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The reduced measure algebra is used to construct, under CH, a hereditarily Lindel6f separable
K,-space X which is not a Kj-space. ¢
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l monotone extension property K, -space

0. Definitions

All topological spaces under discussion are completely regular and T;.

If X is a space, C*(X) denotes the Banach space of continuous, bounded,
real-valued functions on X. For a function fe C*(X) the sup-norm of f is defined
by

[If|=sup{lf(x)]: x e X}

If A is a closed subspace of X, then a function ¢: C*(A)—> C*(X) satisfying
t(f)|A =ffor each fe C*(A) is called an extender. The norm of ¢, which is denoted
by |l¢||, is defined by

llell = sup{lle (Hll: f € C*(A), [Ifll = 1}.

The extender ¢ is linear if ¢ (af + Bg) = ac(f)+Bi(g) forall f, ge C*(A) and a, B €R;
¢ is said to be monotone if ¢(f) =.(g) provided that f=g.

A space X is said to have property D}, where ¢ € R, if for every nonempty closed
subspace A of X there is a linear extender ¢: C*(A)~> C*(X) with norm not
exceeding c. Similarly, X has the monotone extension property if for every closed
subspace A < X there is a monotone extender ¢: C*(A)- C*(X). For more infor-
mation on these concepts see [3, 4, 7, 13, 14].
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A subspace A < X is said to be K,-embedded in X (n=0) provided there is a
function «:7(A)- 7(X) (for each space Z, the topology of Z is denoted by 7(Z))
such that

(a) k(U)mA=Uforall Uer(A);

(b) if n =0, then (@) =0 and «x(U)nk(V)=x(Un V) for all U, Ver(A); if
n>0, then x(Up)n---nk(U,)=0 whenever U;nU;=0 for 0<i<j<n and
Ugy-.., U, eT(A).

A space is a K,-space if each subspace is K,-embedded. For more information
on these concepts see [3, 4, 18, 19].

1. Introduction

The Dugundji Extension Theorem, [9], has been improved in recent years so
that certain versions of it now also work for certain classes of non-metrizable but
mathematically important objects such as CW-complexes [2, 1] and generalized
ordered spaces [13].

One of the most important observations in Dugundji extension theory is that
spaces which satisfy a certain version of the Dugundji Extension Theorem allow
functions on subspaces which simultaneously extend open sets in a nice way. To
be more precise, a space with property D¥ is K,-space where n is the smallest
integer greater than 3(c —1). This observation of van Douwen [4] was used to
construct a first countable, hereditarily Lindelof, separable space H. containing a
closed subspace A having no continuous linear extender from C*(A) to C*(Hx).

Van Douwen’s Example is the topological sum of spaces H, (n €N), where, for
each n, H, is a hereditarily Lindelof, separable K, ,-space which is not a K,-space.
This example left open the question whether every K, -space is a K-space and the
aim of this paper is to answer this question, [4, p. 301].

We will construct, assuming the Continuum Hypothesis, a hereditarily Lindeldf,
separable K-space which is not a Ky-space. Our example is inspired by an example
in van Mill [19] where we constructed a first countable compact space Z containing
a closed subspace A which is K;-embedded but not Ky-embedded (Z is not a
K -space since Z is separable and contains an uncountable discrete subspace). Our
example is also interesting for another reason. In [3, 3.1] it was shown that any
space with the monotone extension property is a K;-space. Our example has the
monotone extension property but is not K,. That answers another question of van
Douwen.

2. Certain subspaces of extremally disconnected compacta

A space is extremally disconnected if the closure of any open set is again open.
As usual, we call a space without isolated points a Luzin (nodec) space, if each
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nowhere dense set is countable (closed). There are, under CH, spaces which are
both Luzin and nodec, see [21, 20].
The following results are of independent interest.

2.1. Theorem(CH). Let X be an extremally disconnected, dense in itself compactum
of weight 2°. Then X contains a dense nodec subspace. If X moreover satisfies the
countable chain condition, then X contains a dense subspace which is both nodec
and Luzin.

