THE REDUCED MEASURE ALGEBRA AND A K_1 -SPACE WHICH IS NOT K_0

Jan van MILL*

Subfaculteit Wiskunde, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands

Received 26 February 1980 Revised 29 May 1981

The reduced measure algebra is used to construct, under CH, a hereditarily Lindelöf separable K_1 -space X which is not a K_0 -space.

AMS Subj. Class.: 54C20, 54C99

reduced measure algebra K_0 -space monotone extension property K_1 -space

0. Definitions

All topological spaces under discussion are completely regular and T_1 .

If X is a space, $C^*(X)$ denotes the Banach space of continuous, bounded, real-valued functions on X. For a function $f \in C^*(X)$ the sup-norm of f is defined by

$$||f|| = \sup\{|f(x)|: x \in X\}.$$

If A is a closed subspace of X, then a function $\iota: C^*(A) \to C^*(X)$ satisfying $\iota(f)|A = f$ for each $f \in C^*(A)$ is called an *extender*. The norm of ι , which is denoted by $\|\iota\|$, is defined by

$$\|\iota\| = \sup\{\|\iota(f)\|: f \in C^*(A), \|f\| = 1\}.$$

The extender ι is linear if $\iota(\alpha f + \beta g) = \alpha \iota(f) + \beta \iota(g)$ for all $f, g \in C^*(A)$ and $\alpha, \beta \in \mathbb{R}$; ι is said to be monotone if $\iota(f) \leq \iota(g)$ provided that $f \leq g$.

A space X is said to have property D_c^* , where $c \in \mathbb{R}$, if for every nonempty closed subspace A of X there is a linear extender $\iota: C^*(A) \to C^*(X)$ with norm not exceeding c. Similarly, X has the monotone extension property if for every closed subspace $A \subseteq X$ there is a monotone extender $\iota: C^*(A) \to C^*(X)$. For more information on these concepts see [3, 4, 7, 13, 14].

Partially supported by NATO grant 1927.

A subspace $A \subseteq X$ is said to be K_n -embedded in X $(n \ge 0)$ provided there is a function $\kappa: \tau(A) \to \tau(X)$ (for each space Z, the topology of Z is denoted by $\tau(Z)$) such that

- (a) $\kappa(U) \cap A = U$ for all $U \in \tau(A)$;
- (b) if n = 0, then $\kappa(\emptyset) = \emptyset$ and $\kappa(U) \cap \kappa(V) = \kappa(U \cap V)$ for all $U, V \in \tau(A)$; if n > 0, then $\kappa(U_0) \cap \cdots \cap \kappa(U_n) = \emptyset$ whenever $U_i \cap U_j = \emptyset$ for $0 \le i < j \le n$ and $U_0, \ldots, U_n \in \tau(A)$.

A space is a K_n -space if each subspace is K_n -embedded. For more information on these concepts see [3, 4, 18, 19].

1. Introduction

The Dugundji Extension Theorem, [9], has been improved in recent years so that certain versions of it now also work for certain classes of non-metrizable but mathematically important objects such as CW-complexes [2, 1] and generalized ordered spaces [13].

One of the most important observations in Dugundji extension theory is that spaces which satisfy a certain version of the Dugundji Extension Theorem allow functions on subspaces which simultaneously extend open sets in a nice way. To be more precise, a space with property D_c^* is K_n -space where n is the smallest integer greater than $\frac{1}{2}(c-1)$. This observation of van Douwen [4] was used to construct a first countable, hereditarily Lindelöf, separable space H_∞ containing a closed subspace A having no continuous linear extender from $C^*(A)$ to $C^*(H_\infty)$.

Van Douwen's Example is the topological sum of spaces H_n $(n \in \mathbb{N})$, where, for each n, H_n is a hereditarily Lindelöf, separable K_{n+1} -space which is not a K_n -space. This example left open the question whether every K_1 -space is a K_0 -space and the aim of this paper is to answer this question, [4, p. 301].

We will construct, assuming the Continuum Hypothesis, a hereditarily Lindelöf, separable K_1 -space which is not a K_0 -space. Our example is inspired by an example in van Mill [19] where we constructed a first countable compact space Z containing a closed subspace A which is K_1 -embedded but not K_0 -embedded (Z is not a K_1 -space since Z is separable and contains an uncountable discrete subspace). Our example is also interesting for another reason. In [3, 3.1] it was shown that any space with the monotone extension property is a K_1 -space. Our example has the monotone extension property but is not K_0 . That answers another question of van Douwen.

