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In this paper we apply the methods of supercompactifications and normal subbases to charac-
terize subspaces of compact treelike spaces. This characterization is related to the subbase
characterizations of ordered spaces, of trees and of normally supercompact spaces described
in[5, 1,9, 10, 14].
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treelike spaces normal subbases

1. Basic definitions

In this paper all subbases are assumed to be subbases for the closed sets of a
topological space. All spaces under consideration are assumed to be T;.

1.1. Definition. A topological space is called a freelike space [6, 12] provided that
T is connected and for every two points x and y in T there exists a point z and
a partition X u Y of T\{z} such that X and Y are clopen in T\{z} with x € X and
y e Y. A treelike space is called a free whenever it is “‘rim-finite”, i.e. every point
has a local base consisting of sets with finite boundary.

In this paper we only consider subspaces of compact treelike spaces which are
clearly rim-finite.

1.2. Definition. A point z in a tree T is called a cutpoint whenever T\{z} is
disconnected. According to Kok [7] the components of T'\{z} are all open. In this
paper components of T\{z} will be called cuipoint components of T,

Since a compact tree is a compact Hausdorff space [7] it follows easily that the
collection of all cutpoint components is an open subbase for 7, and in this paper
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we are especially interested in subcollections of the collection of all complements
of cutpoint components which are closed subbases for T.

1.3. Definition. A partial ordering < on a set X is called a tree ordering when
there exists a unique minimal element r, which is called the roor, and has the
property that if x, ye X, x<y and y< x, then for each z € X we have either x« z
Or y &z,

1.4. Definition. Let & be a collection of subsets of a topological space X. Then
& is called a T, collection [13] whenever for each member S € % and each point
X € x\S there exists a member R € ¥ with xe R and Rn § =0.

& is called normal [2] if for each two disjoint members §; and S, in & there
exists a pair of members R; and R; in & such that R, W R,;=X, R, ~S.=0, and
R, 8§, =0. The members §; and S, are said to be screened by R, and R, and
those sets constitute a screening of §; and S,.

& is called linked [3] when every two members of ¥ have a non-empty inter-
section.

¥ is called binary [4] if every linked system in & has a non-empty intersection.
A topological space which admits a closed binary subbase is called supercompact.

& is called connected [9] iff no two non-empty disjoint members of ¥ cover X.

2. The main theorem

In this section we give a characterization of those spaces which are embeddable
in a compact tree. Our characterization is in terms of subbases, Our method of
proof is the following. We enlarge a given space X to a space A(X, &), which is
called the superextension of X relative to the subbase & (for definitions, see below)
and then use a characterization of compact trees in [9].

Let & be a subbase for a space X. The superextension A (X, &) has as underlying
set the set of all maximal linked systems in % with topology generated by taking
the collection

F ={§"|Se%}
where
S ={m|lmer(X, ¥) & S em),

as a (closed) subbase. The following facts are well known and easy to prove:

- " is binary, (as a consequence, A (X, &) is compact).

— If & is normal, then A (X, &) is Hausdorfl.

- If ¥ is a T, collection, then the function /:X > A(X, &) defined by i(x)=
{§ € #|x € S} is an embedding.

- & is connected iff & is connected.
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For details, see [13]. Superextensions were introduced by de Groot [3].

Since in our characterization we do not require the subbases to be normal or
T,, we first indicate how a subbase with certain properties can be replaced by a
subbase with the same properties which in addition is normal and 7. We then can
use superextensions to obtain the desired results.

2.1. Lemma. lLet X be a Hausdorff space with a closed subbase satisfying the
following condition :
() Forevery § and R in & we have that

SA"R=0 or SR or RcS or SUR=X.

Then there exists a Ty normal subbase for X which satisfies condition ().
(In certain papers in discrete mathematics a collection of sets which satisfies
condition (#) is called *‘crossfree’.)

Proof. First of all we extend ¥ to a larger subbase %' by taking:
F'=FullplpeX}

(i.e. we add all singletons to the subbase). In this case &' still satisfies () because
{p}n{g}=0 for all p #¢q and either {p}~S=0@ or {p} < § for each § €% Clearly
the subbase &' is a T collection.

Next, for each clopen S € &', we add the complement of § and obtain

F=F"U{X\S|S e ¥ and S is clopen}.
Also #"is a T collection satisfying condition () since if S, R € &', then
S=R implies X\S>2X\Rand X\SUR=X,
RcS implies X\ScX\Rand X\S~R=0,
RnS=0 implies X\SUX\R=Xand R<X\S,
RuUS=X implies X\SnX\R=0@and X\S<R.

We now show that &" not only satisfies () but is moreover normal.

Let R and S be two disjoint members of %", If § is clopen, then also X\S is in
F" and we obtain a screening between S and R by S and X\S, and the same holds
for R. If neither § nor R is clopen, then we can find a point r€ R and a point s € $
such that r € Clx (X\R) and 5 € Clx (X\S).

Next we will derive a screening of {s} and {r} by means of two subbase members.
Since X is Hausdorff we can find two basic closed subsets B, and B, such that
B, UuB,=X, ré B, and s& B,. Moreover, B, is a finite union of subbase members
F.., ..., F,, and B, is a finite union of F,4, ..., F...