Proof. Let € be the Boolean algebra of clopen subsets of X and, by CH, list
€ —{0} as {C.: @ <w;}. By induction we will construct, for each &« <w; a point
X, € X and a nowhere dense closed set Z, = X such that

(a) x.eZ,<=C,,

(b) if B<a and if xg # x,, then ZgnZ, =0, xz€ Z, and x,& Zg,

(c) if D<= X —Z, is nowhere dense, then x,& D.
Suppose that we have constructed the xz's and the Z;'s for all B <« <w,. If there
isa y < a such that x, € C, thendefine x, = x, and Z, = Z,. If not, take x € C,, so that

XE U Zﬂ.
B<ao

Let Z<C, be a closed G5 subset of X missing (Ug-, Zg U{xs: B <a} but
containing x. Since X is extremally disconnected and since the cellularity of X is
non-measurable, x is not a P-point, i.e. there is a closed nowhere dense G5 set S
containing x, [10, 12H].

Define S'=SnZ. Then S’ is also nowhere dense, so Y =X —S' is a locally
compact, o-compact, non-compact, dense subspace of X. Since dense subspaces of
X are C*-embedded, BY = X. Since Y is not pseudocompact and 8Y has weight
2%, by Kunen, van Mill & Mills [16, 1.3] there is a point x'€ BY — Y = §’ such that
x'& D for any nowhere dense subspace D = Y. Define x, =x'and Z, = §'.

Now put P ={x,: @ <w;}. Clearly P is dense and we claim that P is nodec. Let
D = P be nowhere dense and suppose that D is not closed. Take x € (P~D)-D.
Choose @ < @, such that x = x,. By (b), Z, n (P —{x.}) =@ and therefore Z, n D =0.
Since D = Z, is nowhere dense, by (c), x£ D. Contradiction.

If X is ccc, then the x, 's must be chosen more carefully in orderfor P ={x,,: @ < w;}
to be Luzin. First observe the well-known fact that there is a family &/ of 2°
nowhere dense subsets of X so that each nowhere dense subset of X is contained
in some element of &/, Indeed, since X is ccc each nowhere dense subset of X is
contained in a nowhere dense Gs, and, since there are only (2“)” =2“ G;’s in X,
we can simply let &/ be the family of all nowhere dense Gs’s of X. To make P
Luzin we must simply add in the induction hypotheses that x.&( Js;.,Ag (let
{A.: @ <w;} enumerate «f). The rest is routine. [

2.2. Remark. For related ideas see [8, 20].
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A space is called retracrable if each nonempty closed subspace is a retract.
The following Lemma generalizes [3, 3.3].

2.3. Lemma. A Lindeldf nodec space is retractable.

Proof. Let X be a Lindel6f nodec space. First observe that each nowhere dense
subset of X is discrete and hence, because X is Lindeldf, countable. Therefore X
is Luzin, which easily implies that X is zero-dimensional, [15].

Observe that it clearly suffices that each nowhere dense closed subspace of X is
aretract. So let D = X be closed and discrete. Since X is strongly zero-dimensional
there is a disjoint clopen cover {Uy,: d € D} of X with d € U,. Then, as in [3, 3.3],
define r: X ->D byrix)=diffxeU,;

2.4. Corollary. A Lindelof nodec space is K.

Proof. By [4, 2.1] it suffices to prove that closed subspaces are Ky-embedded. But
that immediately follows from Lemma 2.3. [

2.5. Question. Is the statement “Each dense in itself extremally disconnected
compactum of weight 2“ contains a dense nodec subspace’ equivalent to CH?

3. The reduced measure algebra

Let I denote the closed unit interval [0, 1], let # be the Boolean algebra of
measurable subsets of I, and let N be the ideal of null-sets. The quotient algebra
/N is called the reduced measure algebra. Let M denote its Stone space. Notice
that //{/ ' is complete and has cardinality 2%, so that M is an extremally disconnected
compactum of weight 2,

Let A denote Lebesgue measure on I, and for Aec.# let [A] denote the
N-equivalence class of A.