2. Certain subspaces of extremally disconnected compacta

A space is extremally disconnected if the closure of any open set is again open. As usual, we call a space without isolated points a Luzin (nodec) space, if each

nowhere dense set is countable (closed). There are, under CH, spaces which are both Luzin and nodec, see [21, 20].

The following results are of independent interest.

2.1. Theorem(CH). Let X be an extremally disconnected, dense in itself compactum of weight 2^{ω} . Then X contains a dense nodec subspace. If X moreover satisfies the countable chain condition, then X contains a dense subspace which is both nodec and Luzin.

Proof. Let $\mathscr C$ be the Boolean algebra of clopen subsets of X and, by CH, list $\mathscr C-\{\emptyset\}$ as $\{C_\alpha\colon \alpha<\omega_1\}$. By induction we will construct, for each $\alpha<\omega_1$ a point $x_\alpha\in X$ and a nowhere dense closed set $Z_\alpha\subseteq X$ such that

- (a) $x_{\alpha} \in Z_{\alpha} \subset C_{\alpha}$,
- (b) if $\beta < \alpha$ and if $x_{\beta} \neq x_{\alpha}$, then $Z_{\beta} \cap Z_{\alpha} = \emptyset$, $x_{\beta} \notin Z_{\alpha}$ and $x_{\alpha} \notin Z_{\beta}$,
- (c) if $D \subseteq X Z_{\alpha}$ is nowhere dense, then $x_{\alpha} \notin \overline{D}$.

Suppose that we have constructed the x_{β} 's and the Z_{β} 's for all $\beta < \alpha < \omega_1$. If there is a $\gamma < \alpha$ such that $x_{\gamma} \in C_{\alpha}$ then define $x_{\alpha} = x_{\gamma}$ and $Z_{\alpha} = Z_{\gamma}$. If not, take $x \in C_{\alpha}$ so that

$$x \notin \bigcup_{\beta < \alpha} Z_{\beta}.$$

Let $Z \subseteq C_{\alpha}$ be a closed G_{δ} subset of X missing $\bigcup_{\beta < \alpha} Z_{\beta} \cup \{x_{\beta} : \beta < \alpha\}$ but containing x. Since X is extremally disconnected and since the cellularity of X is non-measurable, x is not a P-point, i.e. there is a closed nowhere dense G_{δ} set S containing x, [10, 12H].

Define $S' = S \cap Z$. Then S' is also nowhere dense, so Y = X - S' is a locally compact, σ -compact, non-compact, dense subspace of X. Since dense subspaces of X are C^* -embedded, $\beta Y = X$. Since Y is not pseudocompact and βY has weight 2^{ω} , by Kunen, van Mill & Mills [16, 1.3] there is a point $x' \in \beta Y - Y = S'$ such that $x' \notin \overline{D}$ for any nowhere dense subspace $D \subseteq Y$. Define $x_{\alpha} = x'$ and $Z_{\alpha} = S'$.

Now put $P = \{x_{\alpha} : \alpha < \omega_1\}$. Clearly P is dense and we claim that P is nodec. Let $D \subseteq P$ be nowhere dense and suppose that D is not closed. Take $x \in (P \cap \overline{D}) - D$. Choose $\alpha < \omega_1$ such that $x = x_{\alpha}$. By (b), $Z_{\alpha} \cap (P - \{x_{\alpha}\}) = \emptyset$ and therefore $Z_{\alpha} \cap D = \emptyset$. Since $D \subseteq Z_{\alpha}$ is nowhere dense, by (c), $x \notin \overline{D}$. Contradiction.

If X is ccc, then the x_{α} 's must be chosen more carefully in order for $P = \{x_{\alpha} : \alpha < \omega_1\}$ to be Luzin. First observe the well-known fact that there is a family \mathscr{A} of 2^{ω} nowhere dense subsets of X so that each nowhere dense subset of X is contained in some element of \mathscr{A} . Indeed, since X is ccc each nowhere dense subset of X is contained in a nowhere dense G_{δ} , and, since there are only $(2^{\omega})^{\omega} = 2^{\omega} G_{\delta}$'s in X, we can simply let \mathscr{A} be the family of all nowhere dense G_{δ} 's of X. To make P Luzin we must simply add in the induction hypotheses that $x_{\alpha} \notin \bigcup_{\beta \leq \alpha} A_{\beta}$ (let $\{A_{\alpha} : \alpha < \omega_1\}$ enumerate \mathscr{A}). The rest is routine. \square

2.2. Remark. For related ideas see [8, 20].

A space is called *retractable* if each nonempty closed subspace is a retract. The following Lemma generalizes [3, 3.3].

