General Topology and its Relations to Modern Analysis and Algebra V Proc. Fifth Prague Topol. Symp. 1981 J. Novak (ed.) Copyright Heldermann Verlag Berlin 1982 481 – 485

TYPES OF WEAK P-POINTS IN βω-ω

J. van Mill

Abstract: There are 2 $^{\mbox{$\frac{1}{4}$}}$ types of $\mbox{$\varphi$-OK}$ points in $\mbox{$\omega$}^{\star}.$ We also construct 2 $^{\mbox{$\frac{1}{4}$}}$ types of weak P-points in $\mbox{$\omega* which are not $\mbox{$\omega_1$-OK}$ points.

AMS Subject classification: 54D35.

0. Introduction.

All spaces are Tychonoff, ϕ denotes 2^{ω} , and $x^* = \beta X - X$.

Let $\kappa \geq \omega$ be a cardinal. A point x of a space X is called κ -OK provided that for each sequence $\{U_n\colon n<\omega\}$ of neighborhoods of x, there is a sequence $\{V_\alpha\colon \alpha<\kappa\}$ of neighborhoods of x such that for all $n\geq 1$ and $\alpha_1<\alpha_2<\ldots<\alpha_n<\kappa$,

$$n_{1 \le i \le n} v_{\alpha_i} = U_n$$
.

Observe that the property of being κ -OK gets stronger as κ gets bigger.

It is easily seen that if x is ω_1 -OK, then x is not a limit point of any subset A \subset X-{x} which satisfies the countable chain condition, [K]. In particular, if x \in X is ω_1 -OK, then x is a weak P-point of X, i.e. if F \subset X-{x} is countable, then x $\not\in$ F. Weak P-points and K-OK points were introduced by Kunen [K], who showed that $\not\in$ -OK points in ω^* exist. Subsequently, the author showed in [vM] that there is also a weak P-point x \in ω^* which is not ω_1 -OK, since x is a limit point of some subset A \subset ω^* -{x} which satisfies the countable chain condition. Consequently, there are at least two types of weak P-points in ω^* . The aim of this note is to show that there are $2^{\not\leftarrow}$ types of $\not\leftarrow$ -OK points in ω^* and also that there are $2^{\not\leftarrow}$ types of weak P-points which are not ω_1 -OK. We use a nonhomogeneity trick due to Comfort and Negrepontis [CN, 16.18], which was inspired by ideas of Frolfk [F].

1. Types of ¢-OK points.

Let X be a space. If $x \in X$, define

$$\tau(x,X) = \{y \in X: \exists \text{ autohomeomorphism } h: X \to X \text{ with } h(x) = y\}.$$

In addition, let $F_{\sigma}(X) = \{U \subset X \colon U \text{ is a nonempty open } F_{\sigma}\}$. Define

$$\mathtt{C}(\mathtt{X})^{*} = \{ <\mathtt{C}_{\mathtt{n}} \colon \, \mathsf{n} < \omega > \colon \, \mathtt{C}_{\mathtt{n}} \in F_{\sigma}(\mathtt{X}) \,\, \text{for all n, and if n \neq m then C}_{\mathtt{n}} \, \mathsf{n} \subset \mathsf{m}^{*} = \emptyset \}.$$

If $x \in X$, put

$$T(x,X) = \{p \in \omega^* \colon \exists < C_n \colon n < \omega > \in C(X) \text{ such that } x \in \mathsf{N}_{\mathsf{P} \in \mathsf{P}}(\mathsf{U}_{\mathsf{n} \in \mathsf{P}} \ C_{\mathsf{n}})^{-} \}.$$

Observe that if $x \in \tau(y,X)$ then T(x,X) = T(y,X).

Since $|C(\omega^*)| = \varphi$, and since disjoint open F_{σ} -subsets of ω^* have disjoint closures, it is easily seen that $|T(x,\omega^*)| \leq \varphi$ for all $x \in \omega^*$ (see [CN, 16.18]).

