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ABSTRACT

We show that if X is one of the real line R or the irrationals P then X can be decomposed in two
dense homeomorphic and (topologically) homogeneous parts which do not admit the structure of a
topological group. We also show that the space of the irrationals can be decomposed in two dense
homeomorphic topological groups.

1. INTRODUCTION

In [2], J. Menu showed that the real line R can be decomposed in two homeo-
morphic subsets which are topologically homogeneous'. Menu’s construction is
extremely complicated which motivated the author to find an easier proof of
this interesting result. This was done in [4]. As remarked in [4], none of the
decompositions constructed there has the property that one of the elements of
the decomposition is a subgroup of R. This suggests two questions, namely, 1)
can the real line be decomposed in two homeomorphic topological groups?, and
2) can the real line be decomposed in two homogeneous homeomorphic parts
which do not admit the structure of a topological group? In this paper we will
answer question 2 in the affirmative but we leave question 1 unanswered. As a
partial answer to question 1 we will show that the space of irrationals P can be
decomposed in two dense homeomorphic topological groups. In addition, P

I A space X is called homogeneous provided that for all x, y € X there is an autohomeomorphism A
of X such that A(x)=y.



can also be decomposed in two dense homeomorphic homogeneous parts which
do not admit the structure of a topological group. The method of proof used in
this paper combines ideas in van Mill [4] and van Mill [5].

2. PRELIMINARIES

All topological spaces under discussion are separable metric.

A cardinal is an initial ordinal and an ordinal is the set of smaller ordinals. ¢
denotes 2%

The real line will be denoted by R. P and Q denote the space of irrationals
and the space of rationals, respectively. If 4, BCR then define, as usual,

A+B={a+b:acA, be B}.

Similarly, define 4 — B,xA, x+ A, etc.
The following results will be important in our construction.

2.1. LEMMA: (a) (Lavrentieff [1]): Let X and Y be topologically complete.
If ACX and BCY and if h: A—B is a homeomorphism, then there are G-
subsets A'C X and B'C Y such that ACA' and BC B’ while moreover h can be
extended to a homeomorphism h': A'—B’,

(b) (van Mill [4]): Letr ACR be such that A+ Q=A. Then A is homo-
geneous.

The domain and range of a function f will be denoted by dom(f) and
range(f), respectively. Observe that the collection
F={f: dom(f) and range(f) are Gs-subsets of R and
S+ dom(f)—range(f) is a homeomorphism}

has cardinality c.

2. THE CONSTRUCTION
Let Z={0, =1, +2,...) and Z'=Z\{0}. If xe R define

(1) Vix)=x+Q+nZ.
Observe that V(x) is countable. Let # be as in section 2. As in [5] define

Q) %={fe #:|{xedom(f): fix) ¢ V(X)}| =c}.

Clearly, |%|=c and therefore we may list % as {f,: a<c}. By transfinite
induction we will construct for each @<¢ a point x, e dom(f,,) such that

A3) (Vx) U V(o)) N (U p <o V) U V(f5(xp)) = 8,

and

4) Julxe) & Vix,).
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This construction is a triviality. Suppose that the points x; for < a have been
defined. Put

A= {xedom(f,): f,(x) & V(x)}.

By assumption, |4 | =c. Define

S=Up<aVp) U V(S50xp)).

Observe that | S| <c since V(x) is countable for each xe R and || <.
2.1. LEMMA: [f BCR has cardinality ¢, then |{xeB: V(x)NS=0}|=c.

PROOF: Suppose that By={xeB: V(x)NS+#@} has cardinality ¢. We will
derive a contradiction. For all xe By choose a point g,€ Q and a point n, e Z
such that x+¢g,+ nn,e S. Since ¢ has uncountable cofinality, i.e. ¢ is not the
sum of countably many smaller cardinals, there is a subset B, C B of cardinality
¢ such that for all x,y e B, we have that g,=gq, and n,=n,. Define a function
f: Bj—S by f(xX)=x+gq,+ nn,. Then fis clearly one to one and this contradicts
the fact that S has cardinality less than ¢. [

This Lemma implies that we can find a subset A;C A of cardinality ¢ such
that for all xe A, it is true that V(x) NS =4#. Since f, is one to one, the set f,,(4,)
has also cardinality ¢. Therefore, we can find a subset A; C A, of cardinality ¢
such that for every xe A, we have that V(f,(x))NS=0. Take any xe 4, and
define x, =x. It is clear that this choice of x, is as required.

