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WEAK P-POINTS IN CECH-STONE COMPACTIFICATIONS
BY
JAN VAN MILL

ABSTRACT. Let X be a nonpseudocompact space which is either nowhere ccc or
nowhere of weight < 2 Then 8X — X contains a point x which is a weak P-point
of BX,ie if FC BX — {x} is countable, then x & F. In addition, under MA, if X is
any nonpseudocompact space, then 8X — X contains a point x such that whenever
F C BX — {x} is countable and nowhere dense, then x & F.

0. Introduction. A/l spaces are completely regular and X* denotes X — X.

Frolik’s [F] proof that the Cech-Stone remainder of a nonpseudocompact space is
not homogeneous is elegant and ingenious, but does not give points which are
topologically distinct by an obvious reason. When Kunen [K,] proved that there are
Rudin-Keisler incomparable points in Sw, Frolik’s ideas were used by Comfort [C]
and van Douwen [vD, ] to show that, respectively, no infinite compact space in which
countable discrete subspaces are C*-embedded is homogeneous and that BX is not
homogeneous for any nonpseudocompact space X. These results showed that certain
spaces are not homogeneous but not “why” they are not homogeneous. This
suggests an obvious question which has been considered by several authors during
the last years.

The first promising partial answers to this question were obtained by van Douwen
[vD;], who showed that each nonpseudocompact space of countable 7-weight has a
remote point (independently, this was also shown by Chae and Smith [CS]), and that
remote points can be used to show that certain Cech-Stone remainders are not
homogeneous. Unfortunately, it was soon clear, by examples in van Douwen and
van Mill [vDvM, ], that this line of attack did not solve the entire problem, since
many spaces do not have remote points. Earlier, van Douwen [vD,] had introduced
far points and «w-far points and showed that these points exist in certain Cech-Stone
remainders and that they also could be used to show that a restrictive class of
Cech-Stone remainders is not homogeneous. Each remote point is a far point and
each far point is an w-far point when we restrict our attention to spaces without
isolated points. When it was shown that not every nonpseudocompact space has a
remote point, van Douwen’s [vD,] question whether every nonpseudocompact space
without isolated points has an w-far point again became interesting. The examples in
[vDvM, ] did not clarify this question since they all have far points. From [vDvM, ] it
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658 JAN vAN MILL

became clear that a counterexample to this question promised to be very difficult
and this motivated the author to try to prove a theorem instead of finding a
counterexample.

In the meanwhile, Kunen [K,] proved the important and highly nontrivial result
that weak P-points in w* exist. This result provides a very satisfactory solution to the
problem of the nonhomogeneity of X*. It is easily seen that whenever X is a
nonpseudocompact space, Kunen’s theorem implies that there exists a point x € X*
such that whenever F C X* — {x} is countable and has compact closure in X*, then
x & F. Consequently, X* contains points which very much look like weak P-points,
but obviously, in general, need not be weak P-points. This suggests the question how
close points in X* can be to weak P-points, and the surprising answer to this
question is “ very close”. Kunen’s theorem gives no elegant solution to the problem
of the nonhomogeneity of 8X. In addition, one would like to find a point x € X*
that shows that both X* and BX are nonhomogeneous at the same time. The aim of
this paper is to construct such points.

0.1. THEOREM. Let X be any nonpseudocompact space. Then

(a) if X is either nowhere ccc or nowhere of weight < 2%, then X* contains a point
which is a weak P-point of BX, and

(b) (MA) X* contains a point x such that whenever F C X — {x} is countable and
nowhere dense, then x & F.

A ccc space of weight < 2¢ is usually considered to be a nice space since it is
“small” for several reasons. In the theory of Cech-Stone compactification, ccc spaces
of weight < 2¢ are extensively studied since in the presence of the Continuum
Hypothesis all kinds of nice points can quite easily be constructed, i.e. P-points,
remote points, etc. Large spaces were not considered since the small spaces turned
out to be difficult to handle without the aid of the Continuum Hypothesis and why
should one increase the difficulty by removing hypotheses which seemed essential
when deriving results with the Continuum Hypothesis. Theorem 0.1(a) shows that
this argumentation contains a severe mistake. One can use the fact that spaces are
large to construct “nice” points. The first to observe this was Dow [D] (maybe
Kunen noticed this earlier than Dow when he remarked in [K,] that his proof that
w* contains weak P-points is more complicated than his proof that w¥ contains weak
P-points). Apparently, the small spaces are complicated and not the large ones (for
our specific purposes of course).

Although my proof of Theorem 0.1(b) unfortunately uses Martin’s axiom, the
result strikes me as a fundamental theorem in Cech-Stone compactifications. No
hypotheses on X, beyond nonpseudocompactness of course, are assumed, yet one
gets very “special” points in 8X. In addition, it solves van Douwen’s question stated
above.

Our proof of Theorem 0.1 is not easy and unfortunately is rather lengthy. We
heavily rely on results and techniques of Bell [B], Dow [D], Dow and van Mill
[DvM], Kunen [K,] and van Mill [vM,]. Since only one of the above papers has
been published as yet, in this paper we will give the complete proof of Theorem 0.1.
Therefore, our paper has the character of a survey paper as well as a research paper
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since we present also a considerable amount of new material. We deliberately have
chosen this form of presentation since we hope that this will enlarge the readability
of our paper.

1. Preliminary remarks. This paper consists of ten sections, each of which can be
read rather independently. At the beginning of each section we state the main result
and at the end of each section we give notes.

Let X be a space. A point x € X is called a weak P-point provided that x & F for
any countable F C X — {x}. A space is ccc if each family of pairwise disjoint open
subsets is countable. If % is a topological property, a space is called nowhere &
provided that no nonempty open set has .

If U C X, then Ex(U) = BX — clgy(X — U).

Notes for §1. Weak P-points were introduced by Kunen [K,], after Shelah (see [M
or W]) showed that P-points need not exist in w*.

2. Extending nice filters to OK-points. Let X be the topological sum of countably
many compact spaces, say X, (n < w). A closed filter % on X is called nice provided
that [{n<w: FNX,= @} |<wforall FE%, and N% = . In this section we
show that whenever F is a nice filter on X and if X has weight at most 2%, then there
exists a weak P-point x € X* (i.e. a weak P-point of X* and not necessarily of SX)
such that x € M gclyy F.

In §4, we will use this result to show that the same result is true without the weight
restriction on X.

A closed subset 4 C X is called a P-ser provided that the intersection of countably
many neighborhoods of 4 is again a neighborhood of 4. We begin with a simple
result.

2.1. LEMMA. Let X be a locally compact and o-compact space and let A be a closed
subspace of X. Then clgy A 0 X* is a P-set of X*.

Proor. Let F be an F, of X* disjoint from 4* = clgy 4 N X*. Assume that
F= U, __F,, whereeach F, is closed in X*. For each n < w take a neighborhood U,
of 4 in X such that

@ UL, CU;

(b) Ex(U,) N F, = o.