2.3. Lemma. A Lindelöf nodec space is retractable.

Proof. Let X be a Lindelöf nodec space. First observe that each nowhere dense subset of X is discrete and hence, because X is Lindelöf, countable. Therefore X is Luzin, which easily implies that X is zero-dimensional, [15].

Observe that it clearly suffices that each nowhere dense closed subspace of X is a retract. So let $D \subseteq X$ be closed and discrete. Since X is strongly zero-dimensional there is a disjoint clopen cover $\{U_d: d \in D\}$ of X with $d \in U_d$. Then, as in [3, 3.3], define $r: X \to D$ by r(x) = d iff $x \in U_d$. \square

2.4. Corollary. A Lindelöf nodec space is K_0 .

Proof. By [4, 2.1] it suffices to prove that closed subspaces are K_0 -embedded. But that immediately follows from Lemma 2.3. \square

2.5. Question. Is the statement "Each dense in itself extremally disconnected compactum of weight 2^{ω} contains a dense nodec subspace" equivalent to CH?

3. The reduced measure algebra

Let I denote the closed unit interval [0,1], let \mathcal{M} be the Boolean algebra of measurable subsets of I, and let \mathcal{N} be the ideal of null-sets. The quotient algebra \mathcal{M}/\mathcal{N} is called the reduced measure algebra. Let M denote its Stone space. Notice that \mathcal{M}/\mathcal{N} is complete and has cardinality 2^{ω} , so that M is an extremally disconnected compactum of weight 2^{ω} .

Let λ denote Lebesgue measure on I, and for $A \in \mathcal{M}$ let [A] denote the \mathcal{N} -equivalence class of A.

The following lemma is well-known. The proof is included for completeness sake.

- **3.1. Lemma.** (a) The family \mathscr{C} of nonempty clopen (\equiv closed and open) subsets of M can be written as $\mathscr{C} = \bigcup_{n < \omega} \mathscr{C}_n$, where, for each $n < \omega$,
 - $(\alpha) \cap \mathscr{C}_n = \emptyset$, and
 - (β) any two members of \mathscr{C}_n meet.
 - (b) M is not separable.

Proof. For (a), let us first prove a corresponding statement for $\mathcal{M}-\mathcal{N}$. Let \mathcal{B} be a countable (open) basis for I which is closed under finite unions. For each $B\in\mathcal{B}$ define

$$\mathcal{L}(B) = \{A \in \mathcal{M}: \lambda(A \cap B) > \frac{1}{2}\lambda(B)\}.$$

It is clear that any two members of $\mathcal{L}(B)$ meet in a set of positive measure. Also, $\mathcal{L}(B)$ contains three elements which have empty intersection.

We claim that $\mathcal{M} - \mathcal{N} = \bigcup_{B \in \mathcal{B}} \mathcal{L}(B)$. Indeed, take $A \in \mathcal{M} - \mathcal{N}$ and construct a compact $K \subseteq A$ with $\lambda(K) > 0$. There is a $B \in \mathcal{B}$ with $B \supset K$ and $\lambda(K) > \frac{1}{2}\lambda(B)$. This shows that $K \in \mathcal{L}(B)$. Hence $A \in \mathcal{L}(B)$.

From these observations (a) is immediately clear.

For (b), let $\langle p_n \rangle_n$ be any sequence in M. Since p_n is an ultrafilter in the Boolean algebra \mathcal{M}/\mathcal{N} we can find $P_n \in \mathcal{M} - \mathcal{N}$ with $[P_n] \in p_n$ and $\lambda(P_n) < 2^{-2-n}$. Then $\{x \in M : [I - \bigcup_n P_n] \in x\}$ is an open set in M which is nonempty and misses each P_n . \square

A family of sets is called *linked* (centered) if any two (any finite number) of its members meet. Call a family of sets σ -linked (σ -centered) if it is the union of countably many linked (centered) subfamilies. A compact space the topology of which is σ -centered is clearly separable [5], so that we can reformulate Lemma 2.1 by saying that $\tau(M)$ is σ -linked but not σ -centered (this is not entirely true; in Lemma 2.1 we proved that $\tau(M)$ is the union of countably many linked subfamilies which all have empty intersection and it is precisely this fact which makes our construction work).

