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Let X be a (metrizable) space. A mixer for X is, roughly speaking, a map u : X35 X such
that w(x, x, v)=pu(x, v, x)=pu(y, x, x)=x for all x, ye X. We show that each AR has a mixer
and that a finite dimensional path connected space with a mixer is an AR. Our main result is
that each separable space with a mixer and having an open cover by sets contractible within the
whole space, is LEC.
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1. Introduction

Let X be a compact metric space. A map w :X*> X which has the property
that w(x, x, v)=w(x, v, x)=wu(y,x,x)=x for all x,yeX, is called a.mixer. It is
known, [5], that each compact AR has a mixer and that a continuum with a mixer
is C* and LC™. Consequently, for finite dimensional continua, having a mixer is
equivalent to being an AR.

We have tried for some time to prove that each continuum with a mixer is an
AR. If this were true, then this would yield a nice ‘internal’ characterization of
compact AR’s. In the process of trying to solve this problem we found that each
continuum X with a mixer having an open cover by sets contractible within X,
is LEC (for definitions, see Section 2). Since it is unknown whether an LEC contin-
uum is an ANR, this does not solve our problem but it shows that our question is
relevant.

In this paper we study mixers for noncompact spaces as well. We theretore have
to adapt the definition of a mixer stated above. Our main result is that each
(separable metric) space X with a (local) mixer having an open cover by sets
contractible within X is LEC. This generalizes some of the results in [5].

Throughout this paper, all spaces are metrizable.

0166-8641/82/0000-0000/$02.75 © 1982 North-Holland



60 J. van Mill, M. van de Vel [ Internal property of absolute retracts
2. Preliminaries

Let X be compact and let & : X - X be a mixer. The compactness of X easily
implies the following [5, Lemma 1.2]:

(%) If Xy Vo, 2. (nEN) are points of X such that the sequences (x.), and (y,.), both
converge to acX, then the sequences (u(Xu Yo ZuDns (1 (Xny Zoy ¥u))n and
(£ (Zpy Xy Yuu))w CORVEFGE TO @,

As is clear from the proof of [5, Theorem 1.3], this property of mixers is of
crucial importance. In the presence of compactness (*) is automatically true but in
the noncompact case this need not be the case. We therefore are forced to include
(*) in the definition of a mixer for arbitrary (metric) spaces.

Definition 2.1. Let X be a space. A mixer for X is a map u : X~ - X which satisfies
().

Notice that if w: X=X is a mixer, then p(x,x, v)=pu(x, v, x)=pn(y, x, x)=x
for all x, y € X. A symmetric mixer is a mixer p : X~ - X which has the additional
property that w(x, y, z)=w(x, z, y)=u(z,x,y)=---forallx, y, ze X.

Lemma 2.2. Let X be a space and let X" —» X be a mixer. If x€ X and if U is a
neighborhood of x in X, then there is a neighborhood V of x such that

w(VXVXX)Iu(VXXXV)I)u(XXVXV)c .

Proof. If not, then for all n €N we can find a,, b, € U(x, 1/n) and ¢, e X (here
Ulx,1/n)={z e X: d(x, z)<1/n}) such that, without loss of generality,

1 (@u, by, €) 2 UL (1

Since lim, .« a, = x and lim,, .« b, = x, by (*) lim, ..o £ (@s, b,, ¢, ) = ¥, which contra-
dicts (1).

In the above lemma we have identified another important property of mixers
and it leads us to the definition of a local mixer.

Definition 2.2. A local mixer of a space X is a map u:U ~ X where U is a
neighborhood of the diagonal A(X) in X" such that if x,, Vus Zn (n €N} are points
of X such that the sequences (x,), and (v,), both converge to a € X, then there is
an meN so that the sequences (w(xu, Vi, Zenm=my (1 (Xns Zns ¥n))n=m and
((2Zny Xny Yn))n=m converge to a.

It should be clear what we mean by a symmetric local mixer.
As usual, dom(f) denotes the domain of a function f.
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Lemma 2.3. Let X be space and let u be a local mixer for X. If x€ X and if U is
a neighborhood of x in X, then there is a neighborhood V of x such that

EWV)=(VXVxX)u(VxXxV)u(XxVxV)cdom(u)

while moreover w(E(V)) <= U.