Let X be the topological sum of countably many compact spaces, say X_n (n < ω). A closed filter F on X is called *nice* provided that

(1) if F
$$_{\epsilon}$$
 F then $\left|\left\{ n<\omega\colon\text{F }n\text{ }X_{n}=\emptyset\right\} \right|<\omega$,

(2)
$$nF = \emptyset$$
.

Whenever we write X = $\Sigma_{n<\omega}$ X then, for convenience, we assume that the X 's are pairwise disjoint.

In [vM₃, 4.5.1], I showed that there is a finite-to-one surjection $\pi\colon\omega\to\omega$ such that for all $x\in\omega^*$ there is a point $y\in\beta\pi^{-1}(\{x\})$ which is a ¢-OK point of ω^* . Observe that if $\bar{\pi}=\beta\pi+\omega^*$, then $\bar{\pi}$ is open and maps ω^* onto ω^* . For later use, let us formulate a generalization of this result, which can be proved by an easy modification of [vM₃, 4.5.1] and [vM₁, 2.4].

1.1. THEOREM: Let $X = \sum_{n < \omega} X_n$, where each X_n is compact and of weight at most φ and suppose that F is a nice filter on X. There is a finite-to-one surjection $\pi \colon \omega \to \omega$ such that if $f \colon X \to \omega$ is defined by f(x) = n iff $x \in X_{\pi^{-1}(n)}$, then for all $p \in \omega^*$ there is a point $x \in \beta f^{-1}(\{p\}) \cap \Omega_{F \in F}$ cl $_{\beta X}$ F which is a φ -OK point of X^* .

Take a point $x \in \omega^*$ which is not a P-point and let $\{F_p: n < \omega\}$ be a sequence of pairwise disjoint nonempty clopen subsets of ω^* such that

Let $\pi: \omega \to \omega$ be as above. By transfinite induction, for every $\xi < 2^{\varphi}$ we will construct a point $q_{\xi} \in \omega^*$, a point $x_{\xi} \in (U_{n<\omega} F_n)^- - U_{n<\omega} F_n$, and a φ -OK point $y_{\xi} \in \pi^{-1}(\{x_{\xi}\})$ such that

$$q_{\xi} \in T(y_{\xi}, \omega^*) - U_{\eta < \xi} T(y_{\eta}, \omega^*)$$

Suppose that this has been done for all $\eta < \xi < 2^{\circ}$. Pick a point q ϵ ω^* - $V_{n<\xi}$ $T(y_n,\omega^*)$, and define q_{ξ} = q. In addition, take a point

$$x \in \bigcap_{Q \in Q} (\bigcup_{n \in Q} F_n)^{-1}$$

arbitrarily, and define x_{ξ} = x. Let y_{ξ} be an arbitrarily chosen ξ -OK point from $\bar{\pi}^{-1}(\{x_{\xi}\})$. Since $\bar{\pi}$ is open, $q_{\xi} \in T(y_{\xi}, \omega^*)$. If $\eta < \xi < 2^{\varphi}$ then, by construction, $q_{\xi} \in T(y_{\xi}, \omega^*)$ - $T(y_{\eta}, \omega^*)$. We therefore

can conclude that $y_{\varepsilon} \notin \tau(y_{n}, \omega^{*})$.

2. Types of weak P-points.

It should be clear what we mean by a K-OK set.

2.1. LEMMA: Let $X \subseteq \omega^*$ be a closed ω_1 -OK set which satisfies the countable chain condition. If $x \in X$, then $\tau(x, w^*) \cap X \subset \tau(x, X)$.

PROOF: Take y \in $au(exttt{x},\omega^{ exttt{*}})$ n X and let h: $\omega^{ exttt{*}} o\omega^{ exttt{*}}$ be an autohomeomorphism of $\omega^{ exttt{*}}$ such that h(x) = y. Since h(X) is ω_1 -OK and since X-h(X) satisfies the countable chain condition, we conclude that $\overline{X-h(X)}$ n h(X) = Ø. This implies that X n h(X) is clopen in X. By the same argument, $X \cap h^{-1}(X)$ is clopen in X. Consequently, x and y have homeomorphic clopen neighborhoods in X. Since X is zero-dimensional, this easily implies that $y \in \tau(x,X)$. \square

By a result of Bell [B], there is a compact, nowhere separable space Y which satisfies the countable chain condition, and which is a continuous image of ω^{\star} . Applying [vM,, 2.4], yields the existence of a compact ccc nowhere separable space X such that $\beta(\omega \times X)$ can be embedded in ω^* as a φ -OK set.