By Lemma 2.1(a) M satisfies the countable chain condition, so that by Theorem 2.1 M has a dense subspace P which is both Luzin and nodec, see also [21]. Since P is dense in M, $\tau(P)$ is σ -linked but not σ -centered. We have constructed the following example.

- **3.2. Example** (CH). There is a space P which is both Luzin and nodec and which moreover has the following properties:
 - (a) the family of nonempty clopen subsets of P is not σ -centered,
- (b) the family of nonempty clopen subsets of P is the union of countably many linked subfamilies having all empty intersection.

4. The example

Let P be the space of Example 3.2. The family of nonempty clopen subsets of P will be denoted by \mathscr{C} . By 3.2(b), we can write \mathscr{C} as $\bigcup_{n<\omega}\mathscr{C}_n$ where each \mathscr{C}_n is linked while moreover $\bigcap \mathscr{C}_n = \emptyset$.

The following construction is inspired by de Groot's [11] notion of a super-extension.

By Zorn's Lemma extend each \mathscr{C}_n to a maximal linked system $\mathscr{L}_n \subset \mathscr{C}$, i.e. a linked system in \mathscr{C} not properly contained in any other linked system in \mathscr{C} . For each $C \in \mathscr{C}$ define

$$C^+ = C \cup \{n < \omega : C \in \mathcal{L}_n\}.$$

Notice that if $C \in \mathcal{C}$, then either $C \in \mathcal{L}_n$ or $P - C \in \mathcal{L}_n$, and also that $\bigcap \mathcal{L}_n = \emptyset$ since $\bigcap \mathcal{C}_n = \emptyset$.

Fact 1. If $F \subseteq \omega$ is finite and if $x \in P$, then there is a $C \in \mathcal{C}$ containing x such that $C^+ \cap F = \emptyset$.

Take $n \in F$ arbitrarily. Since $\bigcap \mathcal{L}_n = \emptyset$, there is an $L_n \in \mathcal{L}_n$ not containing x. Put $C = \bigcap_{n \in F} (P - L_n)$. Then C is as required.

Fact 2. Let $F, G \subset \omega$ be finite, let $x \in P$, and, for each $n \in F$ let C_n be a clopen neighborhood of x in P. Then there is a clopen neighborhood C of x such that $C^+ \subset \bigcap_{n \in F} C_n^+ - G$.

Put $E = \bigcap_{n \in F} C_n$ and let D be a clopen neighborhood of x such that $D^+ \cap G = \emptyset$ (Fact 1).

Then $C = E \cap D$ is as required.

The underlying set of X is $P \cup \omega$. The topology of X is generated by the collection

$${C^+: C \in \mathscr{C}} \cup {\{n\}: n \in \omega\}}.$$

Notice that this implies that the points of ω are isolated and that a basic neighborhood of $x \in P \subset X$ has the form C^+ , where $x \in C \in \mathscr{C}$. Since $C^+ \cap P = C$ for all $C \in \mathscr{C}$, the inclusion $P \hookrightarrow X$ is an embedding.

Fact 3. X is a zero-dimensional Hausdorff space.

Take $C \in \mathcal{C}$. Then $C^+ \cap (P-C)^+ = \emptyset$ and $C^+ \cup (P-C)^+ = X$. This implies that C^+ is clopen. The rest is clear.

Fact 4. X is Lindelöf and ω is dense in X. In particular, X is separable.

Since P is Lindelöf and ω is countable, the Lindelöfness of X is trivial. We will now show that $P \subseteq \omega^-$. Take $x \in P$ and let U be any neighborhood of x in X. Take $C \in \mathscr{C}$ so that $x \in C \subseteq C^+ \subseteq U$. Let $C \in \mathscr{C}_n$. Then $C \in \mathscr{L}_n$, or equivalently, $n \in C^+$. That shows that $U \cap \omega \neq \emptyset$.

Fact 5. X is not a K_0 -space.

We claim that there is no K_0 -function $\kappa: \tau(P) \to \tau(X)$. For, to the contrary, assume there is a K_0 -function $\kappa: \tau(P) \to \tau(X)$. since X - P is countable this would imply that $\tau(P)$ is σ -centered, a contradiction.