Proof. Use the same technique as in the proof of Lemma 2.2.

Corollary 2.4. Let X be a space and let u be a local mixer for X. There exists an
open cover V" of X such that for all V € V" we have that

(VxVxX)u(VxXxV)u(X xVxV)cdom(u).

This leads us to our first nontrivial result.

Theorem 2.5. Let X be a space having an open cover by path-connected sets. If X
has a (local) mixer, then X is (LC™) C™.

Proof. We will first show that X is locally path-connected. To this end, let x € X
and let U be a neighborhood of x in X. Let V be a path-connected neighborhood
of x. In addition, let u be a (local) mixer for X. By Lemma 2.3 there exists a
neighborhood W of x such that

pWXWxX)U(WXXXW)u(XXWxW)cUnV. (2)

Take a, be W and let f: I - V be a path with f(0)=a and f(1)=b. Define g: I > X
by
g(t) = w(a, b, f(1)).

Since g(0)=pw(a, b, f(0))=wul(a, b,a)=a and g(l)=pu(a, b, f(1))=ula, b,b)="5,g
is a path connecting a and b. In addition, by (2), g(I)= U. This proves that X is
locally path-connected. That X is LC*, and C™ in case dom(u) = X", can now be
proved in precisely the same way as in [5, Theorem 1.3].

We will now show that each A(N)R has a (local) mixer (even a symmetric one).
In the compact case this is easy [5]; the general result needs some justification.

Let X be a space and let d be a metric for X. Without loss of generality,
diam(X)=1. Let Z be the set of all bounded continuous real valued functions on
X and put, as usual,

plfi,fa)= SUE{ Jfl(x)*fz(x)].

It is well known that Z is a normed linear space and that the function ¢ : X -2
defined by
ex)y)=d(x,y)

is an isometry (see [1, p. 79]).
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Define a function w: 2> > Z by
u(f1, f2, f3)(x) = the middle one of f;(x), f2(x) and f3(x).

It is clear that u is well defined and continuous.

Lemma 2.6. w is a symmetric mixer.

Proof. Clearly, n is symmetric. Suppose that lim,, .« f,, = g lim,. .« ki, = g and take
k. e Z (n eN) arbitrarily. We have to show that

Iim e (fo, s k) = g. (3)

Let ¢ >0 and find m €N so that p(f,, g)<e and p(h,, g)<e for all n =m. Take
x € X. Without loss of generality assume that £, (x) < h, (x). Since r(f,, hn, ku)(x) €
[f.(x), h.(x)] it is clear that

1g(x)7#(fm hm kn)(x)l < 28
Since x was arbitrary, p(g, i (f., ., k,.)) <2¢ for all n = m. This proves (3).

Define Y = u(o(X)?).

Lemma 2.7. ¢(X) is closed in Y.

Proof. First observe that, since u is a mixer, ¢(X)< Y. Now take x,€X and
assume that lim, .« @ (x,) =f € Y. Assume that f& ¢(X). We will derive a contradic-
tion. There are points pg, p1, p2 € X such that

F=ule(po), e(p1), ¢(p2)).

Since f€ ¢(X) and since u is a mixer, p; # p; whenever i # j. Choose § > 0 such that
whenever x € X then there exist two distinct /,j€{0, 1, 2} with d(x, p;)>& and
d(x, p;)> 8. Let m € N be such that

ple(x.), <6

for all n = m. Withoutloss of generality, d(x,.., p1) = d(xp, po) > 8. Since p (@ (x,.), f) <
8 it follows that

| (tm)(Xm) = f(x)] < 8,
and consequently, | f(x,,)| < 8. By definition of s,
f(x,,) = middle one of d(po, X.), d(p1, x.) and d(p2, x.).
Since f(xm) € [d{(xm, Po), d{(xm, p1)]we conclude that f(x,,) > 8. This is a contradiction.
As’is well known, ¢(X) is closed in its convex hull. Simple examples show that

wlelX )*) need not be contained in the convex hull of ¢(X). This explains why we
have to obtain Lemma 2.7.
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Theorem 2.8. Let X be an A(N)R. Then X has a symmetric (local) mixer.