Since X is o-compact, so is 4. So we may write 4 = U __A,, where the 4,’s are
compact. For each n < w let ¥, be an open subset of X such that 4, C ¥V, C U,
while, in addition, ¥, is compact. Let = U___V¥,. Then Ex(V') is a neighborhood
of A* which misses F. [

Let X be a normal space. A point p € X* is called k-OK provided that for each
sequence {U,: n < w} of neighborhoods of p in X* there are closed sets 4, C X
(a <x)suchthatp € M _, clgy 4, while, moreover, for each n =1 and ) < a, <
e <a, <k,

n<w

M cgyd, N X*C U,

I<i<n

Observe that the property of k-OK gets stronger as k gets bigger.
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2.2. LeMMA. Let X be a locally compact and o-compact space and let p € X* be
w-OK. Then p is a weak P-point of X*.

PrROOF. Let F C X* — {p} be countable. List F as {x,: 1 <n < w}. Take closed
A, CX(a<wp)suchthatp € N, _, clgyA, while, moreover, for each n > 1 and
o <ay<--o-<a, <w),
(1) () clgyd, NX*CX*—{x,}).

l<<i<n

For convenience, put A% =clgy 4, N X*. If AX N F+# @ for every a < w,, then
there is an uncountable E C w; and 1 <n <« such that x, € N ., 4% which
contradicts (1). Hence Ay N F= @& for certain a < @y Smce by Lemma 2.1, A%,
is a P-set of X*, it follows thatA* NF=g,ie.pe F. O

Whenever X is a set and « is a card1na1 we define (as usual)

X["={4CX:|4|=«},

[X]¥*={4 C X:|A|<«},and

[X]™" = {4 C X:|A]|< «}, respectively.

2.3. DEFINITION. Let & be a closed filter on X and assume that no F € § is
compact.

If 1<n<w,an indexed family {4;: i € I} of closed subsets of X is precisely
n-linked w.r.t. ¥ if for all ¢ € [I]" and F € F, N,_ A; N F is not compact, but for
alle € [1]"*!, N, _, A, is compact.

An indexed family {A4,,: i € I, 1 < n < w} is a linked system w.r.t. 5 if for each n,
{4,y 1 € I} is precisely n-linked w.r.t. &, and for each nand i, 4;, C 4, 1.

An indexed family {4/: i€, 1<n<w,jEJ}isan I by J independent linked
family w.r.t. Fif for each j € J, {4],: i €1, 1 <n < )} is a linked system w.r.t. §,
and ﬂjeT( N ieojA{,,/) N F is not compact, whenever r € [J]<*, and for each j € 1,
l<n <wando, €[Iand FEG

The filter of cofinite subsets of w is denoted by C%.

2.4. LEMMA. There is a 2% by 2* independent linked family of subsets of w w.r.t. C%.

PROOF. Let S = {((k, f): k € w & f € §P(k)?®}. The required family (defined
on the countable set S) will be of the form

{4h: XeP(w), 1 <n<w,YEP(w)],
where
A%, = {(k, [YESAY N k)| <n&XNkEFYNK)}.

We now come to the main result in this section.

2.5. THEOREM. Let X be the sum of countably many compact nonempty spaces of
weight at most 2°, say X, (n < w) and let % be a nice filter on X. Then there is a 2°-OK
point p € Mp_gclgy F N X*,

Proor. Without loss of generality, assume that X, N X, = & for all distinct n,
m<w. Let {Z,: p <2“&pis even} enumerate all nonempty closed G,’s of X (there
are clearly only 2% closed Gj’s). In addition, let {(C,,: n < w): p <2°&p is odd}
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enumerate all sequences of nonempty closed Gg’s satisfying C, ,,, CintC,, —
U,., X;. Furthermore, assume that each sequence is listed cofinally often. Finally,
let {42 :a <2% 1<n<w, B <2“} be an independent linked family of subsets of
« with respect to C%.

By induction on g we construct % J, and K, so that:

(1) 3, is a closed filter on X, K, C 24, and (U{X:i€df ) a<24 1<n<a,
BeK } is an independent l1nked family w.r.t. 4,;

) KO =2“and %, = %,

(3) v < pimplies &, C J and K, D K;

(4) if p. is a limit ord1na1 =U,., J,, and K, = N, K,;

(5) foreach u, K, — K, is finite;

(6) if p is even, e1ther VRS Jr or some F €Y mlsses z,;

(7) if p is odd and each ,» then there are D, E g 41 for a <2¢ such that
foralln=1and all a; < ax, < e < a, < 2¢ the set (DMl ﬂ -+ ND,, )~ G, has
compact closure in X.

Notice that since ¥ is a nice filter, the collection

{U {.)(i:iEAgn}:a<2“’,l<n<w,ﬁ<2“’}

is indeed an independent linked family w.r.t. &. Put ES, = U {X,: i € 48} for all
a<2° l<n<wand B <2v

Let us assume for a moment that this construction can be carried out and put
§= U, 9, By(6) § is a closed ultrafilter, hence MNgegClpgxG N X* consists of
precisely one point, say p. by (2), p € M gClgy F and by (7), p is 2°-OK.

Fix p < 2“ and assume that the ¥, K, have been constructed for » < p. We will
construct § . ; and K, ;.

If p is even, let 9 be the closed filter generated by U{Z,}. If 9 has no compact
elements and if

(E:a<2°1<n<o,BEK,}

is independent wrt O we set §,, = =9 and KHJrl = K,. If not, then we can find
E €9, such that Z, NEN ﬂBET(ﬂ cop ﬁ) is compact for some 7 € [K,]™,
ng € w and oﬁ S [2“’]"3 Then let Ku 1= K —, and ¥, be the closed filter
generated by &, and Mg ( ﬂae, ) Clearly ¥ .1 and K, are as required.

If pis odd and some C,, is not 1n o put 3., =9 and K, , = K. In case
C,, €9, foreachn <w, then fix 8 € K and letK,., =K, — {B}. Let 3, be the

closed f11ter generated by &, and the collecuon {D, o & <2}, where
D.= U EfN cu,,.
l<sn<w

First observe that D,, is closed in X since C,, C U, X; for all n < w. To verify
condition (7), let oy < @, < - -+ < a, < 2“ and put

Y=(D, N -mDM)—cu,,.

If n=1, thenclearly Y = &, since D,, C G- Therefore, assume that n > 1.
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Claim. Y CEf ,_,n---NE ..

Take x € D,, N ---ND,, and assume that x € N, .., ES; N G, where
k, = nfor some 1 <iy<n.Since G, C C,, it follows that x & Y.

Therefore, if x € Y then there existk,<n — 1 (1 <i

xe (\ Ef. nc, c M EF,_,,
I<i<n I<i<n

since Ef, C Ef,_ foreachk,<n—1.

This implies that Y has compact closure since these E£ .1 are precisely (n — 1)-
linked.

Finally, to verify condition (1), observe that D,, O C,, N EB for eachn. O

2.6. COROLLARY. Let X be the sum of countably many nonempty compact spaces of
weight at most 2, say X, (n < w) and let ¥ be a nice filter on X. Then there is a point
P € NgegCley F O X* which is a weak P-point of X*.

PrOOF. Apply Lemma 2.2 and Theorem 2.5. [

2.7. ReMarks. Corollary 2.6 is weaker than Theorem 2.5 since in w* there exist
weak P-points which are not 2“-OK (see [vM,]). As remarked in the beginning of
this section, in Corollary 2.6 the condition that the spaces X, have all weight at most
2¢ is superfluous (see §4). However, in the proof of the general result we need the
special case Corollary 2.6.

2.8. ReMark. Obviously, being a weak P-point is a nicer topological property than
being a 2“-OK point. However, 2“-OK points are more interesting than weak
P-points since they seem to have more applications (see e.g. [vDvM;]).