The following lemma is well-known. The proof is included for completeness sake.

3.1. Lemma. (a) The family € of nonempty clopen (=closed and open) subsets of
M can be written as € =_J €., where, for each n < w,
(a) () €, =0, and
(B) any two members of €, meet.
(b) M is not separable.

<

Proof. For (a), let us first prove a corresponding statement for /{ —.N. Let & be
a countable (open) basis for I which is closed under finite unions. For each B € &
define

PB)={AecM: \(ANB)>3A(B).
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It is clear that any two members of .#(B) meet in a set of positive measure. Also,
Z(B) contains three elements which have empty intersection.

We claim that \rﬂi’—.\’:UBE%f{B}‘ Indeed, take A €. —.A and construct a
compact K = A with A(K)>0. There is a Be 3 with B=>K and A{K))%A(B).
This shows that K € #(B). Hence A € #(B).

From these observations (a) is immediately clear.

For (b), let {p,), be any sequence in M. Since p,, is an ultrafilter in the Boolean
algebra (/N we can find P, € #{ — N with [P,]ep, and A(P,)<27*" Then {x e
M :[I-|J,P.]ex}is an open set in M which is nonempty and misses each P,. [J

A family of sets is called linked (centered) if any two (any finite number) of its
members meet. Call a family of sets o-linked (o-centered) if it is the union of
countably many linked (centered) subfamilies. A compact space the topology of
which is o-centered is clearly separable [5], so that we can reformulate Lemma 2.1
by saying that 7(M) is o-linked but not o-centered (this is not entirely true; in
Lemma 2.1 we proved that 7(M) is the union of countably many linked subfamilies
which all have empty intersection and it is precisely this fact which makes our
construction work).

By Lemma 2.1(a) M satisfies the countable chain condition, so that by Theorem
2.1 M has a dense subspace P which is both Luzin and nodec, see also [21]. Since
P is dense in M, 7(P) is o-linked but not o-centered. We have constructed the
following example.

3.2. Example (CH). There is a space P which is both Luzin and nodec and which
moreover has the following properties:

(a) the family of nonempty clopen subsets of P is not o-centered,

(b) the family of nonempty clopen subsets of P is the union of countably many
linked subfamilies having all empty intersection.

4, The example

Let P be the space of Example 3.2. The family of nonempty clopen subsets
of P will be denoted by %. By 3.2(b), we can write € as |_J,__ €, where each %,
is linked while moreover [ %, = 0.

The following construction is inspired by de Groot’s [11] notion of a super-
extension.

By Zorn's Lemma extend each €, to a maximal linked system ¥, < €, i.e. a
linked system in € not properly contained in any other linked system in €. For
each C € € define

CT=Cuin<a: Ce%l.

e

Notice that if C € %, then either Ce %, or P—C € %, and also that (] .%, =@ since
m {gn = B-



128 J. van Mill | A K,-space which is not Ky

Fact 1. If F< w is finite and if x € P, then there is a C € € containing x such that
C'nF=0.

Take n € F arbitrarily. Since ()%, =0, there is an L, € %, not containing x. Put
C=(),.r(P—L,). Then C is as required.

Fact 2. Let F, G <w be finite, let x € P, and, for each neF let C, be a clopen
neighborhood of x in P. Then there is a clopen neighborhood C of x such that
Crel | Cn—0.

Put E =(),.rC, and let D be a clopen neighborhood of x such that D" "G =@
(Fact 1).

Then C = E n D is as required.

The underlying set of X is P U w. The topology of X is generated by the collection

{CT:Ce€lui{n): new)

Notice that this implies that the points of @ are isolated and that a basic neighbor-
hood of x € P< X has the form C”, where xe Ce €. Since C"~P=C for all
C € %€, the inclusion P — X is an embedding.

