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Subfaculteit Wiskunde, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands

1. Introduction

All topological spaces under discussion are separable metric and if X is a space then
Auth(X) denotes the autohomeomorphism group of X.

De Groot and Wille [8] showed that each countable group is isomorphic to
the autohomeomorphism group of some 1-dimensional Peano continuum.
Subsequently, de Groot [7] proved that each group is isomorphic to the
autohomeomorphism group of some metrizable space.

The aim of this paper is to prove Theorem 1.1 below, which shows that there is
a very peculiar partition of Hilbert space £, such that each countable group is
isomorphic to the autohomeomorphism group of a unique element of the
partition.

1.1. Theorem. There is a partition {X;:ie I} of Hilbert space ¢, such that for each
iel,

(1) X, is connected, locally connected and dense,

(2) each autohomeomorphism of X, extends to an autohomeomorphism of ¢,

(3) Auth(X,) is countable,

(4) if HCAuth(X,) is a subgroup, then there is a countable dense set D CX; such
that H is isomorphic to Auth(X;\D); moreover,

(5) for each countable group G there is precisely one index i€ I such that G and
Auth(X,) are isomorphic.

In the proof of this Theorem we use an idea in van Mill [10] and results from
infinite-dimensional topology.

2. Preliminaries

A cardinal is an initial ordinal and an ordinal is the set of smaller ordinals. ¢
denotes 2%

The following classical results will be important in our construction.
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2.1. Lemma. (a) (Lavrentieff [9]): Let X and Y be topologically complete. If ACX
and BCY and if h:A— B is a homeomorphism, then there are G;-subsets A'CX and
B'CY such that ACA' and BCB' while moreover h can be extended to a
homeomorphism h': A'—>B'.

(b) (Sierpinski [11]): If X is a continuum and if < is a partition of X in
countably many closed sets, then at most one element of & is nonempty.

The domain and range of a function f will be denoted by dom(f) and range(f),
respectively. w
As usual, Hilbert space is denoted by ¢ ,, and the Hilbert cube [T[-11];by Q.

1

A closed subset A4 of a space X is called a Z-set provided that for each ¢>0 and for
each map f:Q— X, there is a map g:Q—X\4 such that d(f,g)<e. A o—Z-setisa
countable union of Z-sets. Observe that a Z-set is nowhere dense. AR is an
abbreviation for Absolute Retract.

A subset X of a space Y is called homogeneously embedded in Y provided that
each he Auth(X) can be extended to an he Auth(Y).

Let A be a countable set. For each ae 4, the a™ coordinate of a point
xe[—1,1]* is denoted by x,.

If HCAuth(/,) and if xe¢,, then V(x, H)={h(x):he H}.

3. Special subgroups of Auth(£,)

It is well-known that each countably infinite group G is isomorphic to a subgroup
of Auth(Q). Simply represent Q by [—1, 11¢ and define a function
f:G—Auth([—1,1]°) by

f(@) (X) =X, -

It is easy to see that f(G) is a subgroup of Auth([—1, 179 and that f:G— f(G) is
an isomorphism.

3.1. Definition. Let X be a space. A subgroup G of Auth(X) is called special,
provided that for all distinct g, he G and for each xeX we have that g(x) = h(x).

Observe that the autohomeomorphism group of a space with the fixed point
property has only one special subgroup, namely the subgroup consisting of the
identity only. Consequently, the autohomeomorphism group of the Hilbert cube
has no interesting special subgroups. We will show that for Auth(£,) the situation
is completely different.