Notes for §2. The concept of a k-OK point is due to Kunen [K,]. If x € X, then x
is called x-OK provided that for each sequence of neighborhoods {U,: n < w} of x in
X there is a sequence of neighborhoods {V,: a < x} of x such that for each n = 1
anda; <a, < ---<a,<k, N _.,V, CU,. Fortechnical reasons we have slightly
changed the definition of a k-OK point in the special case of Cech-Stone remainders.

The technique of proof used in this section is due to Kunen [K,] who proved
Theorem 2.5 for the special case X = w and ¥ = CF. Theorem 2.5 as stated here is
due to the author [vM, ], but the proof is almost the same as the proof of Kunen’s
result. The reason I became interested in Theorem 2.5 is that very nontrivial nice
filters exist (see e.g. [CS, D, vD,, vM,,vM,]), and that therefore Theorem 2.5 proves
the existence of points which are “special” in X* as well as in 8X. For a
generalization of Theorem 2.5 see [vM, ].

Lemma 2.1 is due to van Mill and Mills [vMM].

Lemma 2.2 is in fact due to Kunen [K,]. For a different proof of this lemma see
[vM,].

Independent linked families were first defined by Kunen [K,].

Lemma 2.4 is due to Kunen [K,] who proved it, as he notes in [K,], via a tree of
trees. The proof presented here, as well as in [K,], is due to P. Simon.

3. A ccc nowhere separable remainder of w. In this section we show that there is a
compactification yw of w with yw — w ccc and nowhere separable. This result we
need in §4 to generalize Theorem 2.5.
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We start with a simple lemma.

3.1. LEMMA. If there is a compactification yo of w with Yo — w ccc and not
separable, then there is a compactification bw of w with bw — w ccc and nowhere
separable.

PrOOF. Let 9 be a maximal family of pairwise disjoint separable open subsets of
yw — w. Since | AU |< w, U9 is not dense. Let bw be the space we get from yw by
collapsing (U Q) U {x}, where x € yo — w — (UQL) ", toapoint. O

If fis a function, then dom fdenotes the domain of f.

Let 2 < n < w. A family of sets is called n-linked provided that each subfamily of
cardinality at most » has nonempty intersection. Call a family of sets 6 — n-linked
provided that it is the union of countably many n-linked subfamilies. Observe that a
space with a o — 2-linked base in ccc. It therefore suffices to prove the following.

3.2. EXAMPLE. There is a compactification yw of w such that yo —  is not separable
although yw — w has a o — 2-linked base.

PrOOF. Let P={f€w®: 0<f(n)<n+1 for each n €w} and N= {fr n:
f € P and n € w}. Define T = {7 € N“: dom#(rn) = n + 1 for each n € w}. For
eachs € N,let C, = {t € N: s C ¢t} and for each 7 € T put

¢, = U G-
ncw
Observe that N — C, is infinite for each 7. Let ® denote the smallest Boolean
subalgebra of P(N) containing @ = {C,: # € T} U {N — C,: w € T'}. Notice that
{{s}: sEN} U {C,;: s € N} CB. Let yw denote the Stone space of %. It is clear
that yw is a compactification of the countable discrete space {{B € B: s € B}:
s € N} which we identify with w. Put X = yo — w.

Claim 1. X is not separable.

Let { p,: n € w} be countably many free ultrafilters of %. For each n € w, there
exists 7(n) with dom #(n) = n + 1 such that C,,, € P,. This is so, since N = {s €
N:doms<n} U U{C;: doms=nr+ 1} for each n € w. Consequently, {p € X:
N — C, € p} is a nonempty open set of X disjoint from {p,: n € w}.

Claim 2. X has a ¢ — 2-linked base.

It suffices to show that {B € ®: | B|= w} = U, . B, such that for each n every
two members of %, have infinite intersection. To this end, for each j € w and for
eachs € Nwith2j — 1 < dom s, define

B(Jj,s) = {B €B:3Ke [T and L [T}

withs € () C, N ﬂN—c,,e[B]"’}.

7€K 7E€L

Since for each B € % with | B|= w, there exists a set D which is a finite intersection
of elements of &, with D € [B]® and since any infinite subset of N contains
elements of arbitrarily large domain, it follows that

(Be®:|Bl=w) = U {B(j,s):j€Ew,sEN,and2j — | <doms}.
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Fix an index j and s € N with 2j — 1 <doms. If {B,, B} C B(}, 5), then there

exist K, € [T]™ and L, € [T’ such that for each i = 0, 1, .
seD;=(1C N N-C,e[B]“
TEK; TEL,

We now define, by induction on dom s < r, an h € P such that {h} n: dom s < n}
CD,N D,.

Stage doms. Let At doms =s. Then At doms € D, N D,. Assume we have
defined At n for some dom s < n such that At n € D, N D,.

Stage n + 1. Define ht n + 1 to be some sequence in N of domain »n + 1 that
extends At n and such that At n+ 1€ {m(n): # € Ly U L,}. This is possible
because there are n + 2 sequences in N of domain n + 1 that extend At n and
|LoUL|<2j<doms+2<n+2Thenhtn+1e€D,ND. O

Notes for §3. The question whether a ccc nonseparable growth of w exists was
asked in [vM] and such a growth was constructed by Bell [B]. The compactification
yw of w constructed in this section is precisely the same as in [B]. We have also used
Bell’s write-up of the example. The existence of a ccc nonseparable growth of w is an
important ingredient in the proof of Theorem 0.1.

Lemma 3.1 was first shown in van Mill [vM,] and the proof is due to the referee
of [vM,].

4. The extension theorem. Let X be the topological sum of countably many
compact spaces, say X, (n < ), and let ¥ be a nice filter on X (see §2). We will
show that there is a weak P-point x € X* such that x € N regClgx F. This gener-
alizes results in §2.

For each n < w, let X, be a space. The disjoint topological sum of the spaces X,
will be denoted by 2, _, X,. Whenever we write ¥,_, X,, for convenience, we
assume that the spaces X, are disjoint.

We start with a simple but important lemma.

4.1. LEMMA. Let Y be a ccc nowhere separable space and let, for each n < w, X, be a
compact space which can be mapped onto Y, say be g,. In addition, for each n < w, let
Z, C X, be closed such that g,(Z,) = Y. Then there is a nice filter Son Z = 3,_ Z,
such that for each countable D C X = 3, _, X, some F € F misses the closure (in X)
of D.

ProOF. For each n < w, let f, = g,1 Z,. In addition, for any countable D C X, let
{U(D): n < @} be a maximal disjoint collection of nonempty regular closed subsets
of Y none of which intersects (U, _ g,(D N X,))". Define

F(p) = U (U y(p)).

n<w i<n

Observe that (D) N D = @.
Claim. The closed filter on Z generated by {F(D): D € [X]“} is nice. Take
D,,...,D, €[X]". Since U __ intU,(D,)isdense foreach 1 <i<k

M U intU(D,)

I<sisk n<ow

b
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is also dense. We can therefore find n,, n,,...,n, <wsothat N, _,.. U,(D;) # 2.
Let n = max{n,, n,,...,n,} and take / > n arbitrarily. Then
N Fp)nz>5" N up))*e.
I<i<k I<i=sk

This proves our claim. O
An F-space is a space in which cozero-sets are C*-embedded. It is easily seen that
a normal space is an F-space iff any two disjoint open F,’s have disjoint closures.