Proof. Define ¢, 1, Z and Y as above. Since X is an ANR, there is a neighborhood
U of ¢(X) in Y and a retraction r: U - ¢(X). Let V =u""(U)ne(X)*. Notice
that V is a neighborhood of A(¢ (X)) in ¢(X)>.

Define a function £: V > o(X) by £(f, g k) =r(u(f, g k). Since u is a mixer
and since r is continuous, £ is a local mixer, In the same way it is easily seen that
each AR has a mixer.

Corollary 2.9. Let X be a finite dimensional space. If X has an open cover by
path-connected sets, then X is an ANR iff X has a local mixer. In addition, if X is
path-connected, then X is an AR iff X has a mixer.

Proof. This is a direct consequence of Theorems 2.5 and 2.8 and Dugundji [2].

A local equiconnecting function for a space Y isamap A:U XI—> Y where U
is a neighborhood of the diagonal in Y x Y, such that A (yq, y1,i)=y; (i {0, 1}),
and A(y,y, )=y for every yo, y1,y€ Y, tel. An equiconnecting function for a
space Y is a local equiconnecting function the domain of which'is Y X Y xI. We
say that Y is EC (LEC) if it admits an equiconnecting function (a local equiconnect-
ing function).

3. The main result

In this section we present our main result that each space X with a local mixer,
having an open cover by sets contractible within X, is LEC. Let X be a space with
local mixer u. If A, B are subsets of X, then we write A —, B provided that

(a) (AXAXX)U(AXXXA)U(XXAxA)=dom(u);

b) p((AXxAXX)UAXXXA)U(XXAXA))B.

If % and 7 are coverings of (subspaces of) X, then we write U < 7" if 9 refines
YV (i.e. if each U e 9 is contained in some V € ¥"). We shall write % <, ¥ if for
each U € % there is a Ve ¥ with U =, V. We say that U is a w-refinement of V.
By Lemma 2.3 for any open cover % of an open subset of X there exists an open
cover ¥ with 7"'=<, .

We now come to our main result.

Theorem 3.1. Let X be a separable metric space having an open cover by sets
contractible within X. If X has a local mixer, then X is LEC.,

Proof. Let u be a local mixer of X, and let %, be an open cover of X such that
for each U € %, there is a contraction

Fr;:U%[0,1]-X



64 J. van Mill, M. van de Vel [ Internal property of absolute retracts

of U onto some point x;; € X. Let 4 be an arbitrary open cover of X. Then there
clearly exists an open cover ¥ ={V(i):i=1,2,...} of X which is star finite and
countable, Hanner [4], and such that

V={V:vVe?}

is a common refinement of both % and 4,. We also assume that V(i) # V(j) if
i #j and that 7 is star finite.

For each ieN we can find an infinite sequence (V (i, n))5—o of open sets with
the following properties

VO Vi V(G0 --cV(i,n)eVin) e V(in+1)c - (1)

VAV =0V n=0: V(i,n) A V(j,n)=0: (2)

AU eI Uye Up: CJ V(i,n)c U n U,. (3)
n=0

Let n; be equal to
1+number of Ve ¥ with V n V(i) #0.

For each 1 <k <n, let #.(i) be an open cover of V(i) such that

W ()< War()<,- <, W,()<,.{V(i)} (4)
W (i) is point finite; (5)
if Wy e W (i) meets V(j,n), then W, = V(j,n+1). (6)

Let « :N—> N be a function such that «(i)<n; for each i ¢ N. For each x € X, we
put Wi(a, x) equal to the intersection of all sets W, ;€ Wo»(i), i €N, with the
property that there is a sequence of type

TE WHEC#WAE_lcu' g 'C“WQ“')

with Wy e W (i). Notice that W(a, x) is an open set, since 7" and %/, are point
finite. This defines an open cover W (a)={W(a, x): x € X}, which clearly is a
u-refinement of 7.

The equations

ag(i)=n; foreachieN; (7)
() =ar(i) fVEk+1D)N V() =0; (8)
a1 =ar()—=1 EVEFDAVEH =D 9)

determine a sequence of functions (a; : N N)7_o. The only nontrivial fact to verify
is that dom(a,) =N for each k=0. Let us assume that for some k=0, a,(i)=1.
We claim that ax.:({)=1. Indeed, among V(1),..., V(k) there exist already
n;—1 sets meeting V(). By definition of n;, V(k+1) ~V(i)=0, whence
ag+1(i) = a(i) =1 (by (8)).
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Put W= W (o). We will show that for each space Y and for any two #'-close
mappings fo, go: Y > X (i.e.foreach y € Y thereisa W e Wy with{fo(y), go(y)} = W)
there is a ¥-small homotopy joining fy and go. This obviously implies that X is LEC.