Fact 3. X is a zero-dimensional Hausdorff space.

Take C€%. Then C"n(P—C) =0 and C"u(P—C)" =X. This implies that
C" is clopen. The rest is clear.

Fact 4. X is Lindeléf and w is dense in X. In particular, X is separable.

Since P is Lindeldf and w is countable, the Lindelofness of X is trivial. We will
now show that P< w . Take x € P and let U be any neighborhood of x in X. Take
Ce¥€ sothat xeC<cC cU. Let Ce %, Then Ce %, or equivalently, ne C".
That shows that U nw # 0.

Fact 5. X is not a Ky-space.

We claim that there is no Ky-function «: 7(P) - 7(X). For, to the contrary, assume
there is a Kyp-function «:7(P)- 7(X). since X — P is countable this would imply
that 7(P) is o-centered, a contradiction.

If U = P is open, then define

U'=Uufn<w:3CeZL(C<U)}

Notice that U is open and that if U is clopen the set U defined here equals the
set U defined above.
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Fact 6. X is a K;-space.

By [4, 2.1] it suffices to prove that closed subspaces of X allow K;-functions.
Therefore, let A =X be closed. Since, by Corollary 2.5, P is a K,-space, there is
a Ky-function p:7(AnP)-7(P) (in fact, a K,-function would suffice). Define
k:7(A)->7(X) by

«(U)=Uul((p(UnP)) —A).

It is clear that k() n A = U. Let us observe that « (U ) is open. Since X — P consists
of isolated points of X we only need to check that «(U) is a neighborhood of any
point of «(U)nP. So take xewx(U)nP. If x£ A take a clopen C =P so that
C<p(UnP) while moreover xeC=C =X —-A. Then C <k (U), and con-
sequently «(U) is a neighborhood of x. If xe A, take a clopen F <P so that
x € F < p(U N P) while moreover F*~ A < U. Then F™ < «(U) so that in this case
k(U) is also a neighborhood of x. We conclude that «(U) is open.

HUANV=0,thenk(U)nw(V)=0since p(U nP)np(V ~P)=0 (which implies
that (o(UNP) n(p(VAP) =0).

Therefore « is a K;-function.

5. The monotone extension property

We will now prove that X has the monotone extension property. From this it
also follows that X is a K, -space, [3, 3.1].

Let P and X be as in Section 4. In the following Lemma we will use a technique
essentially due to J. Jensen (see [22, 11.4.5]).

If Ac=Rlet h(A) denote the closed convex hull of A in R.

5.1. Lemma. There is an extender @: C*(P) - C*(X) so that
(@) @()ll=Ifl for all fe C*(P), and
(b) iff<g, then d(f)<D(g).

Proof. Let fe C*(P). Define @(f): X >R by

D(f)x)=f(x) (x e P),
and

{@(H(n)}y=Mh(fL): Le L} (new).

Clearly @(f)|P = f. We claim that @(f) defined in this way is as required.

Claim 1. @(f) is well-defined,

First observe that the fact that fe C*(P) and the fact that %, is a linked system
imply that ({A(f(L)): Le %,}#0 for all n € w. Suppose that for certain n € w
({A(f(L)): Le %,} contains two distinct points, say a and b. Without loss of
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generality @ < b. Take a clopen set E < P such that
f(=w0,3a+1b]= E<f (o0, da +3b),

Since %, is a maximal linked system, either E€ %, or P—FE € %,. If E€.%,, then
b e h(f(E))< (-0, 3a +3b], which is impossible. If P— E € %,, then

f'[3a+3b,c0)c P—Ecf '(3a+ib, ),

so the same contradiction can be derived.
Claim 2. @(f) is continuous.
The reader can easily check that

&(f) (~0, s]=N{C": Ce € and Fe >0: f (-0, s +£]= C},
&(f) [s,0)={C*: Ce% and 3¢ >0: f '[s—¢, )= C}

for all s eR.