4.2. LEMMA. Let X be a locally compact and o-compact space. Then each F, F C X*
is C*-embedded in X*. Consequently, X* is an F-space.

PROOF. Let F C X* be any F, and let f: F — I be continuous. Since F is closed in
XU F and since XU F is normal, being o-compact, f_extends to a map f:
XU F - I Since B(X U F) = BX[GJ], fextendstoamap f: X - . O

Let f: X — Y be a continuous surjection. The map f is called irreducible provided
that f(A4) # Y for any proper closed subset 4 C X.

For each space X let RO( X) be the Boolean algebra of regular open subsets of X.
It is clear that | RO(X) |< w(X)“®), where w(X) and ¢(X) denote the weight and
cellularity of X. If f: X - Y is a closed irreducible surjection then f#: RO(X) —
RO(Y) defined by f#(U) = Y — f(X — U) clearly is a Boolean isomorphism; hence
|RO(X)|=|RO(Y)|< w(Y)Y), This observation will be used in the proof of the
main result in this section.

4.3. THEOREM. Lét X be the topological sum of countably many nonempty compact
spaces, say X, (n < w) and let & be a nice filter on X. Then there is a weak P-point
X € X* such that x € Mg gClgy F.

PROOF. Let {E,: n < w} be a partition of w in countably many infinite sets. For
each n < w, let

g,={Fn U {X:i€E}: FeJ)
and notice that %, is a nice filteron U {X;:i € E,}. Let

F(n)= [ clgyxF N X*.
Feg,
Notice that F(n) N F(m) = & whenever n # m and that, by Lemma 4.2, U, _  F(n)
is C*-embedded in X*.
Define f: X - « by f(x) = n iff x € X, and, for each n < w, letf, = ft U, X
In addition, let Bf and Bf, (n < w) be the Stone extensions of f and f, (n < w).
For each n < w, put

S(n) =clge( U {X;:i €E}) nx*

Observe that F(n) C S(n) and that B8f,(S(n)) = E¥ ~ w*. Since ¥, is a nice filter we
also have that Bf,(F(n)) = E}.

Let Y be a ccc nowhere separable remainder of w, see §3, and for eachn < w let g,
map E* onto Y and let 4, be the composition of Bf,r S, and g, Notice that
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h,(F(n)) =Y. For each n<w, let Y(n) C F(n) be closed such that h,t Y(n):
Y(n) - Y is an irreducible surjection. Then | RO(Y(n))|=|RO(Y)|< w(Y ) =
(2°)® = 2. We conclude that Y(n) has weight 2.

By Lemma 4.1 there is a nice filter § on 3, __ Y(n) such that whenever D C § =
U, <, S(n) is countable, then clgD N G = @ for some G & §. By Theorem 2.5 we
can “extend” § to a 2“-OK point p of (U, ., Y(n)*. Since, by Lemma 4.2,
U,., Y(n) is C*-embedded in X*, p is a point of X*. We claim that p is a weak
P-point of X* and that p € M _gclgy F.

Since U, _, F(n) C Ny gclgy F, and since p € (U, __ F(n))", the second claim
is trivial.

Let H C X* — { p} be countable. Put

IQ:H—(LJMM).
n<w
Since U, __ S(n) is an open F, of X* and since, by Lemma 4.2, X* is an F-space, it
is clear that Hy N (U, __ S(n))"= @; we conclude that p & H,.
Let
H =Hn U Ss(n).
n<w
By construction, some G & § misses the closure,in § = U, _ S, of H,. Since S is
normal, being o-compact, this implies that G N H, = &, consequently, p & H.
Let

IQ=(HO(§—S»—-(LJHn»i

n<w

S_i_nce, by Lemma 2.1, (U, _, Y(n)) " N(S — S)is a P-set of S — 8, we conclude that
H, N (U, _, Y(n) = @, consequently, p & H,.
Finally, let

Hy=Hn

(Uvm) - (U Y(n>)).
n<w n<w
Since p is a 2°-OK point of (U, __ Y(n))*, by Lemma 2.2, p & H,.
We conclude thatp & H. O
Notes for §4. Lemma 4.1 is implicit in van Mill [vM , 5.2].
Lemma 4.2 is due to Gillman and Henriksen [GH]. The easy proof presented here
is due to Negrepontis [N].
Theorem 4.3 is new. The proof of Theorem 4.3 is implicit in van Mill [vM,, 5.2].

S. The nowhere ccc case. Let X be a nonpseudocompact space which is nowhere
cce. We show that there is a point x € X* which is a weak P-point of SX.

Let X be a nonpseudocompact nowhere ccc space. We aim to apply Theorem 4.3,
so we will construct a nice filter on a certain closed subspace of X which “avoids” all
separable subspaces of X. Since a nowhere ccc space can have “many” separable
subspaces there is no hope to do this by an induction avoiding one separable
subspace at each stage of the induction. We therefore use a different technique.
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5.1. LeMMA. Let X =3, X,, where each X, is compact and nowhere ccc. In
addition, for each n < w, let D, be a closed nowhere dense subset of X,. Then there
exists a nice filter % on X such that:

(D) thereisan F € Swith FN D, = & foralln < w,

() if E C X is ccc then there isan F € Fwith EN F = &.

ProoF. For each finite subset F C w, (possibly empty) and each n < w we will
define an open set Cf C X, and a nonempty regular closed set B C Cg such that:

(1) Cry(ay C Brforallmax F <a < wj;

() Chupay N Crupy = P ifmax F<a < B <w;

B3 CinD,=ga.

We will induct on the cardinality of F. Let Cj = X, — D, and let B C CJ be any
nonempty regular closed set.

Suppose that we have defined the Cf and Bj for all F C w, of cardinality i. Let
{Cluty max F <a < w;} be a “faithfully indexed” collection of pairwise disjoint
nonempty open subsets of Bf. In addition, let Bf,,, be any nonempty regular
closed subset of Cf,,y. This completes the induction.

FacTl.CPNCl# B - (FCG)YV(GCF)

We induct on the cardinality of |F|+|G|. If |F|+|G|=1, then there is
nothing to prove. Suppose that we have proved Fact 1 for all finite sets F, G C w,;
satisfying | F| +| G|<i — 1. Now take finite sets S, T C w; so that | S| +|T|<i.
Define S' = § — {max S}. By (1) we have that C C C{& and consequently C&i N
Cr # @. By induction hypothesis, S' C Tor T C SL. If T C S' then we are done,
so we may assume that S' C T. Define 7' = T — {max T}. By precisely the same
argumentation we may conclude that T! C S. Then clearly

(SNT)U {maxS} =S and (SNT)U {maxT} =T.

If max § € T or max T € S then there is nothing to prove. So assume that this is
not true. Then, by (2) we have that Cf N C} = &, which is a contradiction.

Let f: w; » w; X w, be one-to-one and onto. For each (a, B)E w, X w, and
n < w define

Us(n)=U {C}'U{f-x(@’ﬁ))}: max F<f"'({a,B))and f(F) N ({a} X w,) = &.

Notice that Ug'(n) is open.

Fact 2. Ug(n) N Uj(n) = & whenever 8 # v.