Define

X= Ua"f-f(xf! + Q) U Ua{c(.fcr(xa) -+ Q)
In addition, as in [4] define

#={ACR: XCA,A+Q=A and AN(A+nZ")=0}.

2.2. LEMMA: Xe v,

PROOF: Suppose that for certain a<c¢, ge Q and neZ’ we have that
Xo+g+nneX. Since x,+q+nmeVix,), by (3), x,+q+nne(x,+Q)U
U(fulxs) = m+ Q). Since n#0, it is clear that x,+q+ nn ¢ (x,+ Q) and conse-
quently, we can find a point s€ Q such that

Xytq+nn=f,(x,)—n+s,

which obviously contradicts (4).
Suppose now that for certain e <c¢, ge Q and ne Z’ we have that f,(x,) — 7+
+g+nneX. Since [fx)+g+n—1)neV(f(x)), by (3), fulx)+qg+

+(n—Drex,+ Q)U(f(x,) — m+ Q). Suppose first that for certain se Q we
have that

JoX)+q+(n—1n=f,(x,)—n+s.
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This obviously leads to a contradiction since n#0 and 7 ¢ Q. Therefore there
exists a point 7€ Q such that

JoX) t@+(n—m=x,+1,

which again contradicts (4). [

It is clear that any chain .#C ./ has the property that U /€ %, so that by the
Kuratowski-Zorn Lemma we can find an 4, € ./ such that whenever Be ./ and
AgCB then Ay=B.

Define 4, = {xe R: Jae A, such that x=a+nn} (neZ).

2.3. LEMMA: {A,: ne Z} is a partition of R.
PROOF: See van Mill [4], section 3. [J

As in [4], define A =|J{A,: ne Z and nis even} and B=|J{A,: neZand n
is odd}. Observe that A + Q=A, so that by Lemma 2.1(b), 4 is homogeneous.
Also, A is homeomorphic to B since the map h(r)=r+ m, sends A onto B. So
the only remaining thing to prove is that A does not admit the structure of a
topological group. This will be done in section 3.

3. A IS NOT A TOPOLOGICAL GROUP
Let A be as in section 2. We will show here that A does not admit the
structure of a topological group. We use ideas from [5].

3.1. LEMMA: If h: A—A is any homeomorphism, then |{xeA:
h(x) & V(x)}| <c.

PROOF: Suppose not. By Lemma 2.1(a) we can find G5’s S and 7 containing
A such that A can be extended to a homeomorphism 4" S—T. Then h’e %, say
h'=f,. Since, by construction, f,(x,)—neA,CA, we find that f,(x,)=
=(f,(x,)—n)+neA CR\A=B. However, since f, extends h, we have that
Solx,)=h(x,) € A, which is a contradiction. [].

3.2. LEMMA: Let UCA be open and nonempty and let  be a family of
countably many nowhere dense subsets of A. Then |U\ U | =c.

PROOF: Let ~denote the closure operator in R and let U’'CR be open such
that U'NA=U. Put é={D: De &}. Since 4 is dense in R, each element of ¢is
a nowhere dense subset of R. Consequently, U"\ U £ contains a Cantor set, say
K. Choose a Cantor set L in R such that LN(K+Q+ nZ)=0. Let #denote a
family of ¢ pairwise disjoint Cantor sets in K. For each Fe .7 let hg: F—L be a
homeomorphism. Then e %and therefore, by construction, A Ndom(A;) #@.
We conclude that |U\U | =¢. O

These Lemma’s imply the following
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© 3.3. THEOREM: There is a countable dense set ECA such that for each
homeomorphism h: A—A we have that ENh(E)+#0.

PROOF: Let DC A be any countable dense set and put E=|Js.pV(d)NA
(observe that we have to intersect with 4 since V(x)NA #0+BN V(x) for all
xe A). We claim that E is as required. To this end, let #: A—A be any homeo-
morphism. For each ge Q and ne Z put

H?={xeA: h(x)=x+q+nn}.
Notice that each HY is closed in A and that, by Lemma 3.1,

|A\UGGQUnEZHﬁI <t

Consequently, by Lemma 3.2, there is a g € Q and an n e Z such that H} is not
nowhere dense. Since HY is closed, it must therefore contain a nonempty open
set and consequently, it must intersect D. Take d € D arbitrarily. Then

hd)=d+qg+nne V(d)NACE.
Therefore, ENA(E)#6. [

3.4. LEMMA: Let G denote a topological group such that |G| =c. IfDCG is
countable, then there is a homeomorphism h: G— G such that h(D)ND =8.