Let G be a countably infinite group and let f:G—Auth([-1, 17°) be as above.
For convenience, put Q=[—1,1]%

3.1. Lemma. Let g,he G be distinct. The set A(g,h)= {(xeQ:f(g)(x)=f(h)(x)} is a
Z-set in Q.

Proof. It is clear that A(g, ) is closed. Let ¢>0 and enumerate G by {g,:n€N} in
~ such a way that n+m implies that,g,+g,, Find a sufficiently large neN such that
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the map r:0—Q defined by

x, if iZn,
r(x),,= i o
3 if i>n,

moves the points less than &. We claim that range(r)nA(g,h)=@. Since G is
countably infinite and since the sets

1

A={g,97"...9.97 "'},

B={g,h™ 1, ..,g,h" 1}

are both finite, there is an se G\(AUB). Now take any point terange(r). We claim
that f(g)(t),% f(h)(t),, which will prove that t¢ A(g, h). First observe that

f@@)=t, and f(h)(1),=ty.

Since by construction, {sg, sh}N(g,, --..,g,} =@, by the definition of r and by the fact
that sg=sh, we conclude that t. +t,, which is as required. We therefore may
conclude that A(g,h) is a Z-set. []

For all distinct g, he G, let A(g, h) be defined as in the previous Lemma and put

A=|J{A(g,h):g,he G and g=h}.
By Lemma 3.1, 4 is a 0 — Z-set.
3.2. Lemma. For all geG the restriction f(g)|Q\Ae Auth(Q\A).

Proof. Take xe O\A. We first claim that y= f(g) (x)e Q\A. Indeed, suppose that this
is not true. Then we can find distinct h,ke G such that f(h)(y)=f(k)(y).
Consequently,

and

f(hg) (x)= f(kg)(x),

and since hg =+ kg this proves that xe A, contradiction. Consequently, f(g)|0\A is
an embedding.
By the above observation, it is also true that z= f(g~!)(x)e Q\A Since

f@)@)=flgg™ " (x)=x,

we conclude that f(g)|0\A is surjective.
These two observations show that f (g)lQ\Ae Auth(Q\A) d

3.3.3 Corollary. G is isomorphic to a special subgroup of Auth(Q\A).

Proof. Define F:G— Auth(Q\A) by F(g)=f (g)lQ\A Itis clear that F(G)isa specml
subgroup of Auth(Q\A) and that F:G— F(G) is an isomorphism (use that Q\A is
dense in Q) O

We now come to the main result in this section.

3.4. Theorem. Each countable group is isomorphic to a special subgroup of
Auth(/,).
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Proof. Let G be a countably infinite group and let A be as above. Then G is
isomorphic to a special subgroup of Auth(Q\4) (Corollary 3.3). It is well-known,
and easy to prove, that the complement of any o— Z-set in Q is a topologically
complete AR. For a proof, see for instance Anderson et al. [3]. By a deep result of
Toruficzyk [12], if X is any topologically complete AR, then X x7/,~7,.
Consequently, (Q\A) x ¢, ~¢,. The desired result now immediately follows from
the trivial observation that if G C Auth(S) is a special subgroup, and T is any space,
then {g xid:ge G} C Auth(S x T) is a special subgroup which is isomorphic to G.

Next, if G is finite, observe that G is isomorphic to a subgroup of G xZ.
Therefore, this case follows from the countably infinite case. [

4. A Technical Lemma

The aim of this section is to prove a technical Lemma which is of crucial
importance in the proof of Theorem 1.1, which we will give in Sect. 5.

4.1. Lemma. Let H be a countable group and let AC¢, be of cardinality less than c.
If xe£,\A then there exists a countable special subgroup G C Auth(/,) such that:
(1) H and G are isomorphic,
(2) {g(x):geG}nA=40.

Proof. By a result of Anderson [2], the spaces £, and IR® are homeomorphic. It
therefore suffices to prove the Lemma for R* instead of 7,. It is clear that thereis a
topologically complete space X containing a point ¢t and a family </ of ¢ closed
copies of R® such that for all distinct 4, Be & we have that AnB={t}. Since X is
topologically complete, it embeds in R* as a closed subset and it is clear that we
can reembed any closed subset in R® such that it projects onto a point in infinitely
many coordinates. An appeal to the homogeneity of R® and using Anderson [1]
or Bessaga and Pelczynski [4, 6.1], yields the following: there is a family % of ¢
Z-set copies of R* in R such that for all distinct B, Ee# we have that BNE
={x}.