If $U \subset P$ is open, then define

$$U^+ = U \cup \{n < \omega : \exists C \in \mathcal{L}_n(C \subset U)\}.$$

Notice that U^+ is open and that if U is clopen the set U^+ defined here equals the set U^+ defined above.

Fact 6. X is a K_1 -space.

By [4, 2.1] it suffices to prove that closed subspaces of X allow K_1 -functions. Therefore, let $A \subseteq X$ be closed. Since, by Corollary 2.5, P is a K_0 -space, there is a K_0 -function $\rho: \tau(A \cap P) \to \tau(P)$ (in fact, a K_1 -function would suffice). Define $\kappa: \tau(A) \to \tau(X)$ by

$$\kappa(U) = U \cup ((\rho(U \cap P))^+ - A).$$

It is clear that $\kappa(U) \cap A = U$. Let us observe that $\kappa(U)$ is open. Since X - P consists of isolated points of X we only need to check that $\kappa(U)$ is a neighborhood of any point of $\kappa(U) \cap P$. So take $x \in \kappa(U) \cap P$. If $x \notin A$ take a clopen $C \subseteq P$ so that $C \subseteq \rho(U \cap P)$ while moreover $x \in C \subseteq C^+ \subseteq X - A$. Then $C^+ \subseteq \kappa(U)$, and consequently $\kappa(U)$ is a neighborhood of x. If $x \in A$, take a clopen $F \subseteq P$ so that $x \in F \subseteq \rho(U \cap P)$ while moreover $F^+ \cap A \subseteq U$. Then $F^+ \subseteq \kappa(U)$ so that in this case $\kappa(U)$ is also a neighborhood of x. We conclude that $\kappa(U)$ is open.

If $U \cap V = \emptyset$, then $\kappa(U) \cap \kappa(V) = \emptyset$ since $\rho(U \cap P) \cap \rho(V \cap P) = \emptyset$ (which implies that $(\rho(U \cap P))^+ \cap (\rho(V \cap P))^+ = \emptyset$).

Therefore κ is a K_1 -function.

5. The monotone extension property

We will now prove that X has the monotone extension property. From this it also follows that X is a K_1 -space, [3, 3.1].

Let P and X be as in Section 4. In the following Lemma we will use a technique essentially due to J. Jensen (see [22, II.4.5]).

If $A \subseteq \mathbb{R}$ let h(A) denote the closed convex hull of A in \mathbb{R} .

5.1. Lemma. There is an extender $\Phi: C^*(P) \to C^*(X)$ so that

- (a) $\|\Phi(f)\| = \|f\|$ for all $f \in C^*(P)$, and
- (b) if $f \leq g$, then $\Phi(f) \leq \Phi(g)$.

Proof. Let $f \in C^*(P)$. Define $\Phi(f): X \to \mathbb{R}$ by

$$\Phi(f)(x) = f(x) \qquad (x \in P),$$

and

$$\{\Phi(f)(n)\} = \bigcap \{h(f(L)) \colon L \in \mathcal{L}_n\} \quad (n \in \omega).$$

Clearly $\Phi(f)|P=f$. We claim that $\Phi(f)$ defined in this way is as required. Claim 1. $\Phi(f)$ is well-defined.

First observe that the fact that $f \in C^*(P)$ and the fact that \mathcal{L}_n is a linked system imply that $\bigcap \{h(f(L)): L \in \mathcal{L}_n\} \neq \emptyset$ for all $n \in \omega$. Suppose that for certain $n \in \omega$ $\bigcap \{h(f(L)): L \in \mathcal{L}_n\}$ contains two distinct points, say a and b. Without loss of

generality a < b. Take a clopen set $E \subseteq P$ such that

$$f^{-1}(-\infty, \frac{3}{4}a + \frac{1}{4}b] \subset E \subset f^{-1}(-\infty, \frac{1}{4}a + \frac{3}{4}b),$$

Since \mathcal{L}_n is a maximal linked system, either $E \in \mathcal{L}_n$ or $P - E \in \mathcal{L}_n$. If $E \in \mathcal{L}_n$, then $b \in h(f(E)) \subset (-\infty, \frac{1}{4}a + \frac{3}{4}b]$, which is impossible. If $P - E \in \mathcal{L}_n$, then

$$f^{-1}[\frac{1}{4}a + \frac{3}{4}b, \infty) \subset P - E \subset f^{-1}(\frac{3}{4}a + \frac{1}{4}b, \infty),$$

so the same contradiction can be derived.