Claim 3. |®(f)|=|f| for all fe C*(P), in particular, @(f) e C*(X).

This follows immediately from the definition of @(f).

Claim 4. 1f f< g, then @(f)< ®(g).

This requires proof. Suppose that f<g but @(f) % ®(g) for certain f, g C*(P).
since @(f)|P =f and @(g)|P = g, we can find n € w such that

D(g)(n)<@(f)(n).
Since f, g€ C*(P) we can find M, N € ¥, such that
h(f(M))nh(g(N))=0
(argument: if h(f(M))h(g(N))# 0 for all M, N € ¥, then
M{(f(M)): M e £,}n({h(g(N): N e L} h(f(P)ug(P)) #0,

i.e. @(g)(n)=@(f)(n), which is impossible).

Since @(g)(n)<®(f)(n) for all re h(f(M)) and se h(g(N)) we have that s <r.
Now, %, is a linked system, so that M and N meet, say x e M n N. Since f(x)e
h(f(M)) and g(x) € h(g(N)) it follows that g(x)< f(x). But this contradicts the fact
that f=g. [J

5.2. Remark. From the proof of Lemma 4.1, the definition of &, Claim 1 and
Claim 2 are known, see [22, II 4.5], since @(f) is already continuous in the weaker
superextension topology on X. Since we used the explicit construction of @(f) in
Claim 3 and Claim 4, for completeness sake we have also included the proofs of
Claim 1 and Claim 2.

We now come to the main result in this section.

5.3. Theorem. Let A be any closed subspace of X. Then there is an extender
@:C*(A)» C*(X) such that
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@) [|@(Hll=|fl for all fe C*(A), and
(b) iff=<g, then @(f)=D(g).
In particular, X has the monotone extension property.

Proof. Let A = X be closed. Without loss of generality A # 0.

Suppose first that A (1 P ={. Then, since X — P is countable, A is a closed discrete
subspace of the zero-dimensional Lindeldf space X. This implies that A is a retract
of X. Let r retract X onto A. Define @: C*(A)—- C*(X) by

D(f)(x)=f(r(x)).

Then @ is as required (this is well-known of course).

Now suppose that A NP #0 and let ¢: C¥*(P)-> C*(X) be an extender as in
Lemma 5.1. By Lemma 2.3, P is retractable, so let r: P—- A n P be a retraction,
Define @: C*(A)-» C*(X) by

D(f)x)=f(x), (xeA),
D(f)(x)=((fl[(AnP))or)(x), (xg A).

A straightforward check shows that @ defined in this way is as required. [J

5.4. Remark. The extender @ in Theorem 5.3 is in general not linear.

6. Remarks

The results derived in this paper suggest the following question:

6.1. Question. Is there, in ZFC, a first countable zero-dimensional Lindelof K-
space X for which the family of all nonempty clopen subsets is the union of countably
many linked subfamilies all having empty intersection but is not o-centered?

Let us indicate why this question is nontrivial and interesting. It is interesting
since a positive answer would yield, using the same technique as in Section 3 of
this paper, an example of a first countable separable Lindel6f K-space which is
not Kq. The question is nontrivial, since if such an example exists, it cannot be
locally compact and it cannot have a first countable compactification, by [12]. Of
course there are first countable Lindel6f spaces having no first countable com-
pactification, but these examples are all difficult. At first glance one would hope
that a space asked for in Question 6.1 can be linearly orderable, or, generalized
orderable, since the only known (nontrivial) class of Ky-spaces not related to
metrizable spaces are the generalized orderable spaces, [3, 2.3.1; 17]. However,
unfortunately, the example cannot be generalized orderable. For suppose X is
generalized orderable and has all properties listed in Question 6.1. Let X" be the
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Dedekind completion of X. Then X~ is supercompact (this will not be defined
here) and the topology of X is o-linked. But van Douwen [6] has recently shown
that such a space must be separable. Therefore X~ is separable, which in turn
implies that X is separable, contradicting the fact that 7(X) is not o-centered.
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