Assume that this is not true. Without loss of generality, assume that f ~'({a, B)) <
/7 '({a, v)). There are finite sets Fy, F; C w, so that: ‘

@ Crugapyy N Cropann 7 95

(b) max Fy </ ~'((e, BY) and f(Fyp) N ({a} X @) = &

(c) max F; < f7'({a,v)) and f(F)) N ({a} X @) = 2.
Since f'((a, ) & Fy U {f~((e, B))), by Fact 1, KU {f™'(a, B))) C F, U
(/7' y))). Therefore f~'((a, BY) € Fy, since f'((a, B)) # /~((a, v)). How-
ever, this contradicts (c).

For each i <w and 8 < w, let {F,({i, 8)): k <w} enumerate all finite subsets
F C w, withmax F<f7'((i, ) and f(F) N ({i} X w}) = 2.
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If B <w, and i < w define

G =U U B lpuyiny md G=U G
I<w m=</ i<w
Observe that G is a closed subset of X which misses U, _, D, for each 8 < w,.

Fact 3. If E C Xis ccc then Gy N E = @ for some B < w,.

By Fact 2 we can find 8 < w, such that U,{(n) N E = @& for each n, i < w (in fact
this is true for all but countably many 8 < ). Since Gg C U,_, U Ug(n), and
since U,_, U, _, Us(n)isopen, Gg N E = @.

FacT 4. The closed filter generated by {Gg: 8 < w,} is nice.

Take By, B,,...,B, € w; arbitrarily and put y,= f7'((i, B;)) for all 1 <i<n.
Without loss of generality assume that y, <y, < --- <y, . Foralll<i<n— 1 let
k; < wbe such that {y,,...,v;} = F ((i + 1, B,..;)). In addition, let k, < w be such
that @ = F, ((1, B,)). Define I = n + max{k;: 0 <i <n — 1}. We claim that