Since |%#|=c and since |4]<¢, we can find a Be# such that Bn4A=0. By
Theorem 3.4 we can find a countable special subgroup G’ C Auth(B) such that G’
and H are isomorphic. Since B is a Z-set in R®, by the Homeomorphism
Extension Theorem of Anderson [1], see also [4, 6.2], there is a homeomorphism
of pairs (B, R®)~(B x {(0,0, ...)}, BxR®). As in the proof of Theorem 3.4, we may
therefore conclude that G’ is isomorphic to a countable special subgroup
G C Auth(IR®) with the property that for all ge G we have that g|Be G'. It is clear
that G is as required. [J

5. Proof of Theorem 1.1

In this section we will give the proof of Theorem 1.1.

Let {G,:a <<} be a family of countable groups such that

(1) if H is any countable group, then there is an index a < ¢ such that H and G,
are isomorphic.

(2) if a<f<c, then G, and G, are not isomorphic.
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Let {t,:a<c} be an enumeration of ¢, and let {f,:a <c} enumerate the family

={f:dom(f) and range(f) are G,-subsets of £, and
f:dom(f)—range(f) is a homeomorphism}

such that every fe & is listed ¢ times (it is very important, as we will see later, that
& is listed in this way).

For each a<¢ we will construct a countable special subgroup H,C Auth(/,)
and for each { <« a point x;e/, such that

(3) H, and G, are isomorphic,

@) if x, usa, =<k and n=<p and if either k+u or &##, then
Vixg, H é)r\ V(xy,H,)=0.

(8) if E<a then V(xg, H)n{f(x}):{ Sy <a&xledom(f)} =0,

(6) if t,¢ U U V(x£, H,), then xi=t,,

(7) for each §<oc such that |[{xedom(f,): f(x)¢V(x,Hy)}|=c we have that
x;edom(f,) and f(xé)qé U V(xL, H,).

{sy=a

Suppose that we have defined H, and for each £ < f the points x{ for all B<a.
Ift,¢Z= U U V(x£, H,), then let x=t, and by Lemma 4.1 find a countable

special subgroup H C Auth(/,) such that H and G, are isomorphic, while moreover
V(t,, H)N U U V(x{,H,)=4.

Define H H

If t,£Z, then let xZ be any point of £,\Z and again apply Lemma 4.1 to find a
countable special subgroup H C Auth(¢,) such that H and G, are isomorphic, while
moreover V(xi, H)NZ =@. Again define H,=H.

This defines x; and H, and we will now proceed to construct the points x; for
all £ <a. Suppose that the points x§ have been defined for all £ <y <a such that
their choice does not contradict one of the statements (3)~7) [formally we have to
formulate again appropriate induction hypotheses, but since it follows directly
from (3)+7) what these hypotheses should be, we will not bother to state them
explicitly]. We will construct x. Define

S= pga ‘:Lé)ﬂ V(x£, Hp)u }()y Vx5, H)UV(xg, Hy).
Observe that |S| < |-, < ¢. This implies that the set
T= ﬂgﬂ Sy(dom(fz)NS)
does also have cardinality at most|x|-8, <c.

5.1. Lemma. Let A,BC/, such that |A|=c and |B|<c. Then |{xe A:V(x,H,)nB
=0} =c

Proof. Suppose that |{xe A:V(x,H)nB+@}|=c. We will derive a contradiction.
Since ¢ has uncountable cofinality, 1.e. ¢ is not the sum of countably many smaller
cardinals, there is a set 4, CA of cardinality ¢ and an he H, such that h(4,)CB.
Since h is one to one and |B|<c¢, this is impossible. Therefore
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I{xeA[:jV(x,H.,)nB#ﬂ}Kc, from which it follows that |{xe 4:V(x,H,)nB=0}|
=

Now if [{xe dom(f,): f,(x)¢ V(x, H,)}| <c, then let xJ be any point of £,\(SUT)
such that
Vx5, H)N(SLT)=8.