Define

g;z{F?i}U{Fri} and g;s :{Frjls EFS}'})
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then for F,; and F;; € %, we have that
SEF;,‘(“\FSJ' and ."EFS{UFV-,

hence either Fy; = F; or F,; © F,; and so there exists a largest member F=U%ec#
In the same way there is a maximal F, in & which contains r. We have now two
cases. If F, UF, = X, then we have obtained our screening with two members of &.

In the other case we can find a point x in X\(F, UF,). Let F, be the maximal
member of & containing x. Since

ré F, UF,, seF\F, and =xeF.\F,

we have F, n F, = land similarly F, n F, =@and F, n F, = . Consequently, we obtain
a partition of the space into three disjoint closed parts: F,, F, and | J{F,|x¢ F, UF,}.
(The last collection is closed since it is the union of a finite collection because F
is finite.) This means that F; is clopen and X \F; is in &".

Anyway we obtain a screening of s and r by means of two subbase members,
call them F’ and F.. Now S does not contain a neighborhood of s and F; is closed
and does not contain s and hence S U F| # X. Moreover, s € S\F, and r F;\S and
therefore F. S =0 and similarly F. n R =0. Since F; UF, =X we have R<F,
and § = F. and we obtained a screening of R and 5.

2.2. Remark. In the previous lemma the Hausdorff property cannot be omitted
since in an infinite space with the cofinite topology the collection of all singletons
is a T, subbase satisfying (*), but it cannot have a T} normal subbase since a space
with a T} normal subbase is completely regular (cf. [4]).

2.3. Lemma. Let X be a space and let ¥ be a closed subbase of X with the following
properties:

(a) Fisa T, collection.

(b) & is normal.

() Forevery S and R in & we have that

SNR=0 or S<R or RcS or SuUR=X

Then X can be embedded in a compact tree T.

Proof. Case 1. X is compact and connected.

It we prove that & is binary and connected, then we can conclude that X is a
tree from [9, Theorem 4.3] (cf. [8, Theorem 1.3.21]). That & is connected follows
from the connectivity of X itself. So we only have to show that ¥ is binary, i.e.
every linked system in & has a non-empty intersection.

Suppose not. Let m be a maximal linked system in % which is not centered and
suppose that M,,..., M, is a minimal subcollection of m which has an empty
intersection. Then M; "M, #® and M; is not contained in M, or conversely. So
M, UM, =X. Now M, uM, =X for 0<i<n and hence M, U{ \gzjc, Mi)=X.



J. van Mill, E. Wattel [ Subspaces of compact trees 325

Moreover, M, m{( o<, M:) = @ which implies that M, is clopen, contradicting that
X is connected.

Case 2. Fis a connected subbase satisfying (2), (b) and (*).

In this case the subbase & for A (X, &) is binary and also satisfies the requirements
(a), (b) and (*); we conclude from [9, Theorem 4.3], that X is a subspace of the
treelike space A (X, &).

Case 3. & is not connected.

In this case we extend X to a space Y and & to a subbase % in such a way
that & is a connected subbase for Y, and since A (Y, &) contains X as a subspace
we have that X is a subspace of a compact tree.

Let {(H,, K.}|a € A} enumerate all the pairs (H, K)&e ¥ * & such that K = X\H
(in such a way that (H, K) and (K, H) do not both occur). Let # = {H, |« € A} and
H={K,|aeA}. Define

Y=Xu(l=*A),
where I is the open unit interval (0, 1). For « € A we define
Agla)={B e A\{a}|Hz = H, or Kz < H,},
and
Ai(a)={BeA\a}|Hs > H, or Kz 2 H.},
Thus A = Ay(a)u A(a)u{a}. For @ € A define
H, =H,u(l *Apla)), K, =K,ul=*Aa)).
Then for re I we define
H.=H, u((0,r]={a}) and K, =K, ul(r1l)*{a}).
For each S € #\(# U i), let
AS)={acA|H,=SorK,c S},
then let
ST=Sul *A(S)).
Finally, set

F={S7|Se A UHNWOIH L r, a)e I * AYU{K L,

{r,a)el = A}

The conditions (a), (b) and () are easily verified for the space Y with subbase &~
from the related conditions for X and & Moreover, & is a connected subbase.

2.4, Remark. Note that we can define a tree ordering on X if we choose an
arbitrary member r € X to be the root and if we put x <y iff every member of &
containing y and r also contains x. This procedure yields a tree ordering which is
compatible with the tree structure of the superspace T in Lemma 2.3 whenever &
satisfies condition ().
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2.5. Theorem. Let X be a Hausdorff space. Then the following requirements are
equivalent:

(a) X can be embedded in a compact tree.

(b) X has a subbase satisfying (a), (b) and (*) of Lemma 2.3.

(¢) X has a subbase satisfying (*) of Lemma 2.1.

Proof. (b) =>(a). This case is proved in Lemma 2.3,

(a) = (b). This follows if we notice that the collection of all complements of
cutpoint components of a compact tree is a subbase for that tree which satisfies
the requirements of Lemma 2.3 (cf. [9]) and these requirements stay valid if we
restrict ourselves to a subspace.

(b) = (¢) This follows from the fact that a T, space with a T} normal subbase is
completely regular and hence Hausdorff, cf. [4].

(c) = (b) This case is proved in Lemma 2.1.
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