Recall that a homotopy F: Y x[0, 1]» X is ¥U-small if for each y€ Y thereis a
Ue@ with F({y}x[0,1))c U. We add the following definition to this: two
homotopies F, G: Y %[0, 1]- X are called jointly U-small if for each y € Y there
isa U e U with

F({y}=[0,1)uG{y}x[0,1]) = U.

For each ieN, let A(i)=fo (Vi) ngo' (V). Since Wo=< ¥, and since f, and
go are #o-close, it follows that {A(i): i € N} is a closed cover of Y, which is locally
finite since ¥ is star-finite. In order to simplify our inductive construction of a
homotopy fo=go let us define f_; = fo, g-1 = go, V(0) =0, A(0)=0, and, Fy:f_1 = fo,
Gy g_1=go are constant homotopies.

We will now construct two sequences of maps

(ﬁ . Y"’X)?o:f), (g; . Y*X)?::O
and two sequences of homotopies
(Fi: fie1 :fi)?il, (Giogi-i= gi)?ozﬁ
with the following properties: for each i =0
[1,i] F;and G; are jointly #(«;)-small;
[2,i] if yelU,o, A(f), then fi(y)=g(y);
[3,i] if ye A()), then F;({y}x[0, 1) U G:({y}x[0, 1)) = V(}, i);
[4,i] if yeA()), and if either V(j)n V(i)=@ or j<i, then F; and G; are
constant at y.
These conditions are trivially true for i =0. Assume these mappings have been
properly constructed up to i =0. By (1), we can fix a Urysohn map A;,1: X -[0,1]
which is 1 on V(i+1, i) and 0 outside V(i +1,i+1). Fix U € U, with UQ:,G Vi+
1,n)c U, cf. (3), and define Hi,; : X x[0,1]> X by

FU(X, hm—](X)'t) 1fx€V(z+l,i+l),

' Bt
Hi(x, t)i{x otherwise.

H,, is obviously well defined and continuous. Then define
Firi(y, ) =p(fi(y), g:(y), Hir1 (fi(y), 1)) and firi=Fia(= 1),
Giri(y, )= p(fi(y), g(y), Hix1(g:(y), 1)) and gi1=Gir1(—,1).

Since F; and G, are jointly % («;)-small, we find that f; and g; are ¥ («;)-close.
If y e Y is such that {fi(y), g:(y)} is contained is some member of #'(a;), then,
since W'(a;)=, ¥, we find that

{fi()x{gi(y)} x X =dom(u).

This implies that F;.; and G;., are well defined and continuous.
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Verifications of [1, i+ 1] and of [4, i +1]. Let y € Y, and assume first that at least
one of fi(y), g(y)isin V(i+1,i+1). As f; and g; are #(«;)-close, there exists a
u € X such that for each sequence of type

ueW, c,. W, 1<, <, Wouy (WieWik), keN),

fi(y) and g;(y) are both in W, .
Consider a sequence of type

UEWp CuWa1<u - <u Way 0. (10)
As a;;1(k) =< a;(k), we find that f;(y) and g;(y) are also in W,, ), whence
Weion V3i+1,i4+1)#0.
But W, , . uw< Vik)c V(k,0)<= V(k,i+1), whence by (2),

Vk)nV(i+1)#8,
and consequently a;.1(k) = a;(k)— 1. In the above sequence (10), the set preceding
W....«) is therefore of type W, € W, (k) and it contain fi(y) and g:(y) by
assumption. As u maps W iy X X into W, ), we find that

Fr({y}x[0, 1D N Giea{y} < [0, 1) = W, (k).

This proves that F;,, and G;,; are jointly #¥(a;,1)-small at this y. Assume next
that neither f;(y) nor g;(y) are in V(i +1, i +1). Then, by construction

Hin (fi(y), =£i(y), Hia(gi(y), ) =g(y),

and the homotopies F;,1, G, are constant at y. As f; and g; are #'(a;)-close, and
since W'(a;) < W (a;+1), we find again that F;,, and G;., are jointly small of order
W (1) at y, completing the proof of [1,/+1].

