1.3. To this end we 

show wn(T)< wn(S) which implies, according to Lemma 4.1, that 8(S) and 8(T) 

are not homeomorphic. 

Suppose K is a regular ordinal, w O < K C w2, and suppose {GA : A E K} is a family 

of open dense sets of S. Since every non-empty GKr-set of S has non-empty 

interior, we may construct, via compactness and a Baire category type argument, 

a family {CA : A E K} of non-empty clopen sets of S such that 

chEn{GAnc,:CL<A} foreachAEK. 

Again by compactness, n{Ch : A E K} # 0. It is now clear that 

wn(T)~Ki<Ki<wn(S). q 

4.2. Remarks. (1) The reader should observe the translation of the results in this 

paper to Boolean algebraic terminology. First, a pair of compact spaces are co- 

absolute iff they have isomorphic regular-open set algebras. Second, a ParoviEenko 

space is characterized as the Stone space of a weakly countably complete, o-closed, 

atomless Boolean algebra, see [3] or [8]. Through such translations the following 

improvements of 1.1 announced in [ll] (with a totally different proof than that in 

[2]) exists: 

CH implies that X and N* are co-absolute whenever X is a compact almost-P 

space of n-weight c without isolated points. 

We do not know whether the converse is true. 

(2) The machine used in [2] to prove 1.2 appears new; however, the authors did 

not realize that the resulting Boolean algebra is always the so-called c- 

homogeneous-universal Boolean algebra, which exists iff c = 2”, [3]. A somewhat 

similar but much more complicated machine was subsequently constructed by the 

second author of this paper in order to give the first proof of 1.3 [12]. 
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(3) We feel, as do the authors of [2], that the converse to 1.1 is a theorem. 

Attempts to prove this have failed so far. The reader should be aware of the 

following curious but related results from [13]. Let K be the Tychonov product of 

K1 many two-point discrete spaces and put 2 = (Nx K)*. Then N” and 2 are 

co-absolute iff X* and N* are co-absolute whenever X is locally compact, realcom- 

pact, non-compact, and of weight at most c. Further, “PI* and 2 are co-absolute” 

is consistent with K1 CC. 
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