(*) U B(’zh}'z

n<w

~~~~~~

Take m = [ arbitrarily. Since

B, = BE,_ ((n B0 (n )

and since m — n = k,_,, it follows that B}
cBn. by (1), by the same argument,

1w © g, © Gp . Since BT |

,,,,,

SYn—1}?

m -1
B{’;IvYZ ----- Yn} c B{Yl:Yz,w,Yn—l} c Gﬁnn—l c Gﬂn—l'

Continuing this process inductively one can now easily prove (). O

5.2. REMARK. Notice that in the proof of the above lemma we found a filterbase of
cardinality w; which avoids all ccc subsets of X. This is truly remarkable. For
example, if one wants to avoid all nowhere dense subsets of w X [0, 1], then, under
MA + —CH, one needs 2¢ closed subsets. This justifies our claim in the Introduc-
tion that the “small” spaces are more complicated than the “large” ones.

We now come to the main result in this section.

5.3. THEOREM. Let X be a nowhere ccc nonpseudocompact space. Then X* contains a
point x which is a weak P-point of BX.

PROOF. Since X is nonpseudocompact, there is a nonempty closed Gy Z of BX
which is comtained in X*. Put Y = BX — Z and, since BY = 8X [GJ,6.7] and Y is
clearly nowhere ccc, we need only prove the theorem for Y. For each n < w take a
compact nonempty regular closed set ¥, C Y such that:

(@ifn*mthen ¥V, NV, = &, and

(b) for any E C w, U V_is closed in Y.

Let V=U,_,V,. By Lgrifna 5.1 there is a nice filter % on ¥ such that F C inty V
for all F € % while, moreover, for each ccc subset D C V there is some F € % which
misses the closure of D (in V). By Theorem 4.3 there is a point x € V* such that
X € NMpegel g I, while, moreover, x is a weak P-point of V*.

By normality of Y, the closed set V is C*-embedded in Y, hence Clgy V= BV,

consequently, x is a point of Y*. We claim that x is as required.
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Let H C BY — {x} be countable. Put Hy=(H N Y)— U, _ intV,. Then, by
construction, some F € ¥ misses the closure, in Y, of H,. Hence, by normality of Y,

clgy FN clgy Hy = &,

ie. x &clgyHy. Put H =HN U, _ intV,. By construction, some F € % misses
the closure in ¥ (= the closure in Y) of H;. In the same way as above we conclude
that x & clgy H,. Consequently x & clgy(H N Y).

Since, by Lemma 2.1, V* is a P-set of Y* and since x is a weak P-point of V* it
easily follows that also x & clgy(H N Y*). U

5.4. REMARK. The weak P-points we get from the proof of Theorem 4.3 are all
limit points of some subset which satisfies the countable chain condition. The way
these points were constructed shows that one cannot avoid this. Since the filter of
Lemma 5.1 avoids all ccc subsets one is led to the following.

5.5. Question. Let X be a nowhere ccc nonpseudocompact space. Is there a point
X € X* such that whenever A C BX — {x} is ccc, then x & A?

1 have absolutely no idea how to answer this question.

Notes for §5. The proof of Lemma 5.1 is similar to, but more complicated than,
Dow and van Mill [DvM, 2.1]. The idea of using matrices of sets.as constructed in
the proof of Lemma 5.1 goes back to Kunen [K,] and the actual filter constructed
from this matrix is similar to, but of more complicated nature than, filters in
[vM,,vM,, DvM].

6. The nowhere of weight < 2 case: Part 1. Let X be a compact space of weight
greater than 2¢ which satsifies the countable chain condition. We prove that for each
1 < n < w there is a family {(4%,, 4},): @ < (2°)" } of pairs of disjoint nonempty
closed sets in X such that whenever F C (2°)™ has cardinality » and f: F — 2, then
rwor(EFAﬁ(nm) #* 2.

In this section we prove the result stated above which we will use in §7 to prove
the nowhere of weight < 2¢ case of our theorem. I have the feeling that the results in
this section are of independent interest and since they have nothing to do with
Cech-Stone compactifications we have stated them in a separate section.

Let x denote any infinite cardinal. The statement (2°)* - ((2)", ¥¥)* means
that whenever | S|= (2°)* and [S ]2 is the union of two sets A and B, then we can
either find a set S, € [S]S! such that [S,]? C 4 or we can find a set S| € [S]*" such
that [S,]> C B. It is well known that 2*)* - ((2*)*, k™ )? is true for any infinite
cardinal (see e.g. Juhész [J, A4.8]). Our results heavily rely on this result.

Until now, our paper is self contained. We have decided not to include a proof of
the partition relation (2*)* — ((2°)*, k™) since it is well known and the proof can
be found in any book on combinatorial set theory. In addition, if the reader
understands the proof of Lemma 6.2, he or she can easily reconstruct the proof of
@)= (@7, k7).

6.1. DEFINITION. Let X be a space and let {(42, 4}): a <k} be a collection of
pairs of disjoint nonempty closed subsets of X. If 1 <n <w we call this family
n-independent provided that for each F € [x]" and f: F — 2 it is true that N 4L
# @ . In addition, we call this family strongly n-independent provided that for each
F €[k]"and f: F - 2 we have that N __,int 4/¥ # @.
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Let X be a space. A w-basis B for X is a collection of nonempty open subsets of X
such that every nonempty open subset of X includes a member of %. The T-weight,
7(X), of X is defined by

7(X) = ©-min{|D|: B is a 7-basis of X}.

Let, as usual, w(X) and c¢(X) denote the weight and cellularity of X. Trivially,
w(X) < 7(X)“™ for any space X [J, 2.3] (recall that all spaces are Tychonoff).

Let X be a space. The Boolean algebra of regular open subsets of X is denoted by
RO(X). If & C RO(X), then [&] denotes the smallest Boolean subalgebra of RO(X)
which contains &. Notice that | [6] |< w-|&] .

For the remaining part of this section, let X be a ccc space of weight greater than
2. We aim at proving that for each n > 1 there is a strongly n-independent family in
X of cardinality (2¢)* .

First observe that #( X) > 2. For convenience put k = (2)" . Inductively, let us
construct nonempty U, C, C X for a < k such that:

(1) U, is regular open and C, is regular closed;

@c, cu;

@) if & =[{U: B<a} U {intCy: B<a}] — (&) and if E € b, is chosen
arbitrarily, then E ¢ U,.

Suppose that we have constructed (s and U for each B < a. Since the family

b=[{l:B<a} U {intG: B<a}l— {2)

has cardinality at most w-2“ = 2, it is not a =-basis for X. Hence we can find a
nonempty U & RO(X) such that E ¢ U for each E € &. Put U,= U and let
C, C U, be any nonempty regular closed set.

6.2. LEMMA. There is a set A € [k]* such that whenever « €A and FC A N o is
finite, then C, Z( UgerUp).

PROOF. For each » < w, put §, = {s: » > [2°]%“}. Let R, = « and let A, C R, be
a maximal subset such that whenever a € 4, and F C A, N a is finite, then
Co Z(UgepUp) (for each s € U{S,: » <w,} for which R, is defined). While
defining the sets R and A, we will assume that each A, has cardinality at most 2¢.

Let » < w, be an ordinal such that R has been defined for all s of length < ». We
define R for s € S, as follows:

Case 1. If vis a limit and s € S, then R, = M,<w Ry

Case 2. 1f v is a successor, and s € S,_,, then we define R, g for all F € [29]<¢
at once (by definition, [s, F] is the function which restricted to » — 1 is equal to s
and which has the value F in the point » — 1). Since, by assumption, | 4, [< 2%, we
may list A, as {p;: £ < B} for some B, <2 Put R, = {x € R x> a for each
a € A;}. For each x € R, we can find Pép Pip---sPE, € 4, such that C, C
(U, cicn Upy,)” (by maximality of 4,). Define a function ¢;: R, > [2°]~“ in such a
way that C, C (U {Up: € € ¢(x)})” for each x € R,. For each F € [2°]<“ define
R, p by

R p = {x €R,: ¢(x) = F}.



WEAK P-POINTS 671

We claim that for some s, € S,, we have that R, 7 @. Notice that
|U (4 tenghs<w)|< 3 3 4J< 3 @) =2<x

y<w| SES, r<<w,
hence we may choose a point y € k such that y >a for each a € U {A4: length s
< ). Put S(y) = {s € US,: y € R} (notice that S(y) # &). Lets, € S(y) be
such that s, % st dom s, for any s € S(y) — {s,}. We claim that length s, = w,. If
length s, < wy, theny € Iixo by definition of y. Consequently, y € R, beg N which
implies that [sy, ¢, (¥)] € S(»), contradicting the maximality of s.
For each § < w, let

F={p*: a € 5(§ + 1)} C A,

Notice that if £ <5 < w, then

(4) max F; < min F,, and

() if x € F, then C, C (UyeFEUy)‘.
For each 8 < w, define

VB:int( U u cx) .
vy=B xEF,

Since X is ccc, and since each Vj is regular open, thereis a B < w, such that V, = I
for all n=B. Since U .z, UxerCx C (UyeF,mUy)_’ we. conclude that V; C
int( UyEFﬂ+l U,)", -and consequently UxeFB int C, C int( UyngH U). Let a=
min Fg and Fy ;= {vy,- .Y}, Where v, <y, whenever i <J. Since a <y, by (3),
