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We give an example of a perfectly normal first countable space X* with ind X™ =1 such that
if Z is a Lindeldf space containing X*, then ind Z =dim Z = . Under CH, there is a perfectly
normal, hereditarily separable and first countable such space.
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1. Introduction

All spaces under discussion are Tychonoff. For all undefined notions see [2].

It is well known that dim X =dim X for any space X and that Ind X =1Ind BX
if X is normal. Unfortunately, ind X need not be equal to ind 8X. Smirnov [6]
constructed an example of a normal space Z such that ind Z =0 and dim Z =0,
hence, dim BZ =ind BZ = 0. It is clear however, that every space Y withind Y =0
has a compactification yY withind yY = 0. It seems therefore natural to ask whether
any space Y has a compactification yY such that ind Y =ind yY. Unfortunately,
this is not the case. Applying a technique in van Douwen and Przymusinski [1],
and using an example in Pol and Pol [4], we will construct a perfectly normal first
countable space X* with ind X* =1 such that if Z is a Lindelof space containing
X*, then ind Z =dim Z = c0. Under the Continuum Hypothesis (CH), there even
exists a perfectly normal, hereditarily separable and first countable such space.

* This paper was written while the first-named author was visiting the Department of Mathematics of
the Polish Academy of Sciences (Warszawa),
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2. The construction

The aim of this section is prove Lemma 2.1 of which all the results announced
in the introduction will be easy consequences (if the right input is used of course).
The proof of Lemma 2.1 is inspired by [1].

2.1. Lemma. For every space X there exists a space X* with the following properties:
(a) ind X*=ind X +1;
(b) if Z is a Lindelof space containing X*, then dim X =dim Z <ind Z;
(c) if X is normal (perfectly normal, first countable, (hereditarily) separable etc.,
respectively), then so is X*.

2.2. Corollarly. There exists a perfectly normal first countable space X* with
ind X*=1 such that if Z is a Lindeldf space containing X*, then ind Z =
dim Z =00,

Proof. There exists a perfectly normal and first countable space X such that
ind X =0and dim X =0, [4]. [

2.3. Corollary (CH). There exists a perfectly normal, hereditarily separable and first
countable space X* as above.

Proof. CH implies that there is a hereditarily separable space X as above, [3]. [

2.4. Proof of Lemma 2.1. Fix X and 6¢ X. There exists a countable family
F ={f:: i <w} of continuous functions f; : X - I, where I denotes the interval [0, 1],
such that if kK <dim X, then for some subfamily of k +1 functions from %, say
fios firs - + + » fir» the following holds:

if K; is a zero-set partition between f,-J.I(U) and f;' (1),
k {l
then () K; #0. )

j=0

Denote by C the Cantor set and by Q < C the set of rationals in C. Let {Q,: a <c}
enumerate the family of all dense subsets of Q. Decompose C into dense subsets
Agpfora<e i<w,ie. C=|J{A.;:a<c,i<w} ForeveryteC,ifte A, choose
a sequence {q, (1)}, -. of points of Q, so that

0<|gn(t)—t]<1/n.
Let B(t,e)={se C: |[t—s|<e}. Define
X*=(Cx{fhu(OxX)cCx({f}uX).

Basic neighborhoods of points (g, x), where g € Q and x € X are of the form {q} x U,
where U is open in X and contains x. Suppose that te C,r€ A, ; and n < w. Basic



T van Mill, T.C. Przymusinski | Compactifications and the small inductive dimension 135

neighborhoods of (¢, 8) are of the form
Ut,n)=(B(t, 1/n)x (X u{ehN {1} x X) U ({g;(t)}j<w Xf.-_] ([1/n, 1])).

One easily checks that X * is a Tychonoff space and that ind X*=ind X + 1. Clearly
if X is first countable or (hereditarily) separable, then so is X ™.

Suppose that e.g. X is perfectly normal and let U be an open subset of X*, For
every (1, 8)€ U there exists a U(t, n,)= U(t, n,) = U and countably many of these
sets cover U n (C x{#}). Similarly, there exists a countable family of open subsets
of X* contained with their closures in U and covering U n(Q x X}, thus X™ is
perfectly normal.

It remains to prove (b). Suppose that Z = X *is Lindelof and k =dim Z is smaller
than dim X, Let {f.-r.}f-‘_ o be as in (1). For every g€ Q let Z, :{q}>iX (the closure
is taken in Z). Thus Z, is a Lindelof extension of X. We say that g separates f; if

{a}xfi (0)~{g}xfi" (1)=0.
Note first that

if t € A, ;, then there exists an m(r) € , so that if [ = m(¢), then

q(t)e Q. and q,(r) separates f.. 2)

Indeed, if U is open in Z such that U n X*=U(t, 1), then there exists an m(r)
with U(r, m(t))< U. It is easily seen that m(t) is as required (this is the same
technique as in [1, 2.2]).

Fors=0,1,...,k,let T, ={q € Q: q separates f; forall j =0, 1, ..., s}. We shall
show by induction that 7 is dense in Q. Indeed, density of T; follows from (2)
and the density of A, ;. Suppose that T, is dense for certain s <k. Then T, = Q.
for some « and the density of 7., follows from (2) and the density of A, ,,.

Let g€ Tyx. Then g separates all f;’s, for j=0,1,..., k. since Z, is a closed
subspace of the Lindel6f (hence normal) space Z, we have that dim Z, = k. Therefore
there exist zero-set partitions K; in Z, between {gq} xf;;l (0) and {q} ><f,-'_1 (1) with
Mi_o K; =0, which contradicts (1).

This proves that dim X =dim Z. That dim Z =ind Z follows from the fact that
Z is Lindelof, [2, 7.2.7] O

3. Remarks

Clearly if ind X =0, then X* is a countable union of zero-dimensional closed
subspaces. If one collapses C x {6} to a point then the resulting space X** has
similar properties, but is the union of the zero-dimensional space Q X X (with Q
discrete) and a point.

One naturally wonders whether a metrizable space M exists such that ind M =1
and if Z is a Lindel6f (or compact) space containing M, then ind Z > 1. If M exists
then dim M > 1. That can be seen as follows. If dim M =1, then by the Katétov-
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Morita Theorem, [2, 7.3.2], Ind M =1 which implies that ind BM <Ind BM = 1.
We don’t know whether M exists. Notice that there is a metrizable space 4 with
ind A =0 and dim 4 >0, [5].

We have seen that there is no compactification theorem for the small inductive
dimension. In fact we have shown that there are spaces which have no ind preserving
Lindelof extension. This suggests the question whether there is a Lindelof space
L with ind L =2 but if yL is any compactification of L, then ind yL >2. We don’t
know the answer to this question. Observe that if L is Lindeldf and ind L =1, then
IndL=1,[2,7.2.9], and thus 1=<ind BL <Ind BL = 1.
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