Such a choice for xJ is possible by Lemma 5.1. Therefore, suppose that

A={xedom(f):f(x)¢V(x,H,)}
has cardinality ¢. By Lemma 5.1, 4, = {xe A:V(x, H )N(SUT)=0} has cardinality
¢. Since f, is one to one, there is also a set A, CA, of cardinality c¢ such that
fLA)N(ESUT)=0.

Let x5e A, be arbitrarily chosen. It is clear that this choice of xJ is as required.
This completes the transfinite induction.
For every a<c¢ put

X,= U V(xLH,).
yZa
5.2. Lemma. If a<f<c then X,nX,=@ and ) X,=¢,.
Proof. Let a < and suppose that we can find k=« and p=f such that
V(X:, Ha)n V(X;, Hﬂ) 4: g . (*)

Let 0=max{p, k, u}. Then 6 <c and therefore () contradicts (4).
That ) X,=¢, immediately follows from (6). [

a<c
It follows that {X,:a<c} is a partition of /, and we claim that this is the
required partition.

5.3. Lemma. For each a<c¢ and for each Cantor set K C¢, we have that X ,nK + 0.

Proof. Let LC/, be a Cantor set not intersecting

o, "

and let f:K— L be any homeomorphism. Choose an index y >a such that f = f,. By
(7) it now follows that x}edom(f,)nX,. [

5.4. Corollary. Each X, is connected, locally connected and dense in ¢ ,.

Proof. Since no countable set separates some nonempty open subset of #,, this
immediately follows from Lemma 5.3. [J

5.5. Lemma. Let S and T be Gs-subsets of ¢, both containing X,. If f:S—T isa
homeomorphism such that f(X,)=X,, then |{xeS: f(x)¢V(x, H)}| <c.

Proof. Suppose not, and choose an index y>a such that f=f,. Then, by (7), at
stage y we have chosen a point x}e dom(f,)nX, such that

fxD¢ . sus , V(x5 H,).
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If k> then, by (5).
S (xDeEV(xg, Hy).

We therefore conclude that f(x})¢X,. But this contradicts our assumption that
f(Xa) =X¢' D

5.6. Corollary. Let S and T be Gy-subsets of ¢, both containing X ,. If f:S—>Tisa
homeomorphism such that f(X,)=X,, then
I{xeS: f(x)¢V(x, H)} =R, .
Proof. For each he H,, put
A,={xeS:h(x)=f(x)}.
Observe that each A4, is a closed subset of S and that, by Lemma 5.5,

B=s\{J 4
\u

has cardinality less than c. Since B is a G;-subset of S, it has to be topologically
complete. Consequently, B is at most countably infinite, [6, 4.5.5(b)]. [

5.7. Lemma. Let S and T be Gs-subsets of ¢, both containing X,. If f:S—T is a
homeomorphism such that f(X,))=X,, then there is an he H, such that f(x)=h(x)
for all xe8.

Proof. As in the proof of Corollary 5.6, for every he H,, put
A, ={xeS:h(x)=f(x)}.
By Corollary 5.6, the set

B=S A

(R

is at most countable. Since £,\S is a countable union of topologically complete
spaces which all have to contain a Cantor set or have to be countable, from
Lemma 5.3, we may conclude that /,\S is countable. Consequently,

E=t’2\ 4,
heHqy

is countable. Now suppose that there are at least two distinct h, ge H, such that
A,+0 and A, +0. Take a point xe 4, and a point ye 4, and let J be an arc in £,
connecting x and y but missing E (it is clear that such arcs exist, since E is
countable). Therefore, J is covered by the family {4,:he H,} which is pairwise
disjoint, since H,, is special. Since J misses E each set A,nJ, where ke H,, is closed
in J. An appeal to Sierpinski’'s Lemma, 2.1(b), now yields the desired
contradiction. Since each A4, is closed in S, we are done. []

5.8. Remark. The fact that the groups H, are special is essential in the proof of
Lemma 5.7. For details see van Mill [10].