int C, ¢ U, , and since U, is regular open, W, = int C, — U, # &.Since W, € b,
again by 3), W, & U,, and by the same argument, Ww=w - v, # 2. Proceed-
ing in this way we find that int C, — (U, U --- UU, ) #* &, which obviously is a
contradiction. O

Let A4 be as in Lemma 6.2 and for each « € 4 put B = C, and B, = X — U,.
Observe that {(B?, Bl): a € A} has the property that whenever a, 8 € 4 are
distinct, int B N int Bf # @, for any i,j € 2 with i # j. Clearly | {B,: a € 4} |= &
for eachi € 2.

By two trivial applications of k — (k, w,)* we find that there is a subset 4, € [4]"
such that whenever a, 8 € 4, are distinct and i € 2, int B, N int By # &. (Put
F = {{a, B} €[A]* int B N int B{ # @} and G = [4]* — F. Since X is ccc, there
is a set A € [A]* with [4]? C F, etc.)

We conclude that the family {( B?, Bl): a € 4,} is strongly 2-independent. In the
remaining part of this section we will not only need that such a family exists but also
how it was constructed.

6.3. LEMMA. For each 2 <n < w there is a set F, € [Ay]* such that the family
{(BY, B)): a € F,} is strongly n-independent.

PROOF. Put F, = 4, and assume that we have found F,_, for certain n > 2. We
will construct F, by a ramification argument similar to the one used in the proof of
Lemma 6.2.
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Claim. 1f B € [F,_|]" and if f: {1,2,...,n} — 2 then there is a set B € [B]* such
that whenever v, <y, < --- <y, and each y; € B, then int N _,_, B/ # & For
each » <w, put S, = {s: » > [2°]""'}. Let Ry =B and let 4, C R, be a maximal
subset such that whenever y, <y, < --- <<y, and each Y, € 4, then
int N, BJ” # @ (for each s € U {S,: » <w,} for which R, is defined). While
constructing the sets R, and 4, we will assume that each 4, has cardinality at most
2%, We will derive a contradiction.

Let » < w, be an ordinal such that R, has been defined for all s of length < ». We
define R for each s € S, as follows:

Case 1. If vis a limit and s € S, then R, = Ny, Ry

Case 2. If v~is a successor, and s € S,_|, th~en we define R, ¢, for all F € [B]""!
at once. Let R, = {x € R;: x >sup4,}. If R, = & then we define Ry p = @ for
all FE[B]""". So, let us assume that R, # @. If |4 |<n — 2, then A4, is not
maximal since we can add each point of R, to 4,. Hence |4,|= n — 1. Since by
assumption | 4, |< 2%, we can list 4, as {p: £<2“}. Since |A,|=n — 1 for each
x € R, we can find p;, Piy--- Fg | €A, with p;, <pi,<---<p;  such that
int N, _,c, 4 Bpfé(i") N B{"” = @. Define a function ¢,: R, - [2°]""! in such a way
that whenever ¢(x) = {v,, v5,...,%,_,} Wwith vy, < Y, < ---<w,_; then
int N, e,y Bf” N B{" = @. For each F € [2°]""! define R, F bY

Ry ;= {x €R,:¢(x)=F}.

As in the proof of Lemma 6.2, | U {A4,: length s < w,}|<2“ <k and conse-
quently we can take y € x such that y > sup U {4: length s < @,}. Put S(y) = {s
€ US,:y € R,}. Since y > sup 4, for each s of length < «,, by using precisely the
same technique as in Lemma 6.2, we find that for some s, € S(y) we have that
length s, = ;.

Now put, for each £ < w,,

Fo= {ptt: a € 5(£+ 1} c Ay

Let F = {vf,...,v5 )} withyf <v§ < --- < y%_,. Notice that if £ <y < w, then

(6) max F; < min F,, and

(Difx € F, thenint N, _,_,_, B N B/ = @.

In order to find a contradiction, we have to distinguish several cases.

Casel.f(iy=0foreach 1 <i<n—1land f(n)=1.

Since {(BY, B,): a € F,_,} is strongly (n — l)-independent, we have that
int M 0y Bgo # ©. Consequently, int N, _,_,_, B}So € &,; and consequently, by
(3), int ﬂlsign_lBy‘f_o N Bylll # @&, contradiction,

Case2.f(iy=1foreachl <i<n—1and f(n)=0.

By Lemma 6.2, By Z(U, .;,—,U,e)", or, equivalently, int N, _,_,_, Bjo N B) #
2, contradiction (precisely because of this we had to include Lemma 6.2).

Case 3. Not Case 1 and not Case 2.

For each £ <w, put H;=int N, .., Bf). Since {(BY, Bl): a €F,_}} is
strongly (n — I)-independent we have that H, # @ for each ¢ < w,. Obviously,
H,N H, = & if £ <7 < w,. This contradicts X being ccc.
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Since there are only finitely many f: {1,2,...,n} — 2, by using the claim, it is now
easy to find F, from F,_,. O

6.4. REMARK. Lemmas 6.2 and 6.3 were proved by a similar ramification tech-
nique. We could have proved Lemmas 6.2 and 6.3 also at the same time using only
one ramification instead of two. The proof is then heavily obscured by technical and
notational difficulties. For readability, we have therefore chosen the above approach.

6.5. REMARK. It is easily seen that our results can also be proved for higher
cardinals.

We have completed the proof of the following

6.6. THEOREM. Let X be a ccc space of weight greater than 2°. Then for each
1 < n < w there is a strongly n-independent family in X of cardinality (2°)™ .

Notes for §6. All results in this section are new.

The ramificaion technique used in the proof of Lemmas 6.2 and 6.3 is similar to
the one used in Juhasz [J, A4.8].

I originally proved Theorem 6.6 for spaces of weight greater than 2*° using the
partition relation 2*)* - (a™)2 for a =2¢. In addition, I knew how to prove
Theorem 6.6 from the following:

() If X is ccc and has weight greater than 2%, then there is a strongly 2-indepen-
dent family in X of cardinality (2¢)" .

I asked Charley Mills whether (*) is true and he showed me that my ideas could
easily be used to prove (+) from the relation (2°)* - (2*)", w,). Combining this
result with ours gave a proof of Theorem 6.6. The proof was rather complicated and
later I found the easier proof presented here, in which we use an idea in Charley’s
proof of () which had not occurred to us and which turned out to be very useful.

7. The nowhere of weight < 2¢ case: Part 2. In this section we show that if X'is a
nonpseudocompact space which is nowhere of weight < 2¢, then X* contains a point
which is a weak P-point of B8X. We use the results from §§5 and 6.

We first begin with an application of Theorem 6.6 to the theory of Cech-Stone
compactifications.

7.1. THEOREM. Let X be the sum of countably many compact ccc spaces of weight
greater than 2°. Then X* can be mapped onto 139" .

PROOF. Let X =3, X,. By Theorem 6.6 for each 1 <»n <« we can find an
n-independent family {(B%(n), BY(n)): @ < (2*)* }in X,,. For each a < (2°)™ put

Fi= U Bin) and G.=(clyyF/) — F.
Isn<w
It is easily seen that the family {(G?, G}): @ < (2°)" } is independent, i.e. G} N G,
= & for each a < (2°)* and whenever F C (2°)* is finite and f: F — 2, then
N, G + . This implies, as is well known, that some closed subset of X*
maps onto 227" and since this space maps onto I @9 by the Tietze extension
theorem, our claim follows. [
We now come to the main result in this section.
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7.2. THEOREM. Let X be a nonpseudocompact space which is nowhere of weight < 2°,
Then BX has a weak P-point which is a point of X*.

PROOF. By beginning this proof in the same way as the proof of Theorem 5.3 we
see that it suffices to prove the theorem for locally compact and o-compact X. For
each n < w take a compact nonempty regular closed set ¥, C X such that

(a)ifn#mthen ¥V, NV, = &, and

(b) for any E C w, U __ .V, is closed in X.

Case 1. There is a set E € [w]® such that for each n € E there is a point
x, € int ¥V, which has a ccc neighborhood in X.

So, without loss of generality, each ¥, is ccc. Let W, C int ¥, be any nonempty
regular closed set and let {E,: n < w} be a partition of w in countably many infinite
sets. Put

Xx=UV ad v, = U w,.
i€E, i€E,

Notice that, by normality of X, clzx X, = BX,, for each n < w. By Theorem 7.1, for
each n < w, there is a continuous surjection f,: Y* - I®>" and by the Tietze
extension theorem we can extend this map to a map f,: BX, » 1" Since 1@ is
ccc and nowhere separable, by Lemma 4.1, there is a nice filter  on 3,_, Y such
that for any countable D C 3, _, BX, there is some F € F which misses the closure
of Din X, _,BX,. By Theorem 4.3 there is a weak P-point x € (3, _,, Y*)* such that
x € Npegelgs vy F. Since X* is an F-space, by Lemma 4.2, x € X*. We claim
that x is as required. Let H C BX — {x} be countable. Since, by Lemma 2.1,
(U,<o X,)* is a P-set of X*, x & H,, where H,= H N (X* — (U,__ X,)*). So,
without loss of generality, H C X U (U, _, X,)* Since F=X — U, ___ int¥, and
U, . Y, have disjoint closures in BX and since x € (U,.,Y,)", we may assume
that, without loss of generality,

*
Hc UitV u ( UX,,) :
n<w n<w
Take F &€ & which misses the closure of HN U, _ int¥, in 2.<oBX,. Since
2, <. BX, is normal, being o-compact, and clearly C*-embedded in X we conclude