Claim 2. $\Phi(f)$ is continuous.

The reader can easily check that

$$\Phi(f)^{-1}(-\infty, s] = \bigcap \{C^+: C \in \mathcal{C} \text{ and } \exists \varepsilon > 0: f^{-1}(-\infty, s + \varepsilon) \subseteq C\},$$

$$\Phi(f)^{-1}[s, \infty) = \bigcap \{C^+: C \in \mathcal{C} \text{ and } \exists \varepsilon > 0: f^{-1}[s - \varepsilon, \infty) \subseteq C\}$$

for all $s \in \mathbb{R}$.

Claim 3. $\|\Phi(f)\| = \|f\|$ for all $f \in C^*(P)$, in particular, $\Phi(f) \in C^*(X)$.

This follows immediately from the definition of $\Phi(f)$.

Claim 4. If $f \leq g$, then $\Phi(f) \leq \Phi(g)$.

This requires proof. Suppose that $f \leq g$ but $\Phi(f) \not\leq \Phi(g)$ for certain $f, g \in C^*(P)$. since $\Phi(f)|P = f$ and $\Phi(g)|P = g$, we can find $n \in \omega$ such that

$$\Phi(g)(n) < \Phi(f)(n)$$
.

Since $f, g \in C^*(P)$ we can find $M, N \in \mathcal{L}_n$ such that

$$h(f(M)) \cap h(g(N)) = \emptyset$$

(argument: if $h(f(M)) \cap h(g(N)) \neq \emptyset$ for all $M, N \in \mathcal{L}_n$ then

$$\bigcap \{h(f(M)): M \in \mathcal{L}_n\} \cap \bigcap \{h(g(N)): N \in \mathcal{L}_n\} \cap h(f(P) \cup g(P)) \neq \emptyset,$$

i.e. $\Phi(g)(n) = \Phi(f)(n)$, which is impossible).

Since $\Phi(g)(n) < \Phi(f)(n)$ for all $r \in h(f(M))$ and $s \in h(g(N))$ we have that s < r. Now, \mathcal{L}_n is a linked system, so that M and N meet, say $x \in M \cap N$. Since $f(x) \in h(f(M))$ and $g(x) \in h(g(N))$ it follows that g(x) < f(x). But this contradicts the fact that $f \le g$. \square

5.2. Remark. From the proof of Lemma 4.1, the definition of Φ , Claim 1 and Claim 2 are known, see [22, II 4.5], since $\Phi(f)$ is already continuous in the weaker superextension topology on X. Since we used the explicit construction of $\Phi(f)$ in Claim 3 and Claim 4, for completeness sake we have also included the proofs of Claim 1 and Claim 2.

We now come to the main result in this section.

5.3. Theorem. Let A be any closed subspace of X. Then there is an extender $\Phi: C^*(A) \to C^*(X)$ such that

- (a) $\|\Phi(f)\| = \|f\|$ for all $f \in C^*(A)$, and
- (b) if $f \leq g$, then $\Phi(f) \leq \Phi(g)$.

In particular, X has the monotone extension property.

Proof. Let $A \subseteq X$ be closed. Without loss of generality $A \neq \emptyset$.

Suppose first that $A \cap P = \emptyset$. Then, since X - P is countable, A is a closed discrete subspace of the zero-dimensional Lindelöf space X. This implies that A is a retract of X. Let r retract X onto A. Define $\Phi: C^*(A) \to C^*(X)$ by

$$\Phi(f)(x) = f(r(x)).$$

Then Φ is as required (this is well-known of course).

Now suppose that $A \cap P \neq \emptyset$ and let $\iota: C^*(P) \to C^*(X)$ be an extender as in Lemma 5.1. By Lemma 2.3, P is retractable, so let $r: P \to A \cap P$ be a retraction. Define $\Phi: C^*(A) \to C^*(X)$ by

$$\begin{cases} \Phi(f)(x) = f(x), & (x \in A), \\ \Phi(f)(x) = \iota((f \mid (A \cap P)) \circ r)(x), & (x \notin A). \end{cases}$$

A straightforward check shows that Φ defined in this way is as required. \square

5.4. Remark. The extender Φ in Theorem 5.3 is in general not linear.

6. Remarks

The results derived in this paper suggest the following question:

6.1. Question. Is there, in ZFC, a first countable zero-dimensional Lindelöf K_0 -space X for which the family of all nonempty clopen subsets is the union of countably many linked subfamilies all having empty intersection but is not σ -centered?