It is easy to construct a nice filter F on $\omega \times X$ such that for any countable subset D $\subset \omega \times X$ there is an element F \in F such that $\bar{\mathbb{D}}$ n F = Ø, [vM $_1$, 3.5]. Let π and f be as in Theorem 1.1 and for every p $\in \omega^*$ choose a point $y(p) \in \beta f^{-1}(\{p\})$ n $\bigcap_{F \in F} \operatorname{cl}_{\beta(\omega \times X)}$ F which is a φ -OK point of $(\omega \times X)^*$. Routine arguments show that the collection $\{y(p)\colon p\in\omega^*\}$ consists of weak P-points of $\beta(\omega \times X)$. Using the same technique as in section 1, it can be shown that there is a subset $\{p_{\xi}\colon \xi < 2^{\varphi}\}\subset \omega^*$ such that for all $\eta < \xi < 2^{\varphi}$ we have that

$$\mathsf{p}_{\boldsymbol{\xi}} \in \mathsf{T}(\mathsf{y}(\mathsf{p}_{\boldsymbol{\xi}}), \boldsymbol{\beta}(\boldsymbol{\omega} \times \mathsf{X})) - \mathsf{U}_{\boldsymbol{\eta} < \boldsymbol{\xi}} \; \mathsf{T}(\mathsf{y}(\mathsf{p}_{\boldsymbol{\eta}}), \boldsymbol{\beta}(\boldsymbol{\omega} \times \mathsf{X}))$$

(observe that f is open). Consequently, if η < ξ < $2^{\mbox{\scriptsize φ}}$, then

$$y(p_{\xi}) \notin \tau(y(p_{\eta}), \beta(\omega \times X)).$$

As remarked above, we may assume that $\beta(\omega\times X)$ is a φ -OK set in $\omega^{*}.$ It is clear that any point of $\beta(\omega\times X)$ which is a weak P-point of $\beta(\omega\times X)$ is also a weak P-point of $\omega^{*}.$ Therefore, the collection $\{y(p_{\xi})\colon \xi<2^{\frac{1}{\varphi}}\}$ consists of weak P-points of $\omega^{*}.$ It is also clear that no $y(p_{\xi})$ is ω_{1} -OK. By Lemma 2.1 we may conclude that if $\eta<\xi<2^{\frac{1}{\varphi}},$ then $y(p_{\xi})\not\in\tau(y(p_{\eta}),\omega^{*}).$

2.2. Remark: Using the same technique as in this note, it can be shown that of all the "special" points constructed in $[vM_1]$ and $[vM_2]$, there are at least 2^{φ} different types.

References:

- [B] M.G. Bell, Compact ccc non-separable spaces of small weight, to appear in Top. Proc.
- [CN] W.W. Comfort & S. Negrepontis, The theory of ultrafilters, Grundlehren math. Wiss., Bd. 211, Springer-Verlag, Berlin (1974).
- [F] Z. Frolik, Sums of ultrafilters, Bull. Am. Math. Soc. 73(1967)87-91.
- [K] K. Kunen, Weak P-points in N*, Proc. Bolyái János Society Colloquium on Topology, Budapest (1978) 741-749.
- [vM] J. van Mill, Sixteen topological types in $\beta\omega$ - ω , to appear in Top. Appl.
- [vM2] J. van Mill, Weak P-points in Čech-Stone compactifications, to appear in Trans. Am. Math. Soc.
- [vM $_{\rm q}$] J. van Mill, An introduction to $\beta\omega$ - ω , to appear.

Subfaculteit Wiskunde Vrije Universiteit De Boelelaan 1081 1081 HV Amsterdam The Netherlands