PROOF: We claim that there is an xe G such that xDND=4@. If this is not
true, then for all xe G we can find a point d,€ D such that xd,e D. For each
de D define G,= {xe G: xd,=d}. Since ¢ has uncountable cofinality, thereis a
de D such that |G,| =c¢. Again, since ¢ has uncountable cofinality there is a
subset HC G, such that |H| =c¢ while moreover for distinct x,ye H we have
that d,=d, . Since the equation xa = b has only one solution in G, this obviously
is a contradiction. Therefore, we can find xe G with xDND=0. Now define
h: G—G by h(g)=xg. Then h is clearly as required. [

3.4. COROLLARY: A does not admit the structure of a topological group.

PROOF: Immediate from Theorem 3.3 and Lemma’s 3.2 and 3.4. [J

3.5. REMARK: Observe that Theorem 3.3 and the proof of Lemma 3.4 in
fact show that A does not admit a binary operation *‘.”* such that all right
translations are homeomorphisms.

3.6. REMARK: Notice that we found a topological property of A that shows
that A4 is not a topological group (of course, not being a topological group is
also a topological property, but we found one which in a sense shows ‘““why’’ 4
is not a topological group).
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3.7. REMARK: Eric van Douwen has previously constructed a homogeneous
zero-dimensional space which does not admit the structure of a topological
group (unpublished). It can be shown that his space does not have the property
that for some embedding in R it is homeomorphic to its complement.

4. A PARTITION OF P

In this section we will show that P can be decomposed in two dense homeo-
morphic topological groups.

Let C denote the Cantor cube {0,1}". Then C is a topological group under
coordinatewise addition. We will first show that C can be decomposed in two
homeomorphic dense topological groups. To find the required decomposition
of P is then easy. Simply observe that P is a topological group, being homeo-
morphic to Z", and that P=Cx P.

Let #(N) denote the power set of N and let f: #(N)—{0,1}" denote the
canonical bijection, i.e. f{4);=0 iff i¢ A. Fix a free ultrafilter % on N, i.e.
FC #N) and 7 is a maximal with respect to the finite intersection property
and N #=@. The dual ideal of # is denoted by .% It is easily seen that f{#) is a
subgroup of C which is homeomorphic to its complement, which is equal to
f(F), since the map g: C—C defined by g(x);=x;+ 1 (mod 2) obviously sends
f(.#) onto f{.#). So it remains to be shown that f{.#) is dense in C. To this end,
let F and G be two disjoint finite subsets of N. We have to show that there is an
element H e # which misses F and contains G. It is clear that such an H exists,
since .# is a free ultrafilter (observe that, since F'is finite, N\Fe #).

Let (A,B) be the decomposition of R constructed in section 2. Put
EquEQV{q}. Since E is countable, R\E=P. Therefore, (A\E,B\E) is a
decomposition of (a homeomorph of) P in homogeneous dense sets which are
obviously homeomorphic and which can be seen not to admit the structure of a
topological group by precisely the same construction as in section 3.

5. REMARKS

Our use of Lavrentieff’s Lemma to kill certain homeomorphisms is not the
first construction of this type. For references, see [5].

Let us recall that a zero-dimensional space is called strongly homogeneous
provided that all nonempty clopen subsets are homeomorphic. Strongly
homogeneous zero-dimensional spaces have the pleasant property that any
homeomorphism between closed and nowhere dense sets can be extended to a
homeomorphism of the whole space, [3]. Until now I have not been able to
show that there exists a decomposition of the real line in two homeomorphic
strongly homogeneous sets (whether such a decomposition exists, was asked in
[4]). The results in this paper suggest the question whether a decomposition of
the real line exists in strongly homogeneous homeomorphic sets which do not
admit the structure of a topological group.

Evert Wattel has used one of our decompositions in [4] to show that R” can
be decomposed in n+ 1 homeomorphic homogeneous sets, [6]. The decompo-
sition of this paper can be modified so that by Wattel’s construction one gets a



decomposition of R” in n+ 1 homogeneous and homeomorphic parts which do
not admit the structure of a topological group.
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