S.9. Theorem. Let f:X,—X , be a homeomorphism. Then there is an he H, such that
f=h|X,. As a consequence, X, is homogeneously embedded in ¢,. In addition, if
he H,, then h|X € Auth(X,). Consequently, Auth(X,) is isomorphic to H,.



328 J. van Mill

Proof. By Lavrentieffs Lemma, 2.1(a), there are G,-subsets S and T in 7, which
both contain X, such that f can be extended to a homeomorphism f:S—>T By
Lemma 5.7, there is an he H, such that h|S= f. Consequently, h|X,= f. All other
assertions stated in the Theorem are obvious now, since observe that we have
constructed X, in such a way that h|X,€ Auth(X,) for all he H, and that, since X, is
dense in 7, the above result implies that the function F:H,— Auth(X,) defined by
F(h)=h|X, is an isomorphism. []

Since, by construction, for each countable group G there is precisely one index
a < ¢ such that G and H, are isomorphic, we see that the partition {X,:a<c} is as
required, except that we still have to prove 1.1(4). In the remaining part of this
section we will do that. For a result related to 1.1(4), see [5].

5.10. Theorem. Let H C H, be a subgroup. Then there is a countable dense set DCX,,
such that Auth(X,\D) is isomorphic to H.

Proof. Since X, is dense in the Baire space #,,by Lemma 5.3, it has to be Baire also.
We therefore can find a countable dense set {e,:n€IN} in X, such that nm implies
that V(e,, H)nVl(e,, H,)=0. Put

D={h(e,):he H\H,neN}.
We claim that D is as required. For convenience, put Y=X,\D.
Fact 1. If he H and xe Y, then h(x)e Y.

This need only to be shown for the points {e,:neN}. If h(e,)¢Y for certain
he H, then there is a ge H,\H such that h(e,)=g(e,). Since h+g and since H, is
special, this is impossible.

Since H is a subgroup of H,, for each he H and xe Y, by Fact 1, also h~ Y(x)eY.
Therefore, the following is immediate.

Fact 2. If he H, then h|Ye Auth(Y).

Since Y is dense, by similar arguments as in the proof of Theorem 5.9, it
therefore suffices to prove

Fact 3. If fe Auth(Y), then there is an he H such that f=h|Y.

Choose fe # such that |{xedom(f): f(x)¢V(x, H,)}| =c. Since f occurs ¢ times
in thelist { f, :a < ¢}, by (7), dom(f)nX, has cardinality c. Since we have removed only
countably many points from X, we may also conclude that dom(f)nY has
cardinality ¢. Having this in mind, we can prove in precisely the same way as in the
X, case, that there is an he H, such that f =h| Y. If h¢ H, then h(e,)e D C/,\Y, which
shows that h is not an extension of f. This proves that he H.

This concludes the proof of the Theorem. [

6. Remarks

At several places in this paper, we used essentially the fact that we only considered
countable groups. However, several arguments that worked for ¢, will also work
for Hilbert spaces of larger weight, but for example the use of Sierpifiski’s Lemma
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in the proof of Lemma 5.7 does not generalize. Maybe a modification of our
technique will work to answer Question 6.1 below, but it is clear that additional
new ideas will be needed.

6.1. Question. Let x be an infinite cardinal. Is there a Hilbert space (preferably of
weight k) H which admits a partition {X;:i€I} such that for each group G of
cardinality at most K there is precisely one index i€l such that G and Auth(X,) are
isomorphic?
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