Let us indicate why this question is nontrivial and interesting. It is interesting since a positive answer would yield, using the same technique as in Section 3 of this paper, an example of a first countable separable Lindelöf K_1 -space which is not K_0 . The question is nontrivial, since if such an example exists, it cannot be locally compact and it cannot have a first countable compactification, by [12]. Of course there are first countable Lindelöf spaces having no first countable compactification, but these examples are all difficult. At first glance one would hope that a space asked for in Question 6.1 can be linearly orderable, or, generalized orderable, since the only known (nontrivial) class of K_0 -spaces not related to metrizable spaces are the generalized orderable spaces, [3, 2.3.1; 17]. However, unfortunately, the example cannot be generalized orderable. For suppose X is generalized orderable and has all properties listed in Question 6.1. Let X^+ be the

Dedekind completion of X. Then X^+ is supercompact (this will not be defined here) and the topology of X^+ is σ -linked. But van Douwen [6] has recently shown that such a space must be separable. Therefore X^+ is separable, which in turn implies that X is separable, contradicting the fact that $\tau(X)$ is not σ -centered.

References

- $[1]\,$ C. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966) 1–25.
- [2] J. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961) 105-125.
- [3] E. K. van Douwen, Simultaneous extension of continuous functions, Thesis, Vrije Universiteit, Amsterdam (1975).
- [4] E.K. van Douwen, Simultaneous linear extension of continuous functions, Gen. Toplogy Appl. 5 (1975) 297-319.
- [5] E.K. Douwen, Density of compactifications, in: G.M. Reed, ed., Set-theoretic Topology (Academic Press, New York, 1977) 97–110.
- [6] E.K. van Douwen, Nonsupercompactness and the reduced measure algebra, to appear.
- [7] E.K. van Douwen, D.J. Lutzer and T.C. Przymusiński, Some extensions of the Tietze-Urysohn Theorem, Amer. Math. Monthly 84 (1977) 435-441.
- [8] E.K. van Douwen, F.D. Tall and W.A.R. Weiss, Nometrizable hereditarily Lindelof spaces with point countable bases from CH, Proc. Amer. Math. Soc. 64 (1977) 139–145.
- [9] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951) 353-367.
- [10] L. Gillman and M. Jerison, Rings of Continuous Functions (Van Nostrand, Princeton, 1960).
- [11] J. de Groot, Supercompactness and superextensions, Contrib. to Extension Theory of Top. Struct. Symp. Berlin 1976, Deutscher Verlag Wiss., Berlin (1969) 89–90.
- [12] A. Hajnal and I. Juhász, Discrete subspaces of topological spaces, Indag. Math. 29 (1967) 343-356.
- [13] R. Heath and D.J. Lutzer, Dugundji extension theorems for linearly ordered spaces, Pacific J. Math. 55 (1974) 419-425.
- [14] R. Heath, D.J. Lutzer and P. Zenor, Monotonically normal spaces, Trans. Amer. Math. Soc. 178 (1973) 481-493.
- [15] K. Kunen, Luzin spaces, Topology Proc. 1 (1976) 191-199.
- [16] K. Kunen, J. van Mill and C.F. Mills, On nowhere dense closed P-sets, Proc. Amer. Math. Soc. 78 (1980) 119–123.
- [17] D.J. Lutzer, Ordered topological spaces, in G.M. Reed, ed., Surveys in Topology (Academic Press, New York, 1980).
- [18] J. van Mill, Extenders from $\beta X X$ to βX , Bull. L'acad. Pol. Sci. 27 (1979) 117–121.
- [19] J. van Mill, Not every K_1 -embedded subspace is K_0 -embedded, Canad. J. Math. 31 (1979) 818–823.
- [20] J. van Mill and C.F. Mills, A boojum and other snarks, Proc. Kon. Ned. Akad. Wet. A 83 (1980) 419-424.
- [21] F.D. Tall, The density topology, Pacific J. Math. 62 (1976) 275-284.
- [22] A. Verbeek, Superextensions of topological spaces, Math. Centre Tract 41, Amsterdam (1972).