that

Fn (Hm U intV;,) =g.
n<w
Hence, we may assume that H N X = &. Since, by Lemma 4.1, (U, Y)*isa
P-set of (U, _, X,)* and since, by construction, x is a weak P-point of (U, Y%
we conclude that x & (H N (U, __ X, )*),ie. x & H.

Case 2. All but finitely many ¥, are nowhere ccc.

Now use the same technique as in the proof of Theorem 5.3. [

7.3. REMARK. Notice that we have used Theorem 5.3 to prove Theorem 7.2 and
that for the actual construction of the weak P-point we used the same “ccc nowhere
separable technique” twice: first to find an appropriate nice filter, and second to
extend this nice filter to a weak P-point.
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7.4. REMARK. If we generalize the results in §6 to higher cardinals, using the same
technique as in Theorem 7.1 we get the following result:

If X is a nonpseudocompact space of cellularity at most x which is nowhere of weight
less than or equal to 2%, then X* contains a compact subset which can be mapped onto
1697,

Notes for §7. All results in this section are new.

8. A result under BF(2¢). Let X be the sum of countably many nonempty compact
spaces, say X, (n < ). If each X, has weight at most 2* and, in addition, satisfies
the countable chain condition, then, under BF(2*), X has a nice filter ¥ such that
whenever D C X is nowhere dense, then D N F = & for some F € ¥,

If f, g € w* then we write, as usual, g <, fiff {n < w: g(n) > f(n)} is finite. A
subset G C w” is called bounded if thereis an f € w* such that g < fforany g € G.
By BF(2°) we mean the statement that each subset of w* of cardinality less than 2¢
is bounded. BF(2*) is known to be consistent with the usual axioms of set theory
and follows easily from MA.

It is easy to see that BF(2¢) follows from CH, the Continuum Hypothesis, since
obviously no countable subset of w“ is unbounded. Therefore, the reader not
familiar with MA or BF(2°) can simply assume CH in this section.

We now come to the main result in this section.

8.1. THEOREM [BF(2°)]. Let X = 3,_,, X,,, here each X, is a compact ccc space of
weight at most 2°. Then there is a nice filter % on X such that for each nowhere dense
D C X there is an F € % which misses D.

PrOOE. For each n < w let {{A4%(n): m < w}: a <2} enumerate all families of
pairwise disjoint nonempty regular closed subsets of X, the union of which is dense.
Notice that there are only 2¢ such families. Let %D be the collection of nowhere dense
subsets of X. We obviously may assume that we have indexed the 45 (n)’s in such a
way that for all D € 9 thereis an @ < 2°such that D N U, _ U, _ A%(n) = &.

We plan to choose, for each a <2“, a function 4, @ - w. We then define our
filter & to be generated by the collection {U, _, U, _, (,, 47(n): « <2°}. Observe
that this collection consists of closed sets. So the idea is to select the /,’s to ensure
that the filter is nice.

Let hy(n) = n for each n < w. Suppose we have defined &, for each y <a <2
such that for any finite sequence v, <7y, < --- <y, <a, there is an N < w such
that foreachn = N,

N U 4r(n)+#o.
I<i<k j<h,(n)
This is the condition we require to ensure we get a nice filter.

Let us now construct k. For each E € [«]™“ we define a function g as follows.
Let E be the sequencey; <y, < -+ < Y.

oif M U 4r(n)=g,

I<i<k j<h(n)

ge(n) = min{p<w3A;(”)m N U A]Yl(n)# Q} otherwise.

1<i<k j<h,(n)
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Since | {gz: E € [a]™*} |<|[a]"“|<2“ we may choose, by BF(2®), a function
J € «” such that for each E € [a]=“ the set {n < w: gz(n) > f(n)} is finite. Define
h, = f. We claim that &, is as required. Let E = {y: 1 <i<k, y,<a} be some
finite subset of a. By induction hypothesis, there is an N < w such that

N U 4axn)#o

\<i<k j<h,(n)

for each n = N. Therefore, for each n = N,

A2 nm)n N U 4(n)# 2.

1<i<k j<h,(n)

By definition of #,, there is an N, < & such that 4 (n) = gg(n) for each n = N,.
Therefore, for n = max{N, N},

U 4(m)n N U 41(n)# 2.

J<ho(n) I<i<k j<h,(n)

This completes the induction. O
Notes for §8. The interesting Theorem 8.1 is due to Dow [D].

9. Nonhomogeneity of SX and X*. Let X be any nonpseudocompact space. If we
assume BF(2°), then there is a point x € X* such that x & D for each countable
and nowhere dense D C BX — {x}.

In this last section we present the main result in this paper.

9.1. THEOREM [BF(23)]. Let X be any nonpseudocompact space. There is a point
x € X* such that x & D for each countable and nowhere dense D C BX — {x}.

PROOF. It is clear that we only need to show the result for locally compact and
o-compact X (cf. the proof of Theorem 5.3). For each n < w take a compact
nonempty regular closed set ¥, C X such that:

(@ifn#mthen ¥V, NV, = &, and

(b) for any E C w, U, _.V, is closed in X.

Case 1. There is a set E € [w]“ such that for each n € E there is a point
x, € int ¥, which has a ccc neighborhood in X.

So, without loss of generality, each ¥, is ccc. If countably many of the ¥,’s have
weight greater than 2¢, then apply a similar technique as in the proof of Theorem
7.2. It then follows that X* contains a point which is even a weak P-point of 8X. If
not, then without loss of generality, each ¥V, has weight at most 2¢. Let & be a nice
filteron U, _ ¥, as described in Theorem 8.1. Clearly ¥ “avoids” all nowhere dense
subsets of X. Now apply Theorem 4.3 on the filter .

Case 2. Not Case 1.

Then without loss of generality, each ¥, is nowhere ccc. Now apply the same
technique as in the proof of Theorem 5.3. O

9.2. REMARK. Notice that we did not only use Theorem 8.1 in the proof of the
above result, but also Theorems 5.3 and 7.2.

Notes for §9. Theorem 9.1 is new.
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10. Remarks. A point in X* can be identified with an ultrafilter of zero-sets on X.
Hence if we wish to construct a point in X* we must consider collections of closed
sets in X with the finite intersection property. It turns out that the finite intersection
property is much too complicated. It is easier to consider collections of sets with the
property that any n of them intersect, where 1 < n < w, i.e. n-linked collections.
Sometimes it is possible to construct large n-linked families with a certain property
for each 1 < n < w although it is not possible to construct a similar family with the
finite intersection property. For example, if X = [0, 1] then for each 1 < n < w there
is an n-linked family of closed sets %, “avoiding” all nowhere dense sets in [0, 1]
[CS, vD,), while obviously a centered collection with this property does not exist.
Yet, the existence of such collections easily implies that on the space « X X there is
a collection of closed sets with the finite intersection property avoiding all nowhere
dense subsets of w X X; simply put

F={FCwXX: Fisclosedand F N ({n} X X) €9, foreach 1 <n < w}.

There is much evidence that this way of constructing filters, i.e. by considering
n-linked families for each 1 < n < w, is implicit in the proofs of several recent results
in the last years; see e.g. [CS,D,DvM,vD,,vD;,vDvM,, vM,~-vM3,K,] and this
paper. I think this tells us an important fact. It was precisely because of this that I
found Theorem 6.6.

By a method of proof similar to the one used in the proof of Theorem 7.2 the
reader can easily show that Theorem 9.1 is true in ZFC under the following
hypothesis:

() If X =2, ., X,, where each X, is a compact ccc space of weight at most 2, then
there is a nice filter % on X such that whenever D C X is countable and nowhere dense,
then D NF = & for some F € 5.

It is hard to guess whether (*) is true in ZFC. On the one hand, one feels that
since X is “small” one could easily run into a set theoretic problem, while on the
other hand countable nowhere dense sets are “ very small” and therefore are easy to
avoid, which might indicate that a theorem could be possible. I do not know what to
guess.

10.1. Question. Is (x) true in ZFC?

Remarks added in May 1981. Professor 1. Juhasz has kindly informed me that the
results in §6 of the present paper can also be derived from a result of Sapirovskii;
see, €.g., L. Juhasz, Cardinal functions in topology—ten years later, Math. Centre Tracts
123 (1980), Corollary 3.20. Professor M. Husek has kindly informed me that the
results in §6 also follow from one of his theorems; see M. Husek, Convergence versus
character in compact spaces, Collog. Math. Soc. Janos Bolyai, vol. 23, Topology
(Budapest, 1978), Corollary 4, pp. 647-651.
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