If ye A(j) and if V(j)n V(i +1)=0, then by [4, i], fi(y) and g;(y) are in V(j, i)
and hence in V(j, i+ 1), whence by (1) and (2), f;(v) and g;(y) are notin V(i +1,i+
1). Applying the above argument, the homotopies F;.; and G;., are constant at y,

If, on the other hand, j<i+1, then j</ and f:(y) = g(y) by [2, {]. Again, the
homotopies F;.; and G;., are constant at y since w is a mixer.

Verification of [2,i+1]. Let yelJ,;.; A(j). If y € A(j) with j<i, then fi(y)=
g:(y) by [2, /], and by construction, fi-1(y)=g..1(y). If y € A(i+1), then by [3, /]
fi(y) and g;(y) are bothin V(i +1, i).

On this set, #;.1 equals 1, whence

Hivy (ff(}’), 1) =FU(fi(y)s =xy :Fu(gf(y), 1) :H£+1 (gf(y), 1)-
It follows that
fieaM) = (fi(y), &(¥), xuv) = g1 (¥).

Verification of [3,i+1]. Let y € A(j). Then f;(y) and g;(y) are in V(j, i) by [3, {].
As Fiiq is W(a;i1)-small, we can find a W, e ¥, (k) containing the set
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Fir1({y} %[0, 1]). Hence,
W, (k)" V(j,i)#0
and by (6),
Fioi({y}x[0, 1) & W, 0= V(i 1 +1).

A similar argument works for Gi-1.
This completes the inductive construction of our sequences of maps, and we now
proceed with the construction of a suitable homotopy between foand go. First, define

H:Yx[0,1]-X

as follows: if y € A(j) and if <1, then fix an n € N with

n—1 n
=<

n n+1

Then we put
-1
H'(y, 1) :Fn(y, n(n +1)(r—L—)).
n
For t =1, we put

H'(y, 1) =fi(y).

If ye A(j)nA(k) with e.g. j<k, then by [4,j+1],..., [4, k], we find that the
homotopies F;.4, ..., Fi are constant, and hence f;(y) = fi(y). This shows that H'
is well defined on Y.

H' is continuous on A(j)x[0, 1]. Indeed, we only need to look after =1. Let
O be a neighborhood of H'{y, 1)=/f;(y). Let P be a neighborhood of y in A(j)
with f;(P) = O. Then for all > j/(j+1) and for all y'e P, we find that

H'(y',t)=fi(y)eO,
using the conditions [4, 1], I=j+1. As the family of all A(j) is a locally finite

closed cover of Y, we find that H' is continuous.
In a similar way we construct a homotopy

H":Yx[0,1]-X

by H'(y,)=G.(y,nn+1)t—(n—-1)/n)) if (r-1)/n<t<n/(n+1), and
H'(y,1)=gi(y)if ye Ay

It is easy to see from [2,n], n €N, that H'(—, 1)= H"(—, 1). We then construct
the desired homotopy

H:Y%[0,1]>X
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by putting
H(y, t)=H'(x, 2t) if0=sr<3,
H(y,t)=H'(x,2—-21) ifz<t=<l.

H(OIX[0, 1D = U F@x0, 100 U G, (}x[0,1)
we find by [3, n], n € N that (assuming y € A(f))
H(px[0, 1= U V(i)

whereas by (3), there is a U € % containing the right hand set. This shows that H
is a 9-small homotopy joining f, with go.

4. Concluding remarks

The problem whether the ANR property is equivalent to the existence of a local
mixer is still far from being solved. The construction of eventual counterexamples,
in view of Theorem 3.1, promises to be rather difficult. ‘Classical’ counterexamples
in ANR theory seem to be unuseful, cf. e.g. Borsuk’s example of a (contractible)
locally contractible metric continuum which is not an (AR) ANR [1].

By [3], this space does not admit a local equiconnecting function, and hence by
Theorem 3.1, it cannot carry a local mixer.

As is clear from Section 2, certain spaces carry a very ‘natural’ mixer. We don’t
know whether every Banach space has a ‘natural’ mixer (of course, by Theorem
2.8, every Banach